JPS58134039A - Preparation of methanol - Google Patents
Preparation of methanolInfo
- Publication number
- JPS58134039A JPS58134039A JP57016328A JP1632882A JPS58134039A JP S58134039 A JPS58134039 A JP S58134039A JP 57016328 A JP57016328 A JP 57016328A JP 1632882 A JP1632882 A JP 1632882A JP S58134039 A JPS58134039 A JP S58134039A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction zone
- reaction
- methanol
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 205
- 238000006243 chemical reaction Methods 0.000 claims abstract description 101
- 239000007789 gas Substances 0.000 claims abstract description 92
- 239000003054 catalyst Substances 0.000 claims abstract description 85
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910002090 carbon oxide Inorganic materials 0.000 claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 210000003141 lower extremity Anatomy 0.000 claims 1
- 238000013021 overheating Methods 0.000 claims 1
- 238000001308 synthesis method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 21
- 239000002994 raw material Substances 0.000 abstract description 20
- 239000002918 waste heat Substances 0.000 abstract description 20
- 230000003197 catalytic effect Effects 0.000 abstract 3
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000010791 quenching Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- -1 3-chi Chemical compound 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-BJUDXGSMSA-N carbon-11 Chemical compound [11C] OKTJSMMVPCPJKN-BJUDXGSMSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は高温高圧下に水素と一酸化炭素および/また
は二酸化炭素の如き酸化炭素類に富むガスとを高温の触
媒と接触させてメタノールを製造する方法の改良に関し
、さらに詳しく云えば、高圧下にある水素と酸化炭素類
に富むガス(以下単に原料易スという)を高温の断熱触
媒層よりなる第1反応域と間接熱交換用伝熱面を配設さ
れた触媒層よシなる第2反応域とにこの順序を以て通過
させてメタノールを合成する方lノ゛において、可能な
限シ低圧力下に簡単な構造の1リス応器を使用してメタ
ノールを合成し、かつその際の反応熱をより高温の水蒸
気として回収することを目的とする。DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in a method for producing methanol by bringing hydrogen and a gas rich in carbon oxides such as carbon monoxide and/or carbon dioxide into contact with a high temperature catalyst under high temperature and high pressure. More specifically, a gas rich in hydrogen and carbon oxides (hereinafter simply referred to as raw material gas) under high pressure is transferred to a first reaction zone consisting of a high-temperature adiabatic catalyst layer and a heat transfer surface for indirect heat exchange. In the method of synthesizing methanol by passing it through the catalyst layer and the second reaction zone in this order, methanol is synthesized using a single-liquid reactor with a simple structure under the lowest possible pressure. The purpose is to recover the reaction heat as higher temperature steam.
前記原料ガスからメタノールを合成する接触厚1,6は
周知の如く激しい発熱反応であるとともに化学平衡上、
高圧低温の反応条件であればある程、反応後のガス中の
メタノール濃度を高め得るのであシ、実用可能な触媒の
好適な作用温度範囲である。2Sθ〜35θ℃と、とあ
温度範囲で容易にメタノールを製造できる圧力として2
.5θ〜3θθkV/ctAGが従来の製造条件として
多用されている。このような周知方法の中において反応
器の使用法Yして、例えば、特開昭3;’l−/!;7
3/3の如く複数の直列断熱触媒層を有する単一の反応
器に予熱された原料ガスをIN−I して反L6させ、
触媒層の温度制御は各断熱触媒層の中間に低温の原料ガ
スを供給(以下この形式で供給されるガスをクエンチガ
スという)して行い、反応熱は原料ガスの予熱あるいは
水の加熱に利用する方法、特開昭&4−3.27’1に
記載の如く高圧下の沸騰しつつある水中に配設された多
数の管内に充填した触媒層に原料ガスを通し、はぼ一定
温度下に反応させ、反応熱を高圧水蒸気として回収する
方法、およびノ・イドロカーボーンプロセノシング誌/
973;年7月号gθ頁に記載の断熱触媒層よシなる反
応器の複数基を直列使用し、各反応器間において反応中
のガスと高圧水とを熱交換して反応熱を高圧水蒸気とし
て回収するとともに各断熱触媒層温度の過上昇を防止す
る方法、あるいは特公昭9Q−ざ967記載の11如く
同一の反応器内に断熱触媒層と熱交換型触媒層の両者を
設置し原料ガスを最初に断熱触媒層、次に熱交換型触媒
層を通過させる方法などがある。これらの方法はいずれ
も反応熱の回収が不充分であるか、反応器の構造が複雑
であシ犬型反応器には適当でないか、あるいは反応器出
口におけるメタノール濃度が低いという欠点がある。す
なわち、特開昭−9グー737!;/3の方法は複数の
断熱触媒層のみを使用しているだめ、メタノールの生成
に伴ッて触媒および反応中のガスの温度上昇は不可避で
あり、一旦上昇したガス温度を低下させるため触媒層間
に供給するクエンチガスの量は下流にちる断熱触媒層温
度とする必要が生じ、このり工/チガスの供給はガス温
度低下効果以外に生成したメタノールの希釈効果を伴う
だめ、結果として反応器出口ガス中のメタノール濃度を
低下させる原因となる。また特開昭116−3.2/1
7の方法は反応器のガス側の圧力および温度と水蒸気側
の圧力および温度が異なるため、これら圧力差、反応器
材料の熱膨張差から生じる大応力を回避することが設計
上困難であシ犬型の反応器として不適合構造の反応器を
使用している。As is well known, the contact thickness 1,6 for synthesizing methanol from the raw material gas is a violent exothermic reaction and, in terms of chemical equilibrium,
The higher the reaction conditions are, the higher the pressure and lower temperature, the higher the methanol concentration in the gas after the reaction, which is the preferred operating temperature range for a practical catalyst. 2Sθ~35θ℃, which is the pressure at which methanol can be easily produced within the temperature range 2Sθ~35θ℃.
.. 5θ to 3θθkV/ctAG are frequently used as conventional manufacturing conditions. Among such well-known methods, the use of the reactor is described, for example, in JP-A No. 3;'l-/! ;7
The preheated raw material gas is fed into a single reactor having a plurality of series adiabatic catalyst layers, such as 3/3, IN-I and turned to L6,
The temperature of the catalyst layer is controlled by supplying low-temperature raw material gas between each heat-insulating catalyst layer (hereinafter, the gas supplied in this manner is referred to as quench gas), and the reaction heat is used to preheat the raw material gas or heat water. As described in JP-A-4-3.27'1, a raw material gas is passed through a catalyst layer filled in a number of tubes placed in boiling water under high pressure, and then kept at a constant temperature. A method for reacting and recovering the reaction heat as high-pressure steam, and Hydrocarbon Processing Magazine/
973: A plurality of reactors with adiabatic catalyst layers described on page gθ of the July issue are used in series, and the reaction heat is converted into high-pressure steam by exchanging heat between the gas undergoing reaction and high-pressure water between each reactor. There is a method of recovering raw material gas as well as preventing an excessive rise in the temperature of each adiabatic catalyst layer, or by installing both an adiabatic catalyst layer and a heat exchange type catalyst layer in the same reactor as described in 11 of Japanese Patent Publication No. 9Q-Za967. There are methods such as first passing through an adiabatic catalyst layer and then a heat exchange type catalyst layer. All of these methods have drawbacks such as insufficient recovery of reaction heat, complicated reactor structure that is not suitable for dog-shaped reactors, or low methanol concentration at the reactor outlet. In other words, JP-A-9 Goo 737! Since method 3 uses only a plurality of adiabatic catalyst layers, the temperature of the catalyst and the gas during the reaction inevitably rises as methanol is produced. The amount of quench gas supplied between the layers needs to be adjusted to the temperature of the downstream adiabatic catalyst layer, and the supply of quench gas has the effect of diluting the generated methanol in addition to the effect of lowering the gas temperature. This causes a decrease in the methanol concentration in the outlet gas. Also, JP-A-116-3.2/1
In method 7, the pressure and temperature on the gas side of the reactor and the pressure and temperature on the steam side are different, so it is difficult to avoid large stresses caused by these pressure differences and differences in thermal expansion of the reactor materials in terms of design. A reactor with an incompatible structure is used as a dog-shaped reactor.
また前記ハイドロカーボンプロセッシング誌記載の方法
は多数の高圧反応器と廃熱ボイラーを必要とし装置全体
が高価となる。さらに特公昭!!−g697の方法は反
応過程上における反応熱の回収が不充分であるため、反
応器出口ガスは相当高温となシ化学平衡上の理由により
反応器出口ガス中のメタノール濃度が低い欠点がある。Furthermore, the method described in the aforementioned Hydrocarbon Processing magazine requires a large number of high-pressure reactors and waste heat boilers, making the entire device expensive. Even more Tokko Akira! ! The method of -g697 has the drawback that the reaction heat is insufficiently recovered during the reaction process, so the reactor outlet gas has a considerably high temperature, and the methanol concentration in the reactor outlet gas is low due to chemical equilibrium reasons.
この発明は以上の如き周知方法の欠点を改良するだめの
メタノール製造法であって断熱触媒層を有する第1の反
応域に、2/θ〜2!;θ℃の間の温度まで予熱された
原料ガスの7部と789〜7g0℃の間の温度までに予
熱された残部の原料ガスをクエンチガスとして供給し、
この第1反応域から流出するメタノール濃度の充分でな
い中間反応ガスを廃熱ボイラーによって反応熱を回収し
つつ、23θ〜ノロθ℃の間の温度まで冷却し、次いで
この冷却後のガスを熱交換型触媒層を有する第2の反応
域に供給してメタノール濃度を高め、かつその際の反応
熱の全量を前記−70〜、00℃の間の温度で第1反応
域に供給する原料ガスの一部の予熱に使用する方法であ
って、大型反応器として製作容易な構造の反応6器2基
と/基の廃熱ボイラーによシ反応熱を効率よく水蒸気と
して回収する方法である。The present invention is an alternative method for producing methanol that improves the drawbacks of the known methods as described above, in which a first reaction zone having an adiabatic catalyst layer has a temperature of 2/θ to 2! supplying 7 parts of the raw material gas preheated to a temperature between θ°C and the remaining raw material gas preheated to a temperature between 789 and 7g0°C as a quench gas;
The intermediate reaction gas flowing out from the first reaction zone, which does not have a sufficient methanol concentration, is cooled to a temperature between 23θ and 0°C while recovering the reaction heat using a waste heat boiler, and then this cooled gas is heat exchanged. The raw material gas is supplied to the second reaction zone having a type catalyst layer to increase the methanol concentration, and the entire amount of reaction heat at that time is supplied to the first reaction zone at a temperature between -70 and 00 °C. This method is used for preheating a portion of the reactor, and is a method in which the reaction heat is efficiently recovered as steam using two large-scale reactors with six reactors and/or waste heat boilers, each of which has a structure that is easy to manufacture.
第7図を使用して、この発明の詳細な説明を行う。第1
図はこの発明による工程の7例である1、この図におい
て/は断熱触媒層J1.F、&およびjを有する第1反
応域であって、この反応域は独立した反応器として表示
しである。6は触媒層7およびこの触媒層と接触する伝
熱管gを有する第3反応域であって熱交換型の独立反L
1・7、器として表示しである。高圧の新規供給ガスは
管3/から供給され管グ/からの循環ガスと合流の後原
料ガスとして循環圧縮機27により1LIEされ管3−
を経て熱交換器2夕に流入し、ここで大部分の熱を回収
された後、なお余熱を有する第2反応域6からの管3g
による流出ガスと熱交換し予熱される。この予熱された
原料ガスは管33と3/lの一本!7?、、流れに分割
され、管33の流れは第2反応域乙の伝熱管に内を通過
し、その際、触媒層7内にて発生する反応熱により、さ
らに予熱され管3Sによシ、第1反応域/内にある最上
流の触媒層−に供給され、ここで断熱的メタノール合成
反応が部分的に行われる。メタノール合成反応の進行の
結果温度が上昇したこのガスは、触媒層−と3の中間に
おいて前記の予熱された分流3グの一部を供給混合され
温度を低下させられるとともにメタノール濃度も希釈さ
せられる。この混合ガスは触媒層3に入り再びメタノー
ル合成反応が部分的に進行して温度が上昇し、触媒層3
とグとの間で前記同様管3グからの予熱された原料ガス
の一部の供給を受けて温度を低下させられる。同様の操
作を繰シ返し第1反応器の最下流触媒層Sからメタノー
ル濃度が上昇した(充分なメタノール濃度でない)ガス
が管36を経て廃熱ボイラー2/に流入させられ反応熱
の大部分をスチームとして除去される。反応熱の大部分
を除去され:・:
たこのガスの温度は5.仝お触媒の作、動温度範囲にあ
シ、続いて管37によシ第2の反応域乙の触媒層7内に
導入される。この触媒層7においてメタノール合成反応
はさらに進行して、ガス中のメタノール濃度がさらに上
昇し、その際の反応し、熱は前記の如く管33によシ第
1反応域/に供給される原料ガスの分流の予熱に使用さ
れてツクノール合成反応が終了する。第2反応域6を流
出するガスは管3gを通り、第2の廃熱ボイラー、、2
2により余熱を回収され、必要に応じ熱交換器によシさ
らに余熱を回収された上、なお残存する余熱は前記の如
く熱交換器、2ダによる1BiI、料ガスの予熱に使用
される。熱交換器、2ダから流出する反応終了ガスは管
32を経由冷却?!iニー25に流入し、ここで水との
直接接触あるいは間接熱交換によシ冷却されガス中にあ
ったメタノール蒸気および副生の水蒸気は液体となシ、
わ′しいて管グθを経由分離器2乙で気液分離され、未
反応ガスは管ダ/を経由し、管3/から供給さノする新
規供給ガスと混合し、原料ガスとして循ノ:;1圧縮機
、!7によシ昇圧の上、前記の如く反比、域へ再循環さ
れる。また分離液は管&、2によって精製工程に送られ
る。This invention will be explained in detail using FIG. 7. 1st
The figure shows seven examples of the process according to the present invention. A first reaction zone having F, & and j, which reaction zone is designated as an independent reactor. 6 is a third reaction zone having a catalyst layer 7 and a heat exchanger tube g in contact with the catalyst layer, and is a heat exchange type independent reaction zone.
1.7, displayed as a vessel. The high-pressure new supply gas is supplied from pipe 3/, and after combining with the circulating gas from pipe
3 g of tubes from the second reaction zone 6, which still has residual heat after entering the heat exchanger 2 and recovering most of the heat there.
It is preheated by exchanging heat with the outflow gas. This preheated raw material gas is in one tube 33 and 3/l! 7? , , the flow in the tube 33 passes through the heat transfer tube of the second reaction zone B, and at that time, is further preheated by the reaction heat generated in the catalyst layer 7 and transferred to the tube 3S. It is fed to the most upstream catalyst layer in the first reaction zone, where the adiabatic methanol synthesis reaction is partially carried out. This gas, whose temperature has increased as a result of the progress of the methanol synthesis reaction, is mixed with a portion of the preheated branch stream 3 between the catalyst layer and 3 to lower the temperature and dilute the methanol concentration. . This mixed gas enters the catalyst layer 3 and the methanol synthesis reaction partially proceeds again, the temperature rises, and the catalyst layer 3
Similarly to the above, a part of the preheated raw material gas is supplied from the pipe 3 to lower the temperature. The same operation is repeated, and the gas whose methanol concentration has increased (not sufficient methanol concentration) from the most downstream catalyst layer S of the first reactor is made to flow into the waste heat boiler 2/ through the pipe 36, where it absorbs most of the reaction heat. is removed as steam. Most of the heat of reaction is removed: ·: The temperature of the octopus gas is 5. Once the operating temperature of the catalyst is met, it is then introduced into the catalyst bed 7 of the second reaction zone through a tube 37. In this catalyst layer 7, the methanol synthesis reaction further progresses, and the methanol concentration in the gas further increases, and the heat generated during the reaction is transferred to the raw material supplied to the first reaction zone through the pipe 33 as described above. It is used to preheat the gas flow to complete the Tsukunor synthesis reaction. The gas leaving the second reaction zone 6 passes through a pipe 3g to a second waste heat boiler, .
After the remaining heat is recovered by the heat exchanger 2 and further recovered by the heat exchanger as necessary, the remaining heat is used for preheating the 1BiI and feed gas by the heat exchanger and the 2 DA as described above. The reaction-completed gas flowing out from the heat exchanger 2 is cooled via pipe 32? ! The methanol vapor and by-product water vapor that were present in the gas flow into the i-needle 25 and are cooled by direct contact with water or indirect heat exchange, and become liquid.
The gas and liquid are then separated by the separator 2B via the pipe θ, and the unreacted gas passes through the pipe DA/, mixes with the new supply gas supplied from the pipe 3/, and is recycled as a raw material gas. :;1 compressor,! After being pressurized by 7, it is recycled to the inverse region as described above. The separated liquid is also sent to the purification process via tube &2.
この発明の工程上の主要利点は11例えば上記工程例に
おいて断熱触媒層よシなる第2反応域6と熱交換型触媒
層を有する第2反応域乙を直列に併用して反応終了後の
ガス中のメタノール濃度を高めるとともに、これら二反
応域の中間に廃熱ボイラーコ/を介在させることにより
、従来法に比較し回収スチームの量を増大させると同時
にその温度と圧力を高い方に移行させ得る点にある。こ
の際、高圧スチームとして回収できる余熱を最大にする
ためには工程上の温度あるいはガスの分配を好ましい範
囲に制御する必要があシ、以下その内容を説明する。The main advantages of the process of this invention are 11. For example, in the above process example, the second reaction zone 6 having an adiabatic catalyst layer and the second reaction zone B having a heat exchange type catalyst layer are used in series to generate gas after the reaction is completed. By increasing the methanol concentration in the reactor and interposing a waste heat boiler between these two reaction zones, it is possible to increase the amount of recovered steam and shift its temperature and pressure to higher levels compared to conventional methods. At the point. At this time, in order to maximize the residual heat that can be recovered as high-pressure steam, it is necessary to control the temperature or gas distribution during the process within a preferable range, which will be explained below.
メタノール合成反応は前記の如く等圧下では化学平衡上
触媒の作動温度が低い程反応後のガス中のメタノール濃
度を高くし得るので有利となる。このだめ従来から幾多
のメタノール合成触媒が開発され周知となっている。こ
れら多くの触媒のうち実用に供されているものは触媒の
使用初期において、2/θ℃以上でメタノール合成能力
を示すが、触媒寿命の終期のものは、2’lO〜、2’
13℃以上でメタノール合成能力を示す。As mentioned above, under equal pressure, the methanol synthesis reaction is advantageous because the lower the operating temperature of the catalyst, the higher the methanol concentration in the gas after the reaction, in terms of chemical equilibrium. To this end, many methanol synthesis catalysts have been developed and are well known. Among these many catalysts, those in practical use exhibit methanol synthesis ability at temperatures above 2/θ°C in the initial stage of catalyst use, but those at the end of their catalyst life exhibit methanol synthesis ability at 2'lO~, 2'
Demonstrates methanol synthesis ability at temperatures above 13°C.
また、これらの触媒は330℃〜3qθ℃に耐熱性の上
限温度があり、触媒がこの温度以上に過熱されるとメタ
ノール合成能力を失う結果となる。従って、このような
触媒の使用可能温度範囲は第7反応域および第2反応域
の両者において触媒の新しい時期には一70℃〜33θ
℃、触・Lll、が古くなれば2グθ℃〜33θ℃温度
範囲1旧で触媒温度すなわち反応温度が制御される必要
があることを示している。この発明の第1反応域に使用
している断熱触媒層は、これを内蔵す/、)反応器の構
造が非常に簡単であるため、取り扱いが容易、安価、さ
らに触媒の充填排出が容易であるなどの利点を有するた
め、従来法において単独に多用されているが、反応温度
の制御のためにクエンチガスの導入が必須である。Further, these catalysts have a heat resistance upper limit temperature of 330°C to 3qθ°C, and if the catalysts are overheated above this temperature, they lose their methanol synthesis ability. Therefore, the usable temperature range of such a catalyst is 170°C to 33θ when the catalyst is new in both the seventh reaction zone and the second reaction zone.
This indicates that the catalyst temperature, that is, the reaction temperature, needs to be controlled within the temperature range of 2g θ°C to 33θ°C as the temperature increases. The adiabatic catalyst layer used in the first reaction zone of this invention has a built-in reactor structure that is very simple, making it easy to handle, inexpensive, and easy to charge and discharge the catalyst. However, it is essential to introduce a quench gas in order to control the reaction temperature.
このクエンチガスは一一に下流にある断熱触媒層の後桟
多量に必要とがり、多量のクエンチガスの導入は既にガ
ス中に生成済のメタノールの濃度を大巾に低下させる作
用をも併せ有するため、この型式の反応器のみによって
ガス中のメタノール濃度を化学平衡濃度の極めて近くま
で反応させることは困難である。この欠点はメタノール
合成が300H7crhoの如き従来法の圧力で行われ
る際はメタノールの化学平衡濃度がq3モルチと比較的
高いため重大な欠点とはならない。しかし、メタノール
製造に必要なエネルギーのうちの大部分を占めている原
料ガスの圧縮動力を節減するため、合成圧力を/θθ館
/ff1G程度以下、例えばざθkg/aAGに低下さ
ぜればメタノールの化学平衡濃度が/gモルチ程度に低
下するため、上記欠点は重大な障害となる。この発明で
は、この欠点を解消するだめ第1反応域を流出したガス
を廃熱ボイラーに導入し、高圧スチームを回収しつつコ
3θ〜26θ℃の温度に冷却し、続いて第2の反応域に
導入する。、23θ〜−60℃の温度は第2の反応域で
メタノール合成:′)図応をさらに進める際、化学平衡
濃度と触媒の反応促進効果の点で最も好ましい温度であ
る。従って、この反応域では可能な限シ等濫的にメタノ
ール合成反応の進行することが好ましく、反応は触媒層
を管33による原料ガスの分流で冷却しつつ、この温度
範囲内でほぼ等量的に進行せしめられる。この第2反応
域における反応熱は前記の如く回収される。A large amount of this quench gas is required at the back of the adiabatic catalyst layer located downstream, and introducing a large amount of quench gas also has the effect of greatly reducing the concentration of methanol already produced in the gas. It is difficult to bring the methanol concentration in the gas very close to the chemical equilibrium concentration using only this type of reactor. This drawback is not a serious drawback when methanol synthesis is carried out at conventional pressures such as 300 H7 crho because the chemical equilibrium concentration of methanol is relatively high at q3 mol. However, in order to save the compression power of the raw material gas, which accounts for most of the energy required for methanol production, if the synthesis pressure is lowered to about /θθkan/ff1G, for example, to about θkg/aAG, methanol The above-mentioned drawback becomes a serious hindrance because the chemical equilibrium concentration of In order to overcome this drawback, the present invention introduces the gas flowing out of the first reaction zone into a waste heat boiler, cools it to a temperature of 3θ to 26θ℃ while recovering high-pressure steam, and then transfers it to the second reaction zone. to be introduced. , 23[theta] to -60[deg.] C. is the most preferable temperature in terms of the chemical equilibrium concentration and the reaction promoting effect of the catalyst when further proceeding with methanol synthesis in the second reaction zone. Therefore, it is preferable that the methanol synthesis reaction proceeds as homogeneously as possible in this reaction zone, and the reaction is carried out in approximately equal amounts within this temperature range while cooling the catalyst layer by dividing the raw material gas through the pipe 33. will be allowed to proceed. The heat of reaction in this second reaction zone is recovered as described above.
一方、合成圧力の低い場合には第1反応域にお・いても
断熱触媒層の温度上昇を従来法より小とし1)つ反応を
進めることが化学平衡濃度の低いことを補う上で重要と
なる。このだめの発明者らの検討の結果では第1反応域
に供給される全原料ガスのうち%〜34量を27θ〜2
sθ℃に予熱の」二、断熱触媒床の最上流へ供給し残部
は709〜7g9℃に予熱の上り蔓ンチガスとして断熱
触媒層の中流部に分配供給することが、第1反応域に必
安な触媒量を比較的に少なくして、この反応酸出口のメ
タノール濃度を高め、かつ廃熱ボイラー2/における回
収高圧スチーム量を最大にするために好ましい条件とな
る。上記の諸条件下にメタノール合成を行えば合成圧力
goH/ crA Gの場合の第1反応域出ロガス流は
27θ〜、290℃の温度とq〜Sモルチのメタノール
含有量を有し、廃熱ボイラー、2/で前記温度に冷却し
た後、第一反応域でさらにメタノール濃度を5〜6モル
係の範囲まで高くすることができる。On the other hand, when the synthesis pressure is low, it is important to keep the temperature rise of the adiabatic catalyst layer in the first reaction zone smaller than in the conventional method 1) to proceed with the reaction in order to compensate for the low chemical equilibrium concentration. Become. As a result of the study by the inventors of this device, the amount of 27θ to 2% of the total raw material gas supplied to the first reaction zone is
It is essential to preheat to sθ℃ and supply it to the most upstream part of the adiabatic catalyst bed, and the remaining 709 to 7g is preheated to 9℃ and then distribute it to the midstream part of the adiabatic catalyst bed as a punch gas. These conditions are favorable for keeping the amount of catalyst relatively small, increasing the methanol concentration at the outlet of this reaction acid, and maximizing the amount of high-pressure steam recovered in the waste heat boiler 2/. If methanol synthesis is carried out under the above conditions, the log gas stream exiting the first reaction zone when the synthesis pressure is goH/crA G has a temperature of 27θ~290°C and a methanol content of q~S mole, and the waste heat is After cooling to the temperature in the boiler 2/2, the methanol concentration can be further increased in the first reaction zone to a range of 5 to 6 molar.
さらにもう一つの好ましいことは合成圧力の低い場合に
おいて、最初の断熱触媒層−に供給すべき既に温度が触
媒の作動温度に到達している分流3jの全原料ガスに対
する好適比率が減少した結果、この分流を第2反応域の
反応熱と第2反応域から流出するガスの保有熱の大°部
分を廃熱ボイラーJ、2で回収した後の余熱(すなわち
約2θθ℃以下であって、通常回収利用が困難な低温余
熱)とによって触媒の作動温度まで予熱できるようにな
ったことである。この結果、高圧スチームとしての回収
量が増加する。廃熱ボイラー2.2を流出する反応ガス
の保有予熱は量的に上記の外クエンチガスを709〜7
g9℃に予熱することにも利用可能であシ、このことは
第1反応域に供給するクエンチガスの温度を好ましい温
度に予熱する必要との間に好ましい一致を示している。Another preferable thing is that when the synthesis pressure is low, the preferable ratio of the branched stream 3j to be supplied to the first adiabatic catalyst layer, whose temperature has already reached the operating temperature of the catalyst, to the total raw material gas is reduced. This divided flow is used to collect the reaction heat in the second reaction zone and most of the heat retained in the gas flowing out from the second reaction zone in the waste heat boiler J, 2. This makes it possible to preheat the catalyst to its operating temperature using low-temperature residual heat that is difficult to recover and utilize. As a result, the amount of recovered high-pressure steam increases. The retained preheating of the reaction gas flowing out of the waste heat boiler 2.2 is based on the above external quench gas in terms of quantity.
It is also possible to preheat the quench gas to 9° C., indicating a favorable agreement with the need to preheat the temperature of the quench gas fed to the first reaction zone to the desired temperature.
以上を総合すれば、この発明は特開昭j<1’−157
3/3記載の如き第1反応域のみを使用する従来法が、
例えば合成圧力got4/caOの場合にメタノール濃
度Sθモルチの反応終了ガスと3乙1.0%に、および
11.S館/C→Gの飽和スチームを精製メタノール/
トン当りそれぞれ/7θ、2/θ、グにθおよびλθθ
館回収できるのに対し、この発明では比較的小型の第2
反応域を設置することにより反応終了後のガス中のメタ
ノール濃度を約/%高くシ、かつ361.!S1および
gkg/aAOの飽和水蒸気を1’7製メタノール/ト
ン当シそれぞれ3θ01.2/θおよび62θ却回収す
ることができる。Taking all of the above into account, this invention
The conventional method using only the first reaction zone as described in 3/3 is
For example, when the synthesis pressure is 4/caO, the methanol concentration is 1.0% with the reaction completion gas of Sθmolti, and 11. S building/C→G saturated steam purified methanol/
/7θ, 2/θ, θ and λθθ per ton respectively
However, in this invention, a relatively small second
By installing a reaction zone, the methanol concentration in the gas after the reaction is completed is increased by about 1%, and 361. ! The saturated steam of S1 and gkg/aAO can be recovered by 3θ01.2/θ and 62θ of 1'7 methanol/ton, respectively.
この発明において使用するメタノール合成触媒は周知の
もの、例えばクロム系、・1銅系を全て使j1]するこ
とができるが、戸■→ばこJtらのうち作動温度の低い
ものが:特に望11ましい。また/
第1反応域において断熱的に使用する各触媒層間の量的
比率の好適な値は合成圧力が低下する稈ド流側の断熱触
媒層の量を一上流側のものの量に比較し増加させるのが
好ましく、例えば合成圧力にθt47craoの際の第
1図における触媒層!、3、ダおよびSの触媒量比は/
:、2:3ニゲがよい。また第2反応域に使用する触媒
量は第1反応器に使用する全触媒量の%程度でよい。The methanol synthesis catalyst used in this invention can be any of the well-known catalysts, such as chromium-based and copper-based catalysts, but those with low operating temperatures are particularly desirable. 11. Also, a suitable value for the quantitative ratio between each catalyst layer used adiabatically in the first reaction zone is to increase the amount of the adiabatic catalyst layer on the culm flow side where the synthesis pressure decreases by comparing it with the amount on the one upstream side. For example, the catalyst layer in FIG. 1 when the synthesis pressure is θt47crao! , 3, the catalyst amount ratio of Da and S is /
:, 2:3 Nige is good. Further, the amount of catalyst used in the second reaction zone may be about % of the total amount of catalyst used in the first reactor.
また第1反応域、廃熱ボイラー2/および第2反応域の
3者は第1図の如く独立の反応器あるいはボイラーとし
て設備する必要はなく、これらの任意のノ者あるいは3
者を一個の耐圧容器内に収容する如く設計製作すること
も可能である。なお、第1図における第1反応域は各触
媒層の中間に触媒粒の存在しないクエンチガス混合空間
を有しているが、この触媒粒のないクエンチガス混合空
間は必ずしも必要でない。例えば特公昭113−76、
filに記載の如き触媒粒の□1
存在する触媒層内にツ゛ても′”′チガ′を分散混合可
能な装置を使・用すれば上記触媒粒のな11・
い混合空間を設ける必要がなくなシ、第1反応域のため
に必要な空間体積を節減することができる。また廃熱ボ
イラーノ/と並列に分流33を最終予熱するための熱交
換器を設け、第1反応域の出口流の一部によシ分流33
を予熱し、その際第2反応域用反応器として前記特開昭
1I6−3.2 / &記載の反応器を使用し反応熱を
高圧スチームとして回収する方法もあシ、この方法によ
っても、この発明と同様の効果を得ることができるが反
応器の構造はよシ複雑となる。この発明は従来の合成圧
力3θθに9/crAO程度の高11:メタノールの製
造の場合にも適用できるが、合成圧カフ30に9/cr
Ao以下の低圧下のメタノール合成において前記利点を
よりよく発揮することができ、メタノール製造における
エネルギーの節減を実現することができる。Furthermore, the first reaction zone, the waste heat boiler 2/2, and the second reaction zone do not need to be installed as independent reactors or boilers as shown in FIG.
It is also possible to design and manufacture such that all persons are housed in one pressure-resistant container. Note that although the first reaction zone in FIG. 1 has a quench gas mixing space in which catalyst particles are not present between each catalyst layer, this quench gas mixing space in which catalyst particles are not present is not necessarily necessary. For example, Tokuko Sho 113-76,
If a device capable of dispersing and mixing the catalyst particles as described in □1 of the catalyst particles is used in the catalyst layer, it is necessary to provide a mixing space that does not contain the catalyst particles. In addition, the space volume required for the first reaction zone can be saved.In addition, a heat exchanger for the final preheating of the branch stream 33 is provided in parallel with the waste heat boiler, and the outlet of the first reaction zone Diversion of part of the flow 33
There is also a method in which the reaction heat is recovered as high-pressure steam using the reactor described in JP-A-1-16-3.2/& as the reactor for the second reaction zone. Although the same effects as the present invention can be obtained, the structure of the reactor is more complicated. This invention can also be applied to the production of methanol, where the conventional synthetic pressure 3θθ is as high as 9/crAO.
The above advantages can be better exhibited in methanol synthesis under low pressures below Ao, and energy savings in methanol production can be realized.
実施例
第1図工程の装置を使用してメタノールの合成試験を行
った。ただし、その際熱交換器、23にb・いては熱交
換を実施しなかった。実施の条件はF表の通シである。EXAMPLE A methanol synthesis test was conducted using the apparatus shown in the process shown in Figure 1. However, at that time, heat exchange was not performed in the heat exchanger 23. The conditions for implementation are compliance with Table F.
また使用した触媒は銅−1lij鉛系のものである。The catalyst used was a copper-1lij lead based catalyst.
(へ) メタノール合成圧力 にθに9/crAO(
ロ)第1反応域の触媒量
第1層(コ) ’ /2rt?第一層(J)
/ 9d
第3層(ll) r ?i
第グ層(5) 、 l19’rrlf今 第3
反応域
触媒量 37−
管3S内のガス 、2グθ βθ1.5θθ θ3管3
グ^のガス /6!; 1..0乞ダθθ 同上管3
6内のガス 、2’75 4t3管37内
のガス 、2ss 同上管3g内のガス
、2Sθ 73乞/θθ S−−、管グθ内のガス
グθ −−… 管3/からの新規供給原料ガス
供給圧カフ乙kf/clD 1供給量/3乞7θθN−
4時、組成(七帳)水素乙デSチ、−酸化炭素/11,
3チ、二酸化炭素73グ係、その他J1
(へ)管lI、2からの取得メタノール!+’、r、
!;’0.7θθ館/時組成 メタノール7g3重
量%、水コX3重量%、その他θグ重1七チ
廃熱ボイラー2/から 36 /ムθθθ廃熱ボイ
ラー2コから 23 /643;θθ(to) Methanol synthesis pressure and θ are 9/crAO (
b) Catalyst amount in the first reaction zone 1st layer (k) '/2rt? First layer (J)
/ 9d 3rd layer (ll) r? i th layer (5), l19'rrlf now 3rd
Reaction zone catalyst amount 37- Gas in pipe 3S, 2g θ βθ1.5θθ θ3 pipe 3
Gu^'s gas /6! ;1. .. 0 begda θθ Same as above tube 3
Gas in 6, 2'75 4t3 Gas in pipe 37, 2ss Gas in same tube 3g, 2Sθ 73/θθ S--, gas in pipe θ
New feedstock gas supply pressure from pipe 3/cf/clD 1 supply amount/3 7θθN-
4 o'clock, composition (7 books) hydrogen o de S - carbon oxide / 11,
3-chi, carbon dioxide 73-g, other J1 (to) tube lI, methanol obtained from 2! +', r,
! ;'0.7θθ House/hour Composition Methanol 7g 3% by weight, Water Co. x 3% by weight, Other θg Weight 17cm Waste heat boiler 2/36/mu θθθ Waste heat boiler 2/hour 23/643;θθ
第1図はこの発明の工程の7例である。
/ 第1反応域
2 第1断熱−触媒層
3 第2断熱触媒層
q 第3断熱触媒層
ダ 第9断熱触媒層
6 第一反応域
7 同上用触媒層
g 同上用伝熱管
コ/ 廃熱ボイラー
2、! 廃熱ボイラー
、23.2グ 熱交換器
2j冷却器
26 気液分離器
27 ガス循環圧縮器
3/ 新規供給原料ガス入口
32〜ll/ 連結管
11.2 生成メタノール液出口
ダ3 パージガス出口
出願人 東洋エンジニアリング株式会社代理人 大
洲 明 峰
−11゜
第7図FIG. 1 shows seven examples of the process of this invention. / 1st reaction zone 2 1st heat insulation - catalyst layer 3 2nd heat insulation catalyst layer q 3rd heat insulation catalyst layer d 9th heat insulation catalyst layer 6 1st reaction zone 7 Catalyst layer for the above g Heat exchanger tube for the above / Waste heat boiler 2,! Waste heat boiler, 23.2g Heat exchanger 2j Cooler 26 Gas-liquid separator 27 Gas circulation compressor 3/ New feedstock gas inlet 32~ll/ Connection pipe 11.2 Produced methanol liquid outlet 3 Purge gas outlet Applicant Toyo Engineering Co., Ltd. Agent Akira Ozu - 11゜Figure 7
Claims (1)
断熱触媒層よりなる第1反応域と間接熱交換用伝熱面を
配設された高温触媒層よシなる第2反応域にこの順で通
過させるメタノール合成法において、 (a) 該ガスの全量を796〜7g0℃に予熱し、 (1)) 上記(a)により予熱された該ガスのうち
%〜与量を第2反応域に配設された該伝熱面積を使用し
て、第2反応域で発生する反応熱;こより27θ〜、2
3θ℃に間接予熱した後該第1反応域の最上流の断熱触
媒層に導入してメタノール合成反応を生起せしめ、(C
)」−記(a)により予熱された該ガスのうち上記の)
における使用以外の残量を該・第1反応域の中流部に触
媒の過熱防止用に分配供給しつつメタノール合成反応を
進行させ、(d) 該第1反応器を流出したメタノー
ル含有ガスを廃熱ボイラーによって23θ〜2乙θ℃の
間の温度まで冷却した後肢第2反応域の触媒層に導入し
てメタノール合成反応を終了せしめ、 (e) 第2反応域から流出するメタノール含有ガス
から余熱を回収した後、生成メタノールを分離し、未反
応ガスは上記(a)に再循環する ことを特徴とするメタノールの製造法。(1) Gas rich in hydrogen and carbon oxide under high pressure is transferred to a first reaction zone consisting of a high-temperature adiabatic catalyst layer and a second reaction zone consisting of a high-temperature catalyst layer provided with a heat transfer surface for indirect heat exchange. In the methanol synthesis method in which the gas is passed in this order, (a) the total amount of the gas is preheated to 796-7g0°C, (1)) % to a given amount of the gas preheated in (a) above is used for the second reaction. Using the heat transfer area arranged in the second reaction zone, the reaction heat generated in the second reaction zone;
After being indirectly preheated to 3θ°C, it is introduced into the most upstream adiabatic catalyst layer of the first reaction zone to cause a methanol synthesis reaction.
)"--of the gas preheated according to (a) above)
The methanol synthesis reaction proceeds while distributing and supplying the remaining amount other than the amount used in the first reaction zone to the midstream part of the first reaction zone to prevent overheating of the catalyst, and (d) the methanol-containing gas that has flowed out of the first reactor is disposed of. The methanol synthesis reaction is completed by introducing the residual heat into the catalyst bed of the second reaction zone of the hind limb, which has been cooled to a temperature between 23θ and 2θ℃ by a heat boiler. A method for producing methanol, characterized in that after recovering the produced methanol, the produced methanol is separated, and the unreacted gas is recycled to the above (a).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57016328A JPS58134039A (en) | 1982-02-05 | 1982-02-05 | Preparation of methanol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57016328A JPS58134039A (en) | 1982-02-05 | 1982-02-05 | Preparation of methanol |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58134039A true JPS58134039A (en) | 1983-08-10 |
Family
ID=11913378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57016328A Pending JPS58134039A (en) | 1982-02-05 | 1982-02-05 | Preparation of methanol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58134039A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63216836A (en) * | 1987-02-06 | 1988-09-09 | エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド | Step by step method of methanol production |
JP2002515467A (en) * | 1998-05-20 | 2002-05-28 | インペリアル・ケミカル・インダストリーズ・ピーエルシー | Synthesis of methanol |
-
1982
- 1982-02-05 JP JP57016328A patent/JPS58134039A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63216836A (en) * | 1987-02-06 | 1988-09-09 | エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド | Step by step method of methanol production |
JP2002515467A (en) * | 1998-05-20 | 2002-05-28 | インペリアル・ケミカル・インダストリーズ・ピーエルシー | Synthesis of methanol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4865624A (en) | Method for steam reforming methanol and a system therefor | |
EP0650950B1 (en) | Process for the production of methanol | |
KR100201886B1 (en) | Autothermal steam reforming process | |
EP0504471B1 (en) | Autothermal steam reforming process | |
AU742314B2 (en) | Steam reforming | |
JP4362013B2 (en) | Synthesis of methanol | |
EP0437059B1 (en) | Steam reforming | |
EP0000993B1 (en) | Ammonia production process | |
CA1065347A (en) | Methanol | |
EP0601956B1 (en) | Process for the preparation of carbon monoxide rich gas | |
US4264567A (en) | Method for producing a hydrogen-containing gas | |
US4376758A (en) | Process for synthesizing ammonia from hydrocarbons | |
CA2510442C (en) | Partial oxidation reformer-reforming exchanger arrangement | |
GB2585478A (en) | Process for synthesising methanol | |
JP2001240412A (en) | Method and apparatus for manufacturing ammonia | |
JPH0380101A (en) | Contineous generation of hydrocarbon gas/ steam mixture as a charge for reforming process to produce hydrogen or composite gas and heating it, and erected heat exchanger | |
JPS58134039A (en) | Preparation of methanol | |
CN108315523A (en) | Carbon dioxide-methane self-heating recapitalization produces the method and system of direct reduced iron | |
JPS5849322A (en) | Methanation process using hydrogen-rich gas and hydrogen-lean gas as raw material | |
JPS61122102A (en) | Steam reforming of hydrocarbon | |
JPS6160117B2 (en) | ||
JPS606281B2 (en) | Hydrogen production method | |
BR112021002868A2 (en) | method for producing methanol in a bypass reactor | |
GB2067175A (en) | Process for synthesizing ammonia from hydrocarbons | |
JPH04310501A (en) | Self heat formula steam reforming process |