JPS58133448A - Compression-ignition engine - Google Patents

Compression-ignition engine

Info

Publication number
JPS58133448A
JPS58133448A JP1530382A JP1530382A JPS58133448A JP S58133448 A JPS58133448 A JP S58133448A JP 1530382 A JP1530382 A JP 1530382A JP 1530382 A JP1530382 A JP 1530382A JP S58133448 A JPS58133448 A JP S58133448A
Authority
JP
Japan
Prior art keywords
valve
intake
passage
engine
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1530382A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1530382A priority Critical patent/JPS58133448A/en
Publication of JPS58133448A publication Critical patent/JPS58133448A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To variably arrange compression ratio at starting and warming end and improve startability, fuel consumption and exhaust characteristic of an engine, by providing an intake shut off valve in an intake passage and a closing valve and a starting passage communicated to a combustion chamber in a bypass passage of the intake shut off valve. CONSTITUTION:An intake shut off valve 11 closes an intake passage 8 on the half way of an intake stroke. While a passage 14 is formed so as to be communicated to a combustion chamber 3 by bypassing the valve 11, here a closing valve 15 is provided in the passage 14 and mechanically interlocked to a throttle valve 9 to start opening together with the valve 9 after the valve 9 is opened to a prescribed opening. Now the valve 15 is closed, if an intake valve 5 is opened to start an intake stroke as a piston 1 lowers, the passage 8 is closed by the valve 11 on the half way of the intake stroke and the piston 1 continuously lowers to reach the bottom dead center again rises to enter a compression stroke. From a point of time the valve 11 closes the passage 8, intake air is not sucked into a cylinder 2. Accordingly, if the valve 15 is closed, low compression ratio is obtained, while if the valve 15 is fully opened, high compression ratio is obtained, thus the compression ratio can be easily changed.

Description

【発明の詳細な説明】 本発明は、吸気行程の中途でシリンダー内への吸気の吸
入も遮断する事によって、事実上圧縮比が可変となる様
にした圧縮着火機関に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compression ignition engine in which the compression ratio is effectively made variable by blocking intake air into the cylinder in the middle of the intake stroke.

一般に圧縮着火機関では、機関の始動性等の観点から高
圧縮比を採用しているが、良好な始動性を確保するには
それでも未だ十分ではなく、更に高い圧縮比を採用する
ことが望まれている。
Compression ignition engines generally use a high compression ratio from the viewpoint of engine startability, but this is still not sufficient to ensure good startability, and it is desirable to use an even higher compression ratio. ing.

しかしながら、極めて高い圧縮比を採用する事は摩擦損
失の増加、排ガス中の有害成分(特に直接噴射式機関に
おいてはNOx)の増加を来す結果となり、機関の燃費
にも好影響を与えない。
However, adopting an extremely high compression ratio results in an increase in friction loss and an increase in harmful components in the exhaust gas (particularly NOx in direct injection engines), which does not have a positive effect on the fuel efficiency of the engine.

故に、例えば直接噴射式機関において始動時のみ極めて
高い圧縮比を採用するようにすれば(従来の圧縮比が1
7であれば21の如く)、始動性は大幅に向上する。
Therefore, for example, if a direct injection engine were to use an extremely high compression ratio only at the time of starting (the conventional compression ratio was 1.
7 (like 21), the startability is greatly improved.

又、同じく直接噴射式機関において始動時には極めて高
い圧縮比を採用するが(例えば21)、機関の暖機終了
後は低い圧縮比(例えば従来が17であれば14の如く
)となる様にすれば、排ガス中の有害成分(特にNOx
)は大幅に減少する。
Similarly, when starting a direct injection engine, an extremely high compression ratio is adopted (for example, 21), but after the engine has warmed up, the compression ratio is reduced to a low one (for example, 14 compared to the conventional 17). For example, harmful components in exhaust gas (especially NOx)
) will be significantly reduced.

本発明はこの様な観点から圧縮比を任意に変える事によ
って、機関の始動性・燃費・及び排ガス特性を各々改善
しようとしたもので、以下図面に従って説明する。
From this point of view, the present invention attempts to improve the startability, fuel efficiency, and exhaust gas characteristics of an engine by arbitrarily changing the compression ratio, and will be described below with reference to the drawings.

第1図は本発明による圧縮着火機関の一実施例で、ガバ
ナーとしてニューマチックガバナー(図示せず)を使用
したものを示しており、4は燃料噴射弁、9は絞弁、1
0は小ベンチュリを表わし、小ベンチュリ10で発生し
た負圧がガバナー(ニューマチックガバナー)へ導かれ
る事によって燃料噴射量が制御されるようになっている
FIG. 1 shows an embodiment of a compression ignition engine according to the present invention, in which a pneumatic governor (not shown) is used as a governor, where 4 is a fuel injection valve, 9 is a throttle valve, and 1 is a fuel injection valve.
0 represents a small venturi, and the fuel injection amount is controlled by guiding the negative pressure generated in the small venturi 10 to a governor (pneumatic governor).

機関の燃焼室3へ通ずる吸気通路8の所定位置には吸気
遮断弁11が備えられており、この吸気遮断弁11は(
即ち、吸気遮断弁11に形成された閉鎖部12が)吸気
通路8を吸気行程の中途で(例えば、クランク角度でピ
ストン1の下死点前50°の時点で)閉鎖する様になっ
ている。
An intake cutoff valve 11 is provided at a predetermined position in the intake passage 8 leading to the combustion chamber 3 of the engine.
That is, the closing part 12 formed in the intake cutoff valve 11 closes the intake passage 8 in the middle of the intake stroke (for example, at a crank angle of 50 degrees before the bottom dead center of the piston 1). .

この場合、吸気遮断弁11が吸気通路8を開く時期(吸
気遮断弁11に形成された連通路13が吸気通路8に連
通する時期)については吸気弁5が開く時期(例えば、
クランク軸角度でピストン1の上死点前30°の時点)
と同一であっても良いし、それよりも若干早くても良い
のである。
In this case, the time when the intake cutoff valve 11 opens the intake passage 8 (the time when the communication passage 13 formed in the intake cutoff valve 11 communicates with the intake passage 8) is the timing when the intake valve 5 opens (for example,
(Crankshaft angle at 30° before top dead center of piston 1)
It may be the same as , or it may be slightly faster than that.

図では吸気遮断弁11はロータリ弁式を使用しており、
クランク軸の回転の1/2に減速して駆動されているか
ら、吸気通路8は吸気弁5が開いている間と閉じている
間に各々1回づつ開かれる事になるが、いずれにしても
この吸気遮断弁11は吸気行程の中途で吸気通路8を閉
鎖する様になっている(この他、吸気遮断弁11をクラ
ンク軸の回転の4分の1に減速して駆動することも考え
られる)。
In the figure, the intake cutoff valve 11 uses a rotary valve type.
Since the drive is decelerated to 1/2 of the rotation of the crankshaft, the intake passage 8 is opened once while the intake valve 5 is open and once when it is closed, but in any case, This intake cutoff valve 11 is designed to close the intake passage 8 in the middle of the intake stroke (in addition, it is also possible to drive the intake cutoff valve 11 by decelerating it to one-fourth of the rotation of the crankshaft. ).

一方、吸気遮断弁11をバイパスして機関の燃焼室3へ
通ずる如く通路14が形成され、この通路14に閉鎖弁
15が備えられている。
On the other hand, a passage 14 is formed so as to bypass the intake cutoff valve 11 and lead to the combustion chamber 3 of the engine, and this passage 14 is equipped with a closing valve 15.

この閉鎖弁15は絞弁9と機械的に連動させてあり、絞
弁9が(即ちこれを開閉させるアクセルペダルが)所定
開度まで開いた後に、これと共に開き始めるようになっ
ている(閉鎖弁15の全開は絞弁9の全開と同時に行わ
れる様にしても良いが、開き始めたらできる限り早い時
期に全開させるのが良い)。
This closing valve 15 is mechanically linked to the throttle valve 9, and after the throttle valve 9 (that is, the accelerator pedal that opens and closes it) opens to a predetermined opening degree, it begins to open together with the throttle valve 9 (closed). Although the valve 15 may be fully opened at the same time as the throttle valve 9 is fully opened, it is better to fully open the valve 15 as soon as possible after it starts to open).

吸気弁5の開閉時期は従来と何ら変わりはない(例えば
、クランク軸角度でピストン1の上死点前30°で開き
、下死点後50°で閉じる等)。
The opening/closing timing of the intake valve 5 is no different from the conventional one (for example, it opens at a crankshaft angle of 30 degrees before the top dead center of the piston 1 and closes at 50 degrees after the bottom dead center).

今本発明において閉鎖弁15が閉鎖(全閉)している時
も考えると、吸気弁5が開いてピストン1の下降と共に
吸気行程が始まると、前述の如く吸気行程の中途で(例
えば、クランク角度でピストン1の下死点前50°の時
点で)吸気通路8は吸気遮断弁11により閉鎖され(こ
の時、吸気弁5は未だ開いている)、引き続きピストン
1が下死点に到り、再び上昇して圧縮行程へと移ってゆ
く。
Now considering the case where the closing valve 15 is closed (fully closed) in the present invention, when the intake valve 5 opens and the intake stroke begins with the descent of the piston 1, as described above, in the middle of the intake stroke (for example, when the crank 50 degrees before the bottom dead center of the piston 1) the intake passage 8 is closed by the intake cutoff valve 11 (at this time, the intake valve 5 is still open), and the piston 1 continues to reach the bottom dead center. , it rises again and moves on to the compression stroke.

即ち、吸気行程において吸気遮断弁11が吸気通路8を
閉鎖した時点からはピストン1が下降してもシリンダー
2内に吸気は吸入されない。
That is, after the intake air cutoff valve 11 closes the intake passage 8 during the intake stroke, no intake air is drawn into the cylinder 2 even if the piston 1 descends.

従ってこの時、ピストン1の有効行程はほぼピストンの
上死点位置から吸気遮断弁11が吸気通路8を閉鎖した
時点におけるピストン位置までとされるべきで、圧縮比
もこの有効行程を基準にして考えなければならない。
Therefore, at this time, the effective stroke of the piston 1 should be approximately from the top dead center position of the piston to the piston position at the time when the intake cutoff valve 11 closes the intake passage 8, and the compression ratio is also based on this effective stroke. I have to think about it.

他方、閉鎖弁15が全開した時は吸気行程の全域にわた
ってシリンダー2内に吸気が吸入されるから、この時は
圧縮比はピストン1の上死点位置から下死点位置までの
ピストン行程を基準にして考える事は従来通りである。
On the other hand, when the closing valve 15 is fully opened, intake air is drawn into the cylinder 2 throughout the entire intake stroke, so at this time, the compression ratio is based on the piston stroke from the top dead center position of the piston 1 to the bottom dead center position. The way to think about it is the same as before.

この様に、本発明においては閉鎖弁15を閉鎖(全閉)
すると低圧縮比となり、閉鎖弁15を全開すると高圧縮
比となり、容易に圧縮比を変えることが可能となる(閉
鎖弁15が半開状態にある時は、圧縮比もその中間にあ
ると考えられる)。
In this way, in the present invention, the closing valve 15 is closed (fully closed).
This results in a low compression ratio, and when the closing valve 15 is fully opened, it becomes a high compression ratio, making it possible to easily change the compression ratio (when the closing valve 15 is half open, the compression ratio is considered to be in the middle). ).

従って、機関の始動時に閉鎖弁15を開けば(アクセル
ペダルを一杯に踏み込むか、または他の方法により)圧
縮比は事実上高圧縮比となり(例えば、圧縮比17の直
接噴射式機関では21程度に)、燃料噴射時の吸気温度
が十分に上昇するから始動性は良好となる。
Therefore, if the closing valve 15 is opened when the engine is started (by fully depressing the accelerator pedal or by some other method), the compression ratio will effectively become a high compression ratio (e.g., about 21 for a direct injection engine with a compression ratio of 17). ), the intake air temperature rises sufficiently during fuel injection, resulting in good starting performance.

又、機関の暖機終了後は閉鎖弁15を閉鎖(全閉)して
おけば圧縮比は事実上低圧縮比となり(例えば17とな
り)、摩擦損失を従来通りに抑える事ができる。
Furthermore, if the closing valve 15 is closed (fully closed) after the engine has been warmed up, the compression ratio will actually become low (for example, 17), and friction loss can be suppressed as before.

この場合、膨張比は圧縮比よりも遥かに高いから(膨張
比は常に閉鎖弁15を全開させた時の圧縮比と同一であ
る−例えば21程度)、燃費は大幅に向上する。
In this case, since the expansion ratio is much higher than the compression ratio (the expansion ratio is always the same as the compression ratio when the closing valve 15 is fully open - for example, about 21), fuel efficiency is significantly improved.

通常の直接噴射式機関の圧縮比(即ち膨張比)は17程
度であるから、例えば直接噴射式機関における本発明の
望ましい実施例としては次の通りである。
Since the compression ratio (or expansion ratio) of a normal direct injection engine is about 17, preferred embodiments of the present invention in a direct injection engine, for example, are as follows.

即ち、閉鎖弁15を閉鎖(全閉)した時の圧縮比を事実
上14程度、全開させた時の圧縮比を事実上21程度と
するのである。
That is, the compression ratio when the closing valve 15 is closed (fully closed) is approximately 14, and the compression ratio when fully opened is approximately 21.

これにより、機関の始動時には閉鎖弁15を全開させる
から圧縮比は事実上21程度となり、始動性は大幅に向
上する。
As a result, since the closing valve 15 is fully opened when starting the engine, the compression ratio is effectively about 21, and the startability is greatly improved.

又、機関の暖機終了後は閉鎖弁15を閉鎖(全閉)させ
ておくから(高負荷時にはもちろん閉鎖弁15を開かせ
るが)、圧縮比は事実上14程度となり、摩擦損失は低
く抑えられ、排ガス中の有害成分(特にNOx)を大幅
に減少させることができる。
In addition, since the closing valve 15 is closed (fully closed) after the engine is warmed up (of course, the closing valve 15 is opened during high loads), the compression ratio is effectively about 14, and friction loss is kept low. This makes it possible to significantly reduce harmful components (especially NOx) in exhaust gas.

この時、膨張比は依然として21程度であるから、燃費
も大幅に向上する。
At this time, the expansion ratio is still about 21, so fuel efficiency is significantly improved.

なお、閉鎖弁15を閉鎖させて圧縮比を事実上14程度
とした時の着火遅れ期間の増大を食い止める為には、吸
気通路8を流れる吸気を適度に加熱することが有効であ
る。
Note that in order to prevent an increase in the ignition delay period when the closing valve 15 is closed and the compression ratio is effectively set to about 14, it is effective to appropriately heat the intake air flowing through the intake passage 8.

又、機関の暖機運転中は閉鎖弁15を徐々に閉じてゆく
のが良い。
Further, it is preferable to gradually close the closing valve 15 while the engine is being warmed up.

この様に本発明によれば、機関の始動性・燃費・及び排
ガス特性を各々大幅に改善することができる。
As described above, according to the present invention, the startability, fuel efficiency, and exhaust gas characteristics of the engine can be significantly improved.

次に、閉鎖弁15は機関の低(中)負荷時においては閉
鎖して(全閉して)おき、(中)高負荷時になって全開
させるようにするのが良く、この為前述の如く絞弁9と
(即ちアクセルペダルと)機械的に連動させるようにし
てあるのであり、この他燃料噴射量を制御するコントロ
ールラックと機械的に連動させても良いものである。
Next, it is preferable that the shutoff valve 15 is closed (fully closed) when the engine is under low (medium) load, and fully opened when the engine is under high (medium) load. It is designed to be mechanically linked with the throttle valve 9 (that is, with the accelerator pedal), and may also be mechanically linked with a control rack that controls the amount of fuel injection.

又、二点鎖線示の如く小ベンチュリ10の負圧で作動す
るダイアフラム装置16により閉鎖弁15を開閉させる
方法も考えられる。
Another possible method is to open and close the closing valve 15 using a diaphragm device 16 operated by the negative pressure of the small venturi 10, as shown by the two-dot chain line.

即ち、絞弁9が開かれ小ベンチュリ10の負圧が規定値
以下になった時、閉鎖弁15が開き始める様にするので
ある。
That is, when the throttle valve 9 is opened and the negative pressure in the small venturi 10 becomes less than a specified value, the closing valve 15 starts to open.

更には、第2図に示す如くコントロールラック17の燃
料噴射量制御位置を検出するスイッチ装置18及び電磁
石装置19により、閉鎖弁15を開閉させる方法も考え
られる。
Furthermore, as shown in FIG. 2, it is also possible to open and close the closing valve 15 using a switch device 18 and an electromagnet device 19 that detect the fuel injection amount control position of the control rack 17.

即ち、機関の低(中)負荷時においては図示の如くスイ
ッチ装置18はその内部の接点が開いており、従って閉
鎖弁15は閉鎖して(全閉して)いるが、機関の(中)
高負荷時ではコントロールラック17が移動して(燃料
噴射量が増して)段部20にさしかかると、プッシュロ
ッド21がここに落ち込むので、スイッチ装置18の内
部の接点を閉じて電磁石装置19へ通電するのである。
That is, when the engine is under low (medium) load, the internal contacts of the switch device 18 are open as shown in the figure, and therefore the closing valve 15 is closed (fully closed), but when the engine is under low (medium) load,
Under high load, when the control rack 17 moves (fuel injection amount increases) and reaches the stepped portion 20, the push rod 21 falls there, so the contacts inside the switch device 18 are closed and the electromagnet device 19 is energized. That's what I do.

これにより、電磁石装置19に内蔵された電磁石がバネ
に抗してロッド22を引き込むので、閉鎖弁15が開く
(全開する)様になる。
As a result, the electromagnet built into the electromagnet device 19 pulls in the rod 22 against the spring, so that the closing valve 15 opens (fully opens).

吸気遮断弁11を吸気弁5と同様にポペット弁式にした
実施例を第3図に示す。
FIG. 3 shows an embodiment in which the intake cutoff valve 11 is a poppet valve type like the intake valve 5.

即ち、第3図において吸気遮断弁11はカム(図示せず
)で駆動され、吸気行程の中途で(例えば、クランク軸
角度でピストンの下死点前50°の時点で)吸気通路8
を閉鎖すると共に、通路14は吸気遮断弁11をバイパ
スして機関の燃焼室へ通ずる様になっている。
That is, in FIG. 3, the intake cutoff valve 11 is driven by a cam (not shown), and the intake passage 8 is activated in the middle of the intake stroke (for example, at a crankshaft angle of 50 degrees before the bottom dead center of the piston).
In addition, the passage 14 bypasses the intake shutoff valve 11 and communicates with the combustion chamber of the engine.

15は閉鎖弁で、機関の暖機終了後の低(中)負荷時に
は通路14を閉鎖しており、閉鎖弁15を開閉させる事
により第1図と同様に圧縮比を事実上変化させることが
できる。
Reference numeral 15 denotes a closing valve, which closes the passage 14 during low (medium) load after the engine has been warmed up, and by opening and closing the closing valve 15, the compression ratio can be effectively changed as shown in Fig. 1. can.

従って、機関の始動性・燃費・及び排ガス特性も各々大
幅に改善することが可能となる。
Therefore, it is possible to significantly improve the startability, fuel efficiency, and exhaust gas characteristics of the engine.

第4図は、第1図に示す本発明における機関の始動性を
更に向上させる様にしたものを示している。
FIG. 4 shows the engine shown in FIG. 1 in which the startability of the engine according to the present invention is further improved.

即ち第4図において機関の燃焼室へ通ずる始動通路24
を新設すると共に、この始動通路24も吸気遮断弁11
により(吸気遮断弁11に形成されたもう1つの閉鎖部
23により)吸気行程の終期の近傍(ピストン1の下死
点の近傍)で開閉させる様にしてある。
That is, in FIG. 4, the starting passage 24 leading to the combustion chamber of the engine.
At the same time, this starting passage 24 is also connected to the intake cutoff valve 11.
(by another closing portion 23 formed in the intake cutoff valve 11) to open and close near the end of the intake stroke (near the bottom dead center of the piston 1).

機関の始動時には、図示の如く閉鎖弁15及び開閉弁2
6を共に閉鎖(全閉)しておき、始動弁25は全開させ
ておく。
When starting the engine, the closing valve 15 and the opening/closing valve 2 are closed as shown in the figure.
6 are both closed (fully closed), and the starter valve 25 is left fully open.

従って、吸気は始動通路24からのみシリンダー2内へ
吸入されることになる。
Therefore, intake air is drawn into the cylinder 2 only from the starting passage 24.

今、機関を始動するために機関をクランキングすると、
ピストン1が下降して吸気行程が始まり、シリンダー2
内には強い負圧が発生する。
Now, when you crank the engine to start it,
Piston 1 descends to begin the intake stroke, and cylinder 2
A strong negative pressure is generated inside.

そしてピストン1が下死点に近づくと吸気遮断弁11が
始動通路24を開き、吸気が一定期間シリンダー2内へ
高速度で侵入するに到る。
When the piston 1 approaches the bottom dead center, the intake cutoff valve 11 opens the starting passage 24, and intake air enters the cylinder 2 at high speed for a certain period of time.

この時、吸気は極めて高速度で侵入するから、その慣性
のためにシリンダー2内に充填された吸気はそのまま断
熱圧縮されて吸気温度を高め、かくして燃料噴射時の吸
気温度が大幅に上昇する結果となり、機関の始動性は一
段と向上する。
At this time, the intake air enters at an extremely high speed, so due to its inertia, the intake air filled in the cylinder 2 is adiabatically compressed and increases the intake air temperature, resulting in a significant increase in the intake air temperature during fuel injection. As a result, the startability of the engine is further improved.

(この時、閉鎖弁15は閉鎖しているが、吸気行程の終
期の近傍でシリンダー2内には吸気が一杯に充填される
から、圧縮比は事実上極めて高い)機関の始動後はその
暖気状態に従って開閉弁26を順次開いてゆく様にする
のが良く、暖機終了後は開閉弁26を全開、始動弁25
を全閉させる。
(At this time, the closing valve 15 is closed, but the cylinder 2 is filled with intake air near the end of the intake stroke, so the compression ratio is actually extremely high.) After the engine starts, the warm air It is best to open the on-off valves 26 one after another according to the state, and after warming up, fully open the on-off valves 26 and close the starting valves 25.
fully close.

尚、機関の始動時には閉鎖弁15及び開閉弁26を共に
全閉させることが望ましいが、少なくとも一方を多少開
かせて始動することも考えられる。
Although it is desirable to fully close both the closing valve 15 and the opening/closing valve 26 when starting the engine, it is also conceivable to start the engine with at least one of them slightly open.

又、始動通路24を排気通路へ接続し、機関の始動時に
シリンダー2内に充填される吸気を空気のみから排ガス
(多量の燃焼が含まれている)に置き換える事も、始動
性に効果があるものである。
Additionally, connecting the starting passage 24 to the exhaust passage and replacing the intake air filled in the cylinder 2 from air only to exhaust gas (which contains a large amount of combustion) when starting the engine also has an effect on starting performance. It is something.

第3図に示す本発明における機関の始動性を更に向上さ
せるため、同様に始動通路を新設する様にしたものを第
5図に示す。
In order to further improve the startability of the engine according to the present invention shown in FIG. 3, FIG. 5 shows an engine in which a new starting passage is similarly provided.

即ち第5図において、27はカムで駆動される始動吸気
弁で、吸気行程の終期の近傍(圧縮行程の初期も含む)
で始動通路24を開閉させ、シリンダー内に充填された
吸気をその慣性により断熱圧縮し、吸気温度を上昇させ
て始動性を一段と向上させるものである。
That is, in FIG. 5, 27 is a starting intake valve driven by a cam, which is operated near the end of the intake stroke (including the beginning of the compression stroke).
The starting passage 24 is opened and closed, and the intake air filled in the cylinder is adiabatically compressed by its inertia, thereby raising the intake air temperature and further improving starting performance.

機関の始動時には、図示の如く閉鎖弁15及び開閉弁2
6を全開又はほぼ全開とし、始動弁25は全開させてお
くことは言うまでもない。
When starting the engine, the closing valve 15 and the opening/closing valve 2 are closed as shown in the figure.
Needless to say, the starting valve 25 is kept fully open or almost fully open.

尚この場合、始動通路24を吸気行程の終期の近傍で開
閉させるためにポペット弁式の吸気弁27を使用してい
るが、ロータリ弁式を使用することも考えられる。これ
を第6図に示す。
In this case, a poppet valve type intake valve 27 is used to open and close the starting passage 24 near the end of the intake stroke, but a rotary valve type may also be used. This is shown in FIG.

即ち、第6図において28はロータリ弁で、始動通路2
4を吸気行程の終期の近傍で開閉させ、吸気を吸気弁5
からシリンダー内へ極めて高速度で侵入させてシリンダ
ー内に充填された吸気をそのまま断熱圧縮させるもので
ある。
That is, in FIG. 6, 28 is a rotary valve, which is connected to the starting passage 2.
4 is opened and closed near the end of the intake stroke, and intake air is passed through the intake valve 5.
The air enters the cylinder at an extremely high speed, and the air filled in the cylinder is adiabatically compressed.

機関の暖機終了後は、始動通路24を例えば始動弁25
(図示なし、第5図参照)により全閉させる事は言うま
でもない。
After the engine is warmed up, the starting passage 24 is connected to the starting valve 25, for example.
It goes without saying that it is fully closed by (not shown, see FIG. 5).

本発明は以上の如く、機関の燃焼室へ通ずる吸気通路の
所定位置に吸気遮断弁を備え、この吸気遮断弁によって
前記吸気通路を吸気行程の中途で閉鎖する様にし、更に
前記吸気遮断弁をバイパスして機関の燃焼室へ通ずる通
路に閉鎖弁を備えて、機関の暖機終了後の低負荷時には
この閉鎖弁を閉鎖しておく様にしたり、更には機関の燃
焼室へ通ずる始動通路を形成し、この始動通路を吸気行
程の終期の近傍で開閉させる様にならしめ、機関の始動
時には機関に吸入される吸気の全部又は大部分が前記始
動通路を通過して機関に吸入される様にし、かつ機関の
暖機終了後は前記始動通路を閉鎖する様にしたもので、
機関の始動性・燃費・及び排ガス特性を大幅に改善する
ことができる。
As described above, the present invention is provided with an intake cutoff valve at a predetermined position of the intake passage leading to the combustion chamber of the engine, the intake passage is closed in the middle of the intake stroke by the intake cutoff valve, and further the intake cutoff valve is A closing valve is provided in the bypass passage leading to the combustion chamber of the engine, and the closing valve is kept closed during low load after the engine has been warmed up, and the starting passage leading to the combustion chamber of the engine is The starting passage is formed so that it opens and closes near the end of the intake stroke, so that when the engine starts, all or most of the intake air taken into the engine passes through the starting passage and is taken into the engine. and the starting passage is closed after the engine has warmed up.
Engine startability, fuel efficiency, and exhaust gas characteristics can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1・4図は本発明による圧縮着火機関の断面図、第2
図は閉鎖弁を開閉させる方法を示す図、第3・5・6図
は本発明による圧縮着火機関の図(略図的に描いた平面
図)である。 1はピストン、2はシリンダー、3は燃焼室、4は燃料
噴射弁、5は吸気弁、6は排気弁、7は排気通路、8は
吸気通路、9は絞弁、10は小ベンチュリ、11は吸気
遮断弁、12・23は閉鎖部13は連通路、14は通路
、15は閉鎖弁、16はダイアフラム装置、17はコン
トロールラック、18はスイッチ装置、19は電磁石装
置、20は段部、21はプッシュロッド、22はロッド
、24は始動通路、25は始動弁、26は開閉弁、27
は始動吸気弁、28はロータリ弁である。 特許出願人 北村 修一
Figures 1 and 4 are cross-sectional views of a compression ignition engine according to the present invention;
The figure shows a method of opening and closing the closing valve, and Figures 3, 5, and 6 are diagrams (schematically drawn plan views) of a compression ignition engine according to the present invention. 1 is a piston, 2 is a cylinder, 3 is a combustion chamber, 4 is a fuel injection valve, 5 is an intake valve, 6 is an exhaust valve, 7 is an exhaust passage, 8 is an intake passage, 9 is a throttle valve, 10 is a small venturi, 11 12 and 23 are intake cutoff valves, 12 and 23 are closing portions 13 are communicating passages, 14 are passages, 15 are closing valves, 16 are diaphragm devices, 17 are control racks, 18 are switch devices, 19 are electromagnetic devices, 20 are stepped portions, 21 is a push rod, 22 is a rod, 24 is a starting passage, 25 is a starting valve, 26 is an on-off valve, 27
28 is a starting intake valve, and 28 is a rotary valve. Patent applicant Shuichi Kitamura

Claims (5)

【特許請求の範囲】[Claims] (1)機関の燃焼室へ通ずる吸気通路の所定位置に吸気
遮断弁を備え、この吸気遮断弁によって前記吸気通路を
吸気行程の中途で閉鎖する様にし、更に前記吸気遮断弁
をバイパスして機関の燃焼室へ通ずる通路に閉鎖弁を備
えて、機関の暖機終了後の低付加時にはこの閉鎖弁を閉
鎖しておく様にしたことを特徴とする圧縮着火機関。
(1) An intake cutoff valve is provided at a predetermined position in the intake passage leading to the combustion chamber of the engine, and the intake passage is closed in the middle of the intake stroke by the intake cutoff valve, and the intake passage is bypassed and A compression ignition engine characterized in that a closing valve is provided in a passage leading to a combustion chamber of the engine, and the closing valve is kept closed during low load after warming up the engine.
(2)吸気弁よりも上流側の吸気通路の所定位置に吸気
遮断弁を備える様にした特許請求の範囲第1項記載の圧
縮着火機関。
(2) The compression ignition engine according to claim 1, wherein an intake cutoff valve is provided at a predetermined position in the intake passage upstream of the intake valve.
(3)機関の燃焼室へ通ずる吸気通路の所定位置に吸気
遮断弁を備え、この吸気遮断弁によって前記吸気通路を
吸気行程の中途で閉鎖する様にし、更に前記吸気遮断弁
をバイパスして機関の燃焼室へ通ずる通路に閉鎖弁を備
えて、機関の暖機終了後の低負荷時にはこの閉鎖弁を閉
鎖しておく様にした圧縮着火機関において、機関の燃焼
室へ通ずる始動通路を形成し、この始動通路を吸気行程
の終期の近傍で開閉させる様にならしめ、機関の始動時
には機関に吸入される吸気の全部又は大部分が前記始動
通路を通過して機関に吸入される様にし、かつ機関の暖
機終了後は前記始動通路を閉鎖する様にした事を特徴と
する圧縮着火機関。
(3) An intake cutoff valve is provided at a predetermined position in the intake passage leading to the combustion chamber of the engine, and the intake passage is closed in the middle of the intake stroke by the intake cutoff valve, and the intake passage is bypassed and the engine In a compression ignition engine, a starting passage leading to the combustion chamber of the engine is provided with a closing valve in the passage leading to the combustion chamber of the engine, and the closing valve is kept closed during low load after the engine has been warmed up. , the starting passage is made to open and close near the end of the intake stroke, so that when the engine is started, all or most of the intake air taken into the engine passes through the starting passage and is taken into the engine; A compression ignition engine characterized in that the starting passage is closed after the engine has been warmed up.
(4)吸気弁よりも上流側の吸気通路の所定位置に吸気
遮断弁を備えるようにした特許請求の範囲第3項記載の
圧縮着火機関。
(4) The compression ignition engine according to claim 3, further comprising an intake cutoff valve at a predetermined position in the intake passage upstream of the intake valve.
(5)始動通路を吸気遮断弁によって開閉させる様にし
た特許請求の範囲第4項記載の圧縮着火機関。
(5) A compression ignition engine according to claim 4, wherein the starting passage is opened and closed by an intake cutoff valve.
JP1530382A 1982-02-02 1982-02-02 Compression-ignition engine Pending JPS58133448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1530382A JPS58133448A (en) 1982-02-02 1982-02-02 Compression-ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1530382A JPS58133448A (en) 1982-02-02 1982-02-02 Compression-ignition engine

Publications (1)

Publication Number Publication Date
JPS58133448A true JPS58133448A (en) 1983-08-09

Family

ID=11885036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1530382A Pending JPS58133448A (en) 1982-02-02 1982-02-02 Compression-ignition engine

Country Status (1)

Country Link
JP (1) JPS58133448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267227A (en) * 1985-09-18 1987-03-26 Mazda Motor Corp Air intake device for engine
US4738233A (en) * 1985-02-25 1988-04-19 Mazda Motor Corporation Intake system for internal combustion engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738233A (en) * 1985-02-25 1988-04-19 Mazda Motor Corporation Intake system for internal combustion engines
JPS6267227A (en) * 1985-09-18 1987-03-26 Mazda Motor Corp Air intake device for engine

Similar Documents

Publication Publication Date Title
JP4478334B2 (en) Internal combustion engine having method for controlling combustion process of internal combustion engine and means for controlling engine valve
US5553590A (en) Intake control valve
US4860709A (en) Engine induction system and method
KR910010039A (en) 2-cycle engine with variable valve timing
US5351660A (en) Electrically activated dynamic valve for spark ignition engines
JPH0270917A (en) Two cycle engine
JP2662799B2 (en) Engine intake control device
JPS58133448A (en) Compression-ignition engine
JP4019492B2 (en) Spark ignition internal combustion engine
US2796054A (en) Two cycle engine charge recirculator
JPS6147295B2 (en)
JPH0359242B2 (en)
WO1996001939A1 (en) A restricted induction reciprocating piston type internal combustion engine
JPS5823245A (en) Internal combustion engine having loss of suction resistance reduced
JPS6014905Y2 (en) Internal combustion engine starting accelerator
JPH11153045A (en) Control device of diesel engine
JPH10274072A (en) Cylinder injection type engine with supercharger
JPS6030430Y2 (en) Internal combustion engine starting accelerator
JPS59158328A (en) Internal-combustion engine
JPS6131145Y2 (en)
JPS58167823A (en) Diesel engine with supercharger
JPH10274077A (en) Cylinder injection type engine with supercharger
JPH0619807Y2 (en) Engine scavenger
JPS609418Y2 (en) Internal combustion engine starting accelerator
JP2634466B2 (en) 4-cycle internal combustion engine