JPS58134271A - Packing - Google Patents

Packing

Info

Publication number
JPS58134271A
JPS58134271A JP1805582A JP1805582A JPS58134271A JP S58134271 A JPS58134271 A JP S58134271A JP 1805582 A JP1805582 A JP 1805582A JP 1805582 A JP1805582 A JP 1805582A JP S58134271 A JPS58134271 A JP S58134271A
Authority
JP
Japan
Prior art keywords
packing
fiber
fibers
asbestos
aramid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1805582A
Other languages
Japanese (ja)
Other versions
JPH0214387B2 (en
Inventor
Satoru Hashimoto
哲 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP1805582A priority Critical patent/JPS58134271A/en
Publication of JPS58134271A publication Critical patent/JPS58134271A/en
Publication of JPH0214387B2 publication Critical patent/JPH0214387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material

Abstract

PURPOSE:To improve performance of a packing by using aramid fiber of extremely small diameter as a fiber base material, filling the fiber with powder filling material as closing texture and a lubricant and mixing a bonding agent therein to form a deasbestos packing. CONSTITUTION:A fiber base material is aramid fiber (a general term for fibers comprising a reaction product of aromatic diacid chloride and aromatic diamine). A suitable filling material and a bonding agent are mixed with the aramid fiber having an extremely small diameter. A packing is thus constructed. This is a de-asbestos packing, which shows much better performance as compared with an asbestos packing.

Description

【発明の詳細な説明】 本発明は、流体を封止するパツキンに係り、いわゆるプ
ラスチック(可塑什)パツキンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gasket for sealing fluid, and relates to a so-called plastic gasket.

従来、例えば、飄用バルブ化用いられるパツキンとして
は、石綿の如き、公知の繊維基材を主体として、この繊
維基材に、黒鉛、雲母=タルク等の粉体充填材を充填せ
しめ、流体の浸透洩れを防止する目詰材としての機能と
、摺動抵抗れらに、ゴム等の結合材を混入して、パツキ
ン自体の成形性、可撓性の付与、形状保持性等を与えた
パツキンが一般的である。
Conventionally, for example, gaskets used to make valves for airbags are mainly made of a known fiber base material such as asbestos, and this fiber base material is filled with a powder filler such as graphite or mica (talc) to form a fluid. A packing that functions as a plugging material to prevent seepage and leakage, and has a bonding material such as rubber mixed into the sliding resistance to give the packing itself moldability, flexibility, shape retention, etc. is common.

しかしながら、繊維基材として、石綿を用いることは、
環境衛生上の点から、ここ数年来、世界的にその使用の
規制が進められており、石綿の代替材を見出すことが、
このパツキン技術分野に怠いても重要な課題となってい
る。しかしパツキンKmいて、石綿に代わる繊維基材を
見出すことは、その歴史が物語っている通り非常に困難
である。その最大の理由は、石綿の繊維径が極細である
ことに起因している。つまり極細径の繊維であれば、繊
維間の相互抱合力が増し、比表面積(石綿の場合、lO
〜40Wl/grである。)も大きくなるので、繊維界
面での凝集力が増す。
However, using asbestos as a fiber base material
For the past few years, regulations on the use of asbestos have been promoted worldwide for environmental health reasons, and it is important to find alternatives to asbestos.
This packing technology has become an important issue even if neglected. However, as its history shows, it is extremely difficult to find a fiber base material to replace asbestos. The biggest reason for this is that the fiber diameter of asbestos is extremely fine. In other words, if the fibers are extremely thin, the mutual bonding force between the fibers increases, and the specific surface area (in the case of asbestos, lO
~40Wl/gr. ) also increases, so the cohesive force at the fiber interface increases.

これKよって、パツキン自体の強度向上と、充填材や結
合材の保持性と分散性を良好にし、パツキンあ復元性と
封止性能とを優れたものにする。ところが、現在1で、
石綿以外の繊維で、石綿程に極細径をもつ繊維は、有機
繊維や無機繊維中には全くなく、せいぜい数ミクロンの
繊線径を有する繊維が模索されている程度であり、これ
が実状でもある。
This improves the strength of the packing itself, improves the retention and dispersibility of the filler and binder, and makes the packing excellent in its restorability and sealing performance. However, currently it is 1,
Among fibers other than asbestos, there are no organic or inorganic fibers with a diameter as fine as asbestos, and only fibers with a wire diameter of a few microns are being explored, and this is the reality. .

従って、最近、石綿の代替材として、−パツキンの繊維
基材の内、最も注目しているものがアラミツド繊維(芳
香族系ポリアミド繊維はその一態様)であり、比較的繊
維径も細く、石綿以外の繊維基材としては、有望視して
いる。しかしこのアラミツド繊維でも、太さが1デニー
ル(。
Therefore, as an alternative to asbestos, aramid fiber (of which aromatic polyamide fiber is one type) has been attracting the most attention among the fiber base materials for packaging, which has a relatively small fiber diameter and is suitable for asbestos. It is seen as promising as a fiber base material for other materials. However, even this aramid fiber has a thickness of 1 denier (.

繊維径にて約9ミクロン)以上もあり、パツキンの繊維
基材として、石綿程に期待できない事情もある。因みに
、通常のアラミツド繊維として、最モ細い繊維であるP
−フ二二しンテレフタルアミド繊維を500倍に拡大し
た走査型電子顕微鏡写真を第1図に示す。第1図かられ
かるように繊維径は約12ミクロンであり、一本一本の
繊維が、丁度ガラス繊維のように棒状となっており、前
述したように石−程にパツキンの繊維基材として期待で
きないことがわかる。
It has a fiber diameter of approximately 9 microns or more, so it cannot be expected to be used as a fiber base material for packaging as much as asbestos. By the way, P, which is the thinnest ordinary aramid fiber,
FIG. 1 shows a scanning electron micrograph of a 500-fold magnification of the -Finishin terephthalamide fiber. As can be seen from Figure 1, the fiber diameter is approximately 12 microns, and each fiber is rod-shaped, just like glass fiber. It turns out that this cannot be expected.

本発明は、係る事情に基づきなされたものであり、以下
本発明の詳細な説明する。
The present invention has been made based on the above circumstances, and will be described in detail below.

まず、本発明では、第1図に示したアラミツド繊維をも
っと極細化できないものかという研究から始まった。む
ろん、この研究には、他のいくつかの繊維材もその対象
となったが、アラミツド繊維のみが、成る種のエネルギ
ーを′与えると、不思議なことに、繊維の長手方向、即
ち第1図では、棒状の繊維の縦(長手)方向に割れ、し
かも枝分かれし、1ミクロン以下の径をもつ繊維となる
ことがわかった。このエネルギーの与え方は、機械的な
摩砕によってなし得ることもわかった。しかも、このア
ラミツド繊維が、摩砕による破壊のされ方は、アスペク
ト比増大の方向にあり、パツキンの繊維基材として有利
な方向に進み、またもジュラスも18000r4/車”
と高いものである。第2図は、第1図に示したアラミツ
ド繊維を機械的な摩砕をした後の500:′:: 倍に拡大した走査□’−,,電子顕微鍵写真である。こ
の第2図と第1図とを比較すればわかるように繊維の状
態が全く興なり、摩砕することによって、0.01デニ
ール(繊維径にて、0.1ミクロン)以下となって奢り
、比表面積が10〜16 vd/grにもなっていた。
First, the present invention began with research into whether it was possible to make the aramid fiber shown in FIG. 1 even finer. Of course, several other fiber materials were also the subject of this research, but strangely, when only aramid fibers were given the type of energy that they were, the energy in the longitudinal direction of the fibers, i.e., as shown in Figure 1. It was discovered that the rod-shaped fibers crack in the longitudinal (longitudinal) direction and branch out, resulting in fibers with a diameter of 1 micron or less. It has also been found that this energy application can be achieved by mechanical grinding. Moreover, the way this aramid fiber is destroyed by grinding is in the direction of increasing the aspect ratio, making it advantageous as a fiber base material for packing.
It is expensive. FIG. 2 is an electron micrograph of the aramid fiber shown in FIG. 1 enlarged by 500:':: after mechanically grinding. As can be seen by comparing Figure 2 and Figure 1, the condition of the fibers has completely changed, and by grinding, they become less than 0.01 denier (0.1 micron in fiber diameter), making them luxurious. , the specific surface area was as high as 10 to 16 vd/gr.

このようにして得られた極細径のアラミツド繊維と石綿
とを比較したのが第8図と第4図である。第8図は石綿
、第4図は、極細径のアラミツド繊維を示し、何れも1
00倍に拡大した光学顕微鏡写真であり、極細径のアラ
ミツド繊維が外観上、何んら石綿と変わりないことがわ
かった。このようにして得られた極細径のアラミツド繊
維がパツキンの繊維基材として適するか否かについて、
さらに種々の研究をした結果、概ね次のことがわかった
FIGS. 8 and 4 show a comparison between the ultra-fine diameter aramid fibers obtained in this way and asbestos. Figure 8 shows asbestos, and Figure 4 shows ultra-fine aramid fibers, both of which are 1
This is an optical microscope photograph magnified 00 times, and it was found that the ultra-thin diameter aramid fibers looked no different from asbestos. Regarding whether or not the ultra-fine aramid fibers obtained in this way are suitable as fiber base materials for packing,
As a result of further various studies, we found out the following.

(イ)繊維径が極細である。(a) The fiber diameter is extremely fine.

パツキンの封止性、復元性、充填材の保持性等からみて
、繊維径が充分に細く、石綿と遜色のないことがわ、か
った。
It was found that the fiber diameter was sufficiently thin and comparable to asbestos in terms of sealing properties, restoring properties, filler retention properties, etc.

(ロ)繊維が摩擦等に対して強い。(b) The fibers are strong against friction, etc.

折り曲げ、擦り合せに対して弱い繊維は、パツキンの製
造時や使用時に繊維が折れ、アスペクト比が低下し、パ
ツキンの強度において問題を生じるが、極細径/のアラ
ミツド繊維では、摩砕、摩擦をすれば、逆にアスペクト
比が増大し、高モジニラスのものになった。
Fibers that are weak against bending and rubbing will break during the manufacture or use of the packing, lowering the aspect ratio and causing problems with the strength of the packing. On the contrary, the aspect ratio increased, resulting in a high modinilas.

(ハ)熱膨張係数が大きくない。(c) The coefficient of thermal expansion is not large.

例えば、バルブ、ポンプ等の機器ケーシングや軸(弁軸
)の材質よりも、熱膨張係数が大程度であり、全く問題
がない。
For example, the coefficient of thermal expansion is larger than that of the material of the casing or shaft (valve shaft) of equipment such as valves and pumps, so there is no problem at all.

に)繊維のモジユラスが充分に高い。) The modulus of the fiber is sufficiently high.

パツキンの復元性に直接影響し、パツキンの応力緩和の
原因となるが、極細径のアラミツド繊維では、高モジェ
ラスを一蒔続するので、安定した封止性を保つことが可
能となる。
This directly affects the restorability of the packing and causes stress relaxation in the packing, but since ultra-thin diameter aramid fibers are sown with high modulus, it is possible to maintain stable sealing performance.

#、)耐腐食性がある。#,) Corrosion resistant.

種々の薬液に対しても、安定しているので、封止すべき
流体の種類に対し、縛束されない。
Since it is stable against various chemical solutions, it is not restricted by the type of fluid to be sealed.

(へ)耐熱性がある。(f) Heat resistant.

石綿程には、耐熱性を有しないが、産業市場において、
使用される温度は、150℃以下が多く、極細径のアラ
ミツド繊維は、170 t”程度でも強度とモジュラス
の低下は極めて少ないことがわかった。
Although it is not as heat resistant as asbestos, it is used in the industrial market.
The temperature used is often 150° C. or lower, and it has been found that ultra-fine aramid fibers exhibit very little decrease in strength and modulus even at about 170 t''.

以上のように、極細径となしたアラミツド繊維は、パフ
手しの繊i基材として、非□常に有望である゛ことを確
認した。
As described above, it has been confirmed that aramid fibers with ultra-fine diameters are extremely promising as fiber base materials for puff hands.

そこで本発明セは、極□細径のアラミツド繊維を繊維基
材として、これに目詰めと一滑剤としての粉体充填材を
充填せしめ!これに結合材を混入したパツキンとなした
。    。
Therefore, in the present invention, ultra-thin diameter aramid fibers are used as a fiber base material, and this is filled with a powder filler as a packing and lubricant! This was mixed with a binding material to form a package. .

そして、係るパツキンについて、トルクや洩れ量等のパ
ツキン特性を調べてみたところ、以下、実施例に基づき
詳しく述べ養が、全く良好な結゛  □ ・       :1; ″“°“°  慮、゛ツ、1 表−1に示した本発明品ム”と1″・比較品Bとのパ・
、、11・1 ・ キンを用いて、JI8青銅製101−用ねじ込み玉形弁
の弁棒用パツキンとして組み込み、弁の全開全閉の繰返
し開閉回数に対□するステムトルク(4−an)を測定
することによって、パツキンの摺動特性を調べてみた。
When we investigated the characteristics of such a seal, such as torque and leakage, we found that the results are quite good, as detailed below based on examples. , 1 The difference between the invention product M'' and 1'' and comparative product B shown in Table-1.
,,11.1 ・Installed as a seal for the valve stem of a screw-in globe valve for JI8 bronze 101- by using a kin, and the stem torque (4-an) corresponding to the number of repeated opening and closing of the valve is applied. We investigated the sliding characteristics of the packing by measuring it.

その結果を第5図のグラフに示す。第5図の横軸は弁の
開閉回数N、縦軸はステムトルクTを示す。
The results are shown in the graph of FIG. In FIG. 5, the horizontal axis shows the number of times N of opening and closing the valve, and the vertical axis shows the stem torque T.

表−1 第5図の結果かられかるように、本発明品Aは、比較品
Bに比して、安定したトルクを示してお1 す、しかも、トルク声は低いことがわかった。
Table 1 As can be seen from the results in Figure 5, product A of the present invention exhibited more stable torque than comparative product B, and moreover, the torque was lower.

また測定後の弁棒を観察したところ、比較品Bの弁棒に
は、摩擦による傷によって、表面が少し粗れていたが、
本発明品ムの弁棒の表面には全く粗れが見られず、美し
い鋺面であった。
Furthermore, when we observed the valve stem after measurement, we found that the surface of the valve stem of comparative product B was slightly rough due to scratches caused by friction.
No roughness was observed on the surface of the valve stem of the product of the present invention, and it had a beautiful surface.

[実施例2」 表−1で示した同じパツキンの仕様にて、本発明品ムと
比較品Bとを用いて、JI8青鋼製鋼製10Vねじ込み
玉形弁の弁棒用パツキンとして組み込み、弁のパツキン
押え板締付ボルトの締付トルク(即−em)に対するパ
ツキンの漏れ量(ccz分)を測定することによってパ
ツキンの封止特性を細べてみた。なお封止すべき流体と
して、窒素ガス(N8)を101dに負荷した状態にて
行なった。
[Example 2] With the same packing specifications shown in Table 1, the present invention product M and comparative product B were incorporated as a valve stem packing for a 10V threaded globe valve made of JI8 blue steel. The sealing characteristics of the seal were examined in detail by measuring the amount of leakage (ccz) of the seal against the tightening torque (same-em) of the valve seal retaining plate tightening bolt. Note that the test was carried out with nitrogen gas (N8) being loaded onto 101d as the fluid to be sealed.

その結果を第6図のグラフに示す。第6図の横軸はミ弁
の締付ボルトの締付トルク告、縦軸は窒素ガスの洩れ量
Qを示す。
The results are shown in the graph of FIG. The horizontal axis in FIG. 6 shows the tightening torque of the tightening bolt of the MI-valve, and the vertical axis shows the leakage amount Q of nitrogen gas.

第6図の結果かられかるように、本発明品ムは比較品B
に比して、各締付トルクエマに対し、洩れ量が少なく、
良好な封止特性を示した。
As can be seen from the results in Figure 6, the invention product B is
Compared to , the amount of leakage is small for each tightening torque
It showed good sealing properties.

以上詳述したように、本発明に係るパツキンは石綿を一
切用いないところのいわゆるアスベストフリーのパツキ
ンが得られ、しかも、石綿パツキン以上の優れた性能を
有するパツキンであるごとが確認された。もっとも、パ
ツキンの繊維基材として、石綿代替候補の繊維は、現在
知られてい−るものでも、いくつもあるが、例えば岩石
繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維等め無機
繊維は一般に折り曲げ強度に弱く通常の一ンゼン環□を
有しないポリアミド等の熱可替性繊維は、熱膨張係数が
大きく、高温域で−の強度やモ、ジェラスの低下を生じ
、またフェノール樹脂繊維等の熱硬イビ性繊維は、摩砕
に弱く充分でない。しかも、これらの石綿代替候補繊維
は、いずれも、現在の技術レベルでは、繊維径が数ミク
ロンオーダーであり、1ミクロン(1μm)以下の繊維
径のものがなく、パツキンの繊維基材として充分満足し
得るものがない。
As detailed above, it has been confirmed that the packing according to the present invention is a so-called asbestos-free packing that does not use asbestos at all, and has superior performance to asbestos packing. However, there are a number of currently known fibers that can be substituted for asbestos as fiber base materials for packing materials, but inorganic fibers such as rock fibers, glass fibers, carbon fibers, and silicon carbide fibers are generally bent. Heat-transferable fibers such as polyamides, which have low strength and do not have normal one-half rings, have a large coefficient of thermal expansion, resulting in a decrease in strength, modulus, and gelatinity at high temperatures. Hard fibers are insufficiently resistant to abrasion. Furthermore, at the current technological level, all of these candidate fibers to replace asbestos have fiber diameters on the order of several microns, and none have a fiber diameter of 1 micron (1 μm) or less, making them fully satisfactory as fiber base materials for packing. There's nothing I can do.

これに対し、、声発明に係るパツキンは、繊維基材とし
てア□ラミ、ラド繊維(芳香族ジアジドクロライドと芳
香族ジアミンの反応生成物からなる繊維の総称の意)の
′繊維径を極細径となしたものであり、これに適宜の充
填材と結合材とを配合せしめた構成のパツキンであるの
で、脱石綿パツキンであり、しかも石綿パツキンに比し
て一段と優れた性能を示すパツキンを得た。
On the other hand, the Patsukin according to the voice invention uses arami and rad fibers (a general term for fibers made of the reaction product of aromatic diazide chloride and aromatic diamine) as fiber base materials with an ultra-fine fiber diameter. The diameter of the packing is made up of a suitable filler and binder, so it is an asbestos-free packing and has even better performance than asbestos packing. Obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、通常のアラミツド繊維を示す電子顕微鏡写真
、第2図は、極細径のアラミツド繊維を示す電子顕微鏡
写真、第8図は、石綿を示す光学顕微鏡写真、第4図は
、極細径のアラミツ /ド繊維を示す光学顕微鏡写真、
第5図と第61図とは、本説明に係るパツキンの特性を
示すグラフであり、第5図は、弁の開閉回数とステムト
ルクとの関係を示し、第6図は、弁の締付ポルトによる
締付トルクと洩れ量との関係を示すものである。 ム・・・・・・本発明品 B−・・・・・比較品   □・” い 出願人:日本ピラー工業株式会社 、      Tv (kg−cm)
Fig. 1 is an electron micrograph showing normal aramid fibers, Fig. 2 is an electron micrograph showing ultra-fine aramid fibers, Fig. 8 is an optical micrograph showing asbestos, and Fig. 4 is an ultra-fine aramid fiber. Optical micrograph showing aramid/de fibers,
5 and 61 are graphs showing the characteristics of the packing according to this explanation, FIG. 5 shows the relationship between the number of valve openings and closings and the stem torque, and FIG. 6 shows the relationship between the valve tightening and stem torque. It shows the relationship between Porto's tightening torque and leakage amount. M... Invention product B... Comparative product □・” Applicant: Nippon Pillar Industries Co., Ltd., Tv (kg-cm)

Claims (1)

【特許請求の範囲】[Claims] (1)111m基材と粉体充填材参よび結合材からなる
パツキンにおいて、繊維基材として極細径のアラミツド
繊維であることを特徴とするパツキン。
(1) A packing consisting of a 111m base material, a powder filler, and a binding material, characterized in that the fiber base material is an aramid fiber with an extremely small diameter.
JP1805582A 1982-02-05 1982-02-05 Packing Granted JPS58134271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1805582A JPS58134271A (en) 1982-02-05 1982-02-05 Packing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1805582A JPS58134271A (en) 1982-02-05 1982-02-05 Packing

Publications (2)

Publication Number Publication Date
JPS58134271A true JPS58134271A (en) 1983-08-10
JPH0214387B2 JPH0214387B2 (en) 1990-04-06

Family

ID=11961007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1805582A Granted JPS58134271A (en) 1982-02-05 1982-02-05 Packing

Country Status (1)

Country Link
JP (1) JPS58134271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101359A (en) * 1983-11-04 1985-06-05 Uchiyama Mfg Corp Fiber-reinforced expansive-graphite gasket and manufacture thereof
JPH02160891A (en) * 1988-12-13 1990-06-20 Nippon Gasket Kk Expanded graphite sheet material reinforced with aramid fiber and manufacture of same material
CN102433100A (en) * 2011-09-23 2012-05-02 浙江国泰密封材料股份有限公司 Layered shearing type sealing filler material used for rotary pump and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101359A (en) * 1983-11-04 1985-06-05 Uchiyama Mfg Corp Fiber-reinforced expansive-graphite gasket and manufacture thereof
JPH02160891A (en) * 1988-12-13 1990-06-20 Nippon Gasket Kk Expanded graphite sheet material reinforced with aramid fiber and manufacture of same material
CN102433100A (en) * 2011-09-23 2012-05-02 浙江国泰密封材料股份有限公司 Layered shearing type sealing filler material used for rotary pump and preparation method thereof

Also Published As

Publication number Publication date
JPH0214387B2 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US4659091A (en) Sealing ring for sealing an articulated connection
WO1995027162A1 (en) Valve device
EP0185044A1 (en)
JP4017671B2 (en) Low permeability fluid seal for flow control device
JPS6129904B2 (en)
US4438936A (en) Secondary sealing element with U-shaped sealing ring for mechanical seals
US4098515A (en) Abrasion resisting material and use of the same
BRPI0903269B1 (en) SEAL ASSEMBLY FOR WELL HEAD ASSEMBLY AND METHOD OF MANUFACTURING A SEAL
US6398224B1 (en) Metal seal and coating material for metal seals
JPS58134271A (en) Packing
JPS6215280A (en) Lip sealing material
KR19980024850A (en) Fluorine Resin Composition and Seal for Swivel Joint
JP2005290359A (en) Silicone gasket composition
JP4857151B2 (en) Gland packing
JP2005036198A (en) Sealing material and scroll fluid machine provided with the same
JPH0772104B2 (en) Polycrystalline ceramics
JPH06172745A (en) Oil-free sealing composition used in helium or nitrogen gas atmosphere
CA1186572A (en) Packing material
JPS61171786A (en) Composition for gasket
JP5491873B2 (en) Gland packing
CN201074684Y (en) Metal hard sealing valve
KR100502117B1 (en) The rubber coating soluting on metal and nonmetal plate
JPS62276280A (en) Sealing method for pump shaft seal part
JPH0712235A (en) Gasket for high temperature
Richter Perfluoroelastomer O-rings reduce risk of failure