JPS58133118A - Leakage breaker - Google Patents

Leakage breaker

Info

Publication number
JPS58133118A
JPS58133118A JP57012859A JP1285982A JPS58133118A JP S58133118 A JPS58133118 A JP S58133118A JP 57012859 A JP57012859 A JP 57012859A JP 1285982 A JP1285982 A JP 1285982A JP S58133118 A JPS58133118 A JP S58133118A
Authority
JP
Japan
Prior art keywords
capacitor
resistor
control circuit
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57012859A
Other languages
Japanese (ja)
Inventor
晃三 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57012859A priority Critical patent/JPS58133118A/en
Priority to KR2019860013527U priority patent/KR860002721Y1/en
Priority to KR1019820005334A priority patent/KR840002589A/en
Publication of JPS58133118A publication Critical patent/JPS58133118A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は漏電し中断器の改歳に関する。[Detailed description of the invention] [Technical field of invention] TECHNICAL FIELD The present invention relates to the modification of an earth leakage interrupter.

〔発明の技術的背景〕[Technical background of the invention]

従来の漏電し中断器の回路構成としては、第1図に示す
ように、電源1に主回路接点2を介して負荷3が接続さ
れて主回路を構成している。
As shown in FIG. 1, the circuit configuration of a conventional earth leakage interrupter is such that a load 3 is connected to a power source 1 via a main circuit contact 2 to form a main circuit.

また上記主回路に1次側端4aが並列接続され九補助変
圧器見は、その2次側端4bを単相全波整流器5の入力
端に接続し、この単相全波整流器6の出力電源端P1*
N1には、平滑コンデンサーと、これと並列接続され走
引外しコイル7とサイリスタ8との直列回路とが接続さ
れている。
Furthermore, the nine auxiliary transformers whose primary end 4a is connected in parallel to the main circuit have their secondary end 4b connected to the input end of a single-phase full-wave rectifier 5, and the output of this single-phase full-wave rectifier 6. Power supply end P1*
A smoothing capacitor and a series circuit of a tripping coil 7 and a thyristor 8 connected in parallel with the smoothing capacitor are connected to N1.

一方、前記主回路を1次側とした零相変流器9は、その
2次側端をその線間に抵抗10を並列接続して制御回路
11の入力端ム、Bに接続1〜ている。また制御回路1
ノの入力電源端P富。
On the other hand, the zero-phase current transformer 9 with the main circuit as the primary side has its secondary end connected in parallel to the input terminals M and B of the control circuit 11 by connecting a resistor 10 in parallel between its lines. There is. Also, the control circuit 1
The input power terminal P wealth.

N1は、抵抗12を直列に介して、前記単相全波整槙器
5の出力端P、、N1に接続され制御電源を得ている。
N1 is connected to the output terminals P, N1 of the single-phase full-wave modulator 5 through a resistor 12 in series to obtain a control power source.

この制御回路1ノは主回路の負1li13側に漏電事故
が発生した時に、零相変流器9の2次側にF′i―電惨
出電流が発生し、これは交流正弦波のl1lE流信号で
あるが、これを抵抗10によシミ圧1g号に変換し、こ
の電圧信号の入力によシ、−一電源端N、及びホールド
端子Hに接続されたコンデンサ−13を充電してその両
端電圧が設電値以上になると出力端Sからサイリスタ8
のダートにr−)電流を流しサイ9ス/βを点弧し、引
外しコイル7を励磁し、キャッチを外して主接点2を開
路する。
In this control circuit 1, when a leakage fault occurs on the negative 1li13 side of the main circuit, an F'i current is generated on the secondary side of the zero-phase current transformer 9, and this is an alternating current sine wave l11E This is a current signal, but it is converted into a voltage of 1g by the resistor 10, and by inputting this voltage signal, the capacitor 13 connected to the -1 power supply terminal N and the hold terminal H is charged. When the voltage at both ends exceeds the set value, the thyristor 8 is output from the output terminal S.
A current (r-) is applied to the dart, igniting the size 9/β, energizing the tripping coil 7, and releasing the catch to open the main contact 2.

尚、この漏電し中断器は、過電流事故に対しては図示し
ないサーマルリレーが作動して主回路接点2を開路し、
短路などの瞬時動作に対しては、図示しない電磁石が作
動して主回路接点2を開路している。尚、14は補助変
圧器4の1次側端4aに並列接続され圧挿直線サージ吸
収素子で、これは、電源ノイズを吸収してクリ、ピング
するものである。
In addition, this earth leakage interrupter operates a thermal relay (not shown) to open the main circuit contact 2 in case of an overcurrent accident.
For instantaneous operations such as short circuits, an electromagnet (not shown) operates to open the main circuit contacts 2. Note that 14 is a pressure-inserted linear surge absorbing element connected in parallel to the primary end 4a of the auxiliary transformer 4, which absorbs power supply noise and clips and clips it.

次に上述した制御回路口の詳細な構成と、その動作につ
いて第2図を参照して説明する。
Next, the detailed structure and operation of the above-mentioned control circuit port will be explained with reference to FIG. 2.

制御回路口の+側電源端P3には基準電圧を出力する安
定化電源回路11&の入力端が接続されこの安定化電源
回路11mの出力端には抵抗11bl 、Jlb、の直
列回路が接続されて、−側電源端N、に接地して閉回路
を構成している。
The input terminal of a stabilized power supply circuit 11& which outputs a reference voltage is connected to the + side power supply terminal P3 of the control circuit port, and the series circuit of resistors 11bl and Jlb is connected to the output terminal of this stabilized power supply circuit 11m. , - side power supply terminal N, is grounded to form a closed circuit.

制御回路口の零相変流器902次側が接続される入力電
子Aは、コンノ臂レータ11cO+側端に接続され、こ
のコン・ダレータIleの一側端は、前記抵抗11b1
と抵抗11b、との間の接続端に接続されている。また
制御回路Uの入力端Bは、前記抵抗JJbl 、Jlb
、の直列回路の一端とともに一側電源端子N3に接続さ
れている。
The input electron A to which the secondary side of the zero-phase current transformer 90 at the control circuit port is connected is connected to the terminal arm of the converter 11cO+, and one end of the terminal Ile is connected to the resistor 11b1.
and the resistor 11b. In addition, the input terminal B of the control circuit U is connected to the resistors JJbl and Jlb.
, and one end of the series circuit are connected to one side power supply terminal N3.

コンAlレータ11Cの出力端は、抵抗JJdを介して
コンデンサ12が接続されるホールド熾子HK接続され
ている。
The output end of the converter Alator 11C is connected to a hold capacitor HK to which a capacitor 12 is connected via a resistor JJd.

また11・は、第3図に示すように入力電圧がVl(で
出力信号を出力し、vt、(vH,>VL)に降圧する
1で出力信号を出力するヒステリシス特性を有したヒス
テリシス回路で、とのヒ支テリシス回路11・は入力と
して、サイリスタ111のカソードが接続され、このサ
イリスタ111のアトードは前記ホールド端子H及びツ
ェナダイオードI1gのカソードが接続され、このツェ
ナダイオードJJgのアノードは前記サイリスタJJf
のy−トに接続されている。またヒステリシス回路11
・の出力端には抵抗11bを介して制御回路口の端子S
に導かれて、サイリスタ8のダートに接−されている。
In addition, 11 is a hysteresis circuit having a hysteresis characteristic that outputs an output signal when the input voltage is Vl (1) and outputs an output signal when the input voltage is Vt, (vH, > VL), as shown in Figure 3. , the cathode of a thyristor 111 is connected as an input to the hysteresis circuit 11, the toode of this thyristor 111 is connected to the hold terminal H and the cathode of a zener diode I1g, and the anode of this zener diode JJg is connected to the thyristor 111. JJf
is connected to the y-t. Also, the hysteresis circuit 11
The output terminal of ・ is connected to the terminal S of the control circuit port via the resistor 11b.
and is connected to the dart of thyristor 8.

上述した制御回路Uの動作は、負荷3@に漏電事故が生
じた場合に、零相変流−9の二次−に発生する漏電事故
による交流正弦波の電流信号を抵抗10により電圧信号
に変換する。この抵抗10の両端電圧が、交流正弦波の
+側牛波のときに制御回路りの安定化電源回路11aの
出力電圧を、抵抗11b1.11b、で分圧した電圧以
上になると、コンAlレータLl gの出力にロジ、ク
レペル“l”の信号が発生し、この信号により抵抗を介
して制御回路担に接続されたコンデンサ13を充電して
いく0次に抵抗100両端電圧が、交流正弦波の一側半
波であって、制御回路Uの安定化電源回路出力11mを
、抵抗11b1と抵抗11b3で分圧した電圧以下にな
ると、コンAlレータIlcは、ロジ、フレペル@0”
を出力し、コンデンサJ1の電荷は抵抗11dとコンツ
クレータ11零を介して放電する。
The operation of the control circuit U described above is such that when an earth leakage accident occurs in the load 3@, an AC sine wave current signal caused by the earth leakage accident that occurs in the secondary of the zero-phase current transformer 9 is converted into a voltage signal by the resistor 10. Convert. When the voltage across this resistor 10 becomes equal to or higher than the voltage obtained by dividing the output voltage of the stabilizing power supply circuit 11a of the control circuit by the resistors 11b1 and 11b when the AC sine wave is a positive side cow wave, the converter Al regulator A logic Krepel "l" signal is generated at the output of Llg, and this signal charges the capacitor 13 connected to the control circuit via the resistor.The voltage across the zero-order resistor 100 becomes an AC sine wave. When the voltage becomes lower than the voltage obtained by dividing the stabilized power supply circuit output 11m of the control circuit U by the resistor 11b1 and the resistor 11b3, the converter Al regulator Ilc outputs logic, Frepel@0''.
is output, and the charge in the capacitor J1 is discharged via the resistor 11d and the condenser 110.

再び、抵抗100両端電圧が安定化電源回路11mの出
力電圧を抵抗11b!と抵抗11b。
Again, the voltage across the resistor 100 changes the output voltage of the stabilized power supply circuit 11m to the resistor 11b! and resistor 11b.

で分圧し圧電圧以上になると、コンAlレータ11・の
出力にロノ、クレペル@l“の出力信号が発生し、この
信号によシ抵抗11dを介して再びコンデンサ11を充
電する。このサイクルを繰返し、コンデンサ130両端
電圧が徐々に上昇し、ツェナーダイオード115のツエ
ナ−電圧以上になると、サイリスタJJfにr−トg!
!号が供給されてサイリスタllfがターンオンする。
When the voltage is divided by , and the voltage exceeds the voltage, an output signal of "Lono, Krepel@l" is generated at the output of the converter 11, and this signal charges the capacitor 11 again via the resistor 11d.This cycle is as follows. Repeatedly, when the voltage across the capacitor 130 gradually rises and exceeds the Zener voltage of the Zener diode 115, the r-g!
! A signal is supplied to turn on thyristor llf.

このため、コンデンサ13はサイリスタIltを介して
放電し、ヒステリシス回路11・の入力信号■Sとなる
。この入力信号VSによりヒステリシス(ロ)路11・
は抵抗11bを介しサイリスタ8にダート信号を送る。
Therefore, the capacitor 13 is discharged via the thyristor Ilt, and becomes the input signal S of the hysteresis circuit 11. This input signal VS causes hysteresis (b) path 11.
sends a dart signal to the thyristor 8 via the resistor 11b.

尚、ヒステリシス回路11・は上述したように第3図に
示す特性を有し、コンデンサ13の両端電圧が初期にv
Mまで上昇し、次にある程度低くなって、例えば■Lま
で下ってもヒステリシス回路11・は抵抗11kを介し
てサイリスタ8にグー10!号を送る。これにより確爽
にサイリスタ8をONさせ、引きはずしコイル7を励磁
し、キャッチを外して主回路接点2を開路する。
As mentioned above, the hysteresis circuit 11 has the characteristics shown in FIG.
Even if it rises to M and then becomes low to some extent, for example to ■L, the hysteresis circuit 11 is connected to the thyristor 8 via the resistor 11k. send the number. This reliably turns on the thyristor 8, excites the tripping coil 7, releases the catch, and opens the main circuit contact 2.

〔背景技術の問題点〕[Problems with background technology]

上述した構成の漏電しゃ断器において、漏電事故が発生
してから主回路接点2が開路するまでの時間、即ち時延
時間を幽整するにLコンデンサ13の容量を可変するに
よシ調整できるが、コンデンサ13の容量を大きくする
とコンデンサ13が放電する経路に制御回路すがあシ、
制御回路Iノは通常ワンチ、7”I C化されておシ、
このワンチップIC内部に設けられ九すイリスタ111
通電許容電流値紘数十マイクロアンペアと極めて小さい
、またサイリスタ111はワンチップICである制御回
路11内部に設けられている丸め電流容量を大きくでき
ず、これによp破壊されるので静電容量は0.05 M
F程度までしか大きくできず、時延の効果はitとんど
なく、ノイズ吸収程度の作用しかなかった。
In the earth leakage breaker configured as described above, the time from the occurrence of an earth leakage accident until the main circuit contact 2 opens, that is, the delay time, can be adjusted by varying the capacitance of the L capacitor 13. , when the capacitance of the capacitor 13 is increased, the control circuit is placed in the path where the capacitor 13 discharges.
The control circuit I is usually a one-chip, 7" IC.
A nine-swivel resistor 111 is provided inside this one-chip IC.
The thyristor 111 has a very small current capacity of only a few tens of microamperes, and the capacitance of the thyristor 111 cannot be increased because the rounding current capacity provided inside the control circuit 11, which is a one-chip IC, will be destroyed by this. is 0.05M
It could only be increased to about F, and the effect of time delay was almost negligible, and the effect was only at the level of noise absorption.

このサイリスタ111を用いた制御回路11は時延の不
要な高速形の漏電し中断器にしか使用できなかった。ま
た時延の効果を充分屯たせるには、時延の効果を専用に
考えたICを用いて別回路を設けなければならないため
、周辺回路用の部品点数も増加しコスト上昇になってい
った。更に高速形の漏電し中断器の場合は、時延厘とは
全く回路構成を異にするため高速型及び時延製の標準化
も著しく阻害される欠点があった。
The control circuit 11 using this thyristor 111 could only be used as a high-speed type leakage interrupter that does not require a time delay. In addition, in order to maximize the effect of time delay, it was necessary to provide a separate circuit using an IC designed specifically for the effect of time delay, which increased the number of parts for peripheral circuits and increased costs. . Furthermore, in the case of high-speed type earth-leakage interrupters, the circuit configuration was completely different from that of Tokinobu, so there was a drawback that standardization of high-speed types and Tokinobu products was significantly hindered.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情にかんがみてなされたもので、時延の
ための制御回路用のICを新規に設けなくとも、高速動
作形及び時延動作形にし得、且つ製品の標準化が容易に
なし得る漏電し中断器′に提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and allows high-speed operation type and time delay operation type to be realized without newly providing an IC for a control circuit for time delay, and also enables easy product standardization. The purpose is to provide an interrupter in case of electrical leakage.

   ”〔発明の概要〕 本発明による漏電し中断器は、上記目的を達成する丸め
に制御回路の入力電圧を決定する、零相変流器の2次側
線間に接続される抵抗を第1の抵抗とし、制御回路のホ
ールド端子Hと、制御回路の一側電源端子Nt間にダイ
オードと、コンデンサと第2の抵抗との並列回路を直列
接続し、前記第1及び第2の抵抗を同時に可変できる構
成とする。
” [Summary of the Invention] The earth leakage interrupter according to the present invention achieves the above object by connecting a resistor connected between the secondary wires of a zero-phase current transformer to a first one, which determines the input voltage of a control circuit. A parallel circuit of a diode, a capacitor, and a second resistor is connected in series between the hold terminal H of the control circuit and the one-side power supply terminal Nt of the control circuit, and the first and second resistors are variable at the same time. The configuration should be such that it is possible.

〔発明の実施例〕[Embodiments of the invention]

以上本発明の一実施例を図面を参照して説明する。第4
図は本発明による漏電し中断器の一実施例を示す回路図
である。第4図において、電源1はこの漏電し中断器の
主回路接点2を介して負荷3に接続されて主回路を構成
している。
An embodiment of the present invention will be described above with reference to the drawings. Fourth
The figure is a circuit diagram showing an embodiment of the earth leakage interrupter according to the present invention. In FIG. 4, a power source 1 is connected to a load 3 via a main circuit contact 2 of the earth leakage interrupter to form a main circuit.

上記主回路に1次側端4aが並列接続された補助変圧器
りは、その2次側端4bを単相全波整流器5の入力端に
接続し、この単相全波整流器の出力端PIINIには平
滑コンデンサ6と、これと並列接続された引外しコイル
1とサイリスタ8との直列回路とが接続されている。
The auxiliary transformer whose primary end 4a is connected in parallel to the main circuit has its secondary end 4b connected to the input end of the single-phase full-wave rectifier 5, and the output end PIINI of this single-phase full-wave rectifier 5. A smoothing capacitor 6 and a series circuit of a tripping coil 1 and a thyristor 8 connected in parallel to the smoothing capacitor 6 are connected to the smoothing capacitor 6 .

一方、前記主回路を1次側とし九零相変流器9の2次側
の線間には2連式可変抵抗器LAの第1の可変抵抗器J
jmが並列接続されて、制御回路の入力端A、Hに接続
されている。
On the other hand, the main circuit is the primary side, and the first variable resistor J of the double variable resistor LA is connected between the lines on the secondary side of the nine zero-phase current transformer 9.
jm are connected in parallel and connected to input terminals A and H of the control circuit.

を九制御回路Uの電源端PIINmは抵抗12を直列に
介して前記単相全波整流器5の出力端P1 、Nlに接
続され制御電源を得ている。
The power supply terminal PIINm of the control circuit U is connected to the output terminals P1 and Nl of the single-phase full-wave rectifier 5 through a resistor 12 in series to obtain a control power supply.

また制御回路のホールド端子Hにはダイオード16のア
ノードが接続され、カソードはこのダイオード1#と直
列接続されるコンデンサ13が接続され、ま九この直列
回路のダイオード160カソードとプンデンーy″13
関に−は、前配2連弐町変抵抗器14=の第2の可変抵
抗器J5&が並列接続されて、制御回路Uの一側電源趨
Ns K接続されている。
Further, the anode of the diode 16 is connected to the hold terminal H of the control circuit, and the cathode is connected to the capacitor 13 which is connected in series with this diode 1#.
The second variable resistor J5& of the front two-way Nicho variable resistor 14 is connected in parallel, and is connected to one side power supply NsK of the control circuit U.

尚、制御回路の詳細な回路図は、第2図に示した従来例
と同一なのでその説明線雀略する。
The detailed circuit diagram of the control circuit is the same as that of the conventional example shown in FIG. 2, so the explanation thereof will be omitted.

また、この電源し中断器は図示しないサーマルリレーと
電磁石を有し、サーマルリレーは過電流事故が発生し丸
場合に作動して主回路接点2全開路し、また電磁石は短
絡などの瞬時動作に対して作動して主回路接点2を開路
している。
In addition, this power supply interrupter has a thermal relay and an electromagnet (not shown), and the thermal relay is activated when an overcurrent accident occurs and fully opens the main circuit contact 2, and the electromagnet is activated in the event of an instantaneous operation such as a short circuit. 2, the main circuit contact 2 is opened.

次に上述した漏電し中断器の動作について第4図を参照
して説明する。
Next, the operation of the above-mentioned earth leakage interrupter will be explained with reference to FIG.

主回路の負荷3側に漏電事故が発生すると零相流器9に
よシ漏電検出電流を検出して、第1のOr変低抵抗器1
6mよシミ圧信号に変換する。
When an earth leakage accident occurs on the load 3 side of the main circuit, the earth leakage detection current is detected by the zero-phase current transformer 9, and the first Or low transformer resistor 1
6m and converts it into a stain pressure signal.

この電圧侶号の大きさによ多制御回路11−で異常かど
うかが判定される。これについては第2図で示した従来
例で詳細に説明したので、ここでは省略する。ある電圧
つまり制御回路11の人力動作電圧が約501V以上に
なると、制御回路11のホールド端子Hよシミ流が流れ
出し、ダイオード1#を介してコンデンサIJを充電す
る。第1の可変抵抗器1gmの両端電圧、即ち制御回路
110入力動作電圧が約5 mV以下になると、コンデ
ンサIJに充電され九電荷はダイオード16よ多制御回
路111C流れこまずに第鉋の可変抵抗器J5klを介
して放電する。
Depending on the magnitude of this voltage level, the control circuit 11- determines whether or not there is an abnormality. Since this was explained in detail in the conventional example shown in FIG. 2, it will be omitted here. When a certain voltage, that is, the manual operating voltage of the control circuit 11, exceeds about 501 V, a stain current flows from the hold terminal H of the control circuit 11 and charges the capacitor IJ via the diode 1#. When the voltage across the first variable resistor 1gm, that is, the input operating voltage of the control circuit 110, becomes approximately 5 mV or less, the capacitor IJ is charged, and the nine charges do not flow through the diode 16 to the multicontrol circuit 111C, but instead pass through the variable resistance of the first plane. discharge through the vessel J5kl.

さらに、第1の可変抵抗Jjaの両端電圧、即ち制御回
路Uの入力動作電圧が約5 mV以上になると、制御回
路すのホールド端子Hよ)ダイオードICを介して電流
が流れ出しコンデンサ13を再び充電する。仁のサイク
ルを繰返しコンデンサISO充・放電に、よシ、ある時
間経過後、制御回路すのホールド端子Hがある所定電圧
例えば2.5vに達すると、制御回路11の出力端Sよ
りサイリスタat’−)信号を送りすイリスタatター
ンオンさせて4龜はすし、コイル1を励磁し、キャッチ
をはずして回路接点2を開にする。
Furthermore, when the voltage across the first variable resistor Jja, that is, the input operating voltage of the control circuit U exceeds approximately 5 mV, current flows through the diode IC (hold terminal H of the control circuit) and charges the capacitor 13 again. do. After repeating this cycle to charge and discharge the capacitor ISO, after a certain period of time, when the hold terminal H of the control circuit reaches a predetermined voltage, for example 2.5V, the output terminal S of the control circuit 11 releases the thyristor at'. -) Turn on the iris switch to send a signal, energize the coil 1, and release the catch to open the circuit contact 2.

次に、2連式可変抵抗−はの操作による動作について説
明する。2連弐可変抵抗器IJのMlの可変抵抗器15
mを抵抗値を増加させる方向に回転させると動作感度電
流は小さくなる。
Next, the operation of the double variable resistor will be explained. Variable resistor 15 of Ml of double variable resistor IJ
When m is rotated in a direction that increases the resistance value, the operating sensitivity current becomes smaller.

このとき第2の可変抵抗器15b4第1の可変抵抗器1
5aと同様に抵抗値が増える方向に回転するので、コン
デンサ13の零荷が放電する時間が短かくなるため放電
しにくくなシ、コンデンサ130充・放電に関係する時
延時間は短かくなる。この状態は第5図の横軸に感度電
流1 (mA)と縦軸に時延時間T(m−・@)とを示
す曲線3に相当する。逆に、2連式可変抵抗器ISO繭
10町変抵抗器Jjmと第2の可変抵抗5 J 6 b
の抵抗値を減らす方向に回転させると感度電流1 (m
A)と時延時間T (m srs )は変化し、図中2
.1の方向に移動し、即ち動作感t[fiが大きくなる
につれて、動作時間も遅くなる。
At this time, the second variable resistor 15b4 the first variable resistor 1
As in the case of 5a, since it rotates in the direction in which the resistance value increases, the time for the zero load of the capacitor 13 to discharge is shortened, making it difficult to discharge, and the delay time related to charging and discharging the capacitor 130 is shortened. This state corresponds to curve 3 in FIG. 5, in which the horizontal axis represents the sensitivity current 1 (mA) and the vertical axis represents the delay time T (m-.@). Conversely, a double variable resistor ISO cocoon 10-way variable resistor Jjm and a second variable resistor 5 J 6 b
When rotating in the direction of decreasing the resistance value, the sensitivity current 1 (m
A) and the delay time T (m srs ) change, and 2 in the figure.
.. 1, that is, as the motion feeling t[fi increases, the motion time also becomes slower.

以上述べたIllの実施例の漏電し中断器によれば、時
延の作用をも友せるための専用ICを別に設けなくとも
、IIA度電流と時延時間は任意に設定可能となシ、1
つの漏電し中断器にあって、高速動作形から時延動作形
までに使用することができ、更に標準化電極めて容易に
なし得る。
According to the earth leakage interrupter of the Ill embodiment described above, the IIA degree current and the delay time can be set arbitrarily without the need to separately provide a dedicated IC to also provide the delay function. 1
The current leakage interrupter can be used in both high-speed operation type and delayed operation type, and can be standardized very easily.

を九、この実施例で社制御回路口の入力とは関係しない
部分に、ダイオード16及び第2の可変抵抗器15bを
設けて、時延動作を行なわせているため、ノイズ吸収の
ため、新たにコンデンサを接続する必要がある場合にあ
りても、入力と紘関係しないので接続膵島でその効果も
大きい。
(9) In this embodiment, a diode 16 and a second variable resistor 15b are provided in a portion not related to the input of the control circuit port to perform a time delay operation, so a new Even if it is necessary to connect a capacitor to the input, the effect on the islet connection is great because it has nothing to do with the input.

更に、第6図に示すように電力系統にありて、電源1を
主幹漏電し中断器ムに接続し、この主幹漏電し中断器ム
の負荷として、分校漏電し中断器Bと、これと並列接続
される分枝漏電し中断!SCを接続し、これら分枝漏電
し中断器B。
Furthermore, as shown in Fig. 6, in the power system, the power supply 1 is connected to the main leakage interrupter M, and as the load of the main leakage interrupter B, a branch leakage interrupter B is connected in parallel. The connected branch is interrupted due to electrical leakage! SC and connect these branch earth leakage interrupters B.

Cに負荷Ja 、3bを接続した場合にありては、主幹
漏電し中断善人を分校漏電し中断器B、Cよシも時延時
間を遅くすると、即ち、分枝漏電し中断@B、Cを高速
動作形にすることによシ、電力系統の保鏝協調をとるこ
とができる。
When loads Ja and 3b are connected to C, if the main branch leaks and interrupts, the branch leaks and interrupters B and C also slow down the delay time, that is, the branch leaks and interrupts @B, C. By making it a high-speed operating type, it is possible to achieve maintenance coordination in the power system.

ま九上記電力系統にあっては、大電流通電時の不平負電
流に対して、更にノイズに対してもノイズ吸収効果を各
漏電し中断器単位のコンデンサ13の容量を大きくする
ことができるので、!I4wJ作の防止が可能となる。
(9) In the power system described above, the capacity of the capacitor 13 of each interrupter can be increased to increase the noise absorption effect against unbalanced negative current when large current is flowing, and also against noise. ,! I4wJ creation can be prevented.

次に本発明の第2の実施例について第6図を参照して説
明する。第6図においては制御回路−の絆細な回路は、
1m2図と同一であるのでその説明は省略し、また第4
図と同一部分には同一符号を付して、その説明は省略す
る。第2の実施例が#Ilの実施例と異なるのは、零相
変流器902次側の線間に抵抗11m、11b(J 7
b<、17m )を直列に接続し、この抵抗17m 、
 17b間の接続点に2連式タ、!切換器18の第1の
タッグ切換−18aを設けて、制御回路L」−の入力端
A、B間に接続される抵抗17の値を切換可能にしてい
る。
Next, a second embodiment of the present invention will be described with reference to FIG. In Figure 6, the detailed circuit of the control circuit is as follows:
Since it is the same as the 1m2 diagram, its explanation will be omitted, and the fourth
The same parts as those in the figures are given the same reference numerals, and the explanation thereof will be omitted. The difference between the second embodiment and the #Il embodiment is that resistances 11m and 11b (J 7
b<, 17m) are connected in series, and this resistance 17m,
At the connection point between 17b, there is a double tap! A first tag switch 18a of the switch 18 is provided to enable switching of the value of the resistor 17 connected between the input terminals A and B of the control circuit L''.

また、制御回路担のホールド端子Hにそのアノードが接
続され九ダイオード16と、制御回路11の一側電源端
子N、間に接続されたコンデンサ13とは、直列接続さ
れ、このダイオード16とコンデンサ77間の接続点に
は抵抗1pa、1tb(1sb(19m)が直列に接続
され、この抵抗19aとxebと間の接続点に社前記2
連式タ、f切換11JJlの第2のタップ切換器18b
が接続され、コンデンサISに並列接続される抵抗1−
の値を切換可能にしている。
Further, the nine diode 16 whose anode is connected to the hold terminal H of the control circuit, and the capacitor 13 connected between the one side power supply terminal N of the control circuit 11 are connected in series, and this diode 16 and the capacitor 77 Resistors 1pa and 1tb (1sb (19m)) are connected in series to the connection point between them, and the resistance 2.
Second tap changer 18b of continuous type tap, f changeover 11JJl
is connected to the resistor 1-, which is connected in parallel to the capacitor IS.
The value of can be changed.

次に、この第2の実施例の動作について説明する。即ち
、2連式タ、ノ切換器りが第7図の状態にある時にあり
て、負荷jllK漏電事故が発生した場合、零相変流器
902次側には、漏電による交流正弦波の零相の電流信
号が流れ、抵抗11mによシミ圧信号に変換される。こ
の電圧信号の木きさによシ制御回路口では、第2図にて
詳細にa明し喪ように、基準電圧と比較して漏電である
か否かを判定する。この場合、零相変流器りの2次側の
線間に抵抗値の大きい抵抗11aが接続されている丸め
、交流正弦波の十輪半波のときに抵抗77mの両端電圧
、即ち制御回路J1の入力電圧が、約5 mV以上にな
ると、このとき制御回路りのホールド端子Hより電流が
流れ出し、ダイオード16を介してコンデンサIJを充
電する0次に零相変流器902次側に交流正弦波の一側
半波が流れ、抵抗11mの両端電圧が、制御回路ワの基
準電圧以下になると、制御回路口のホールド端子Hから
は電流は流れなくなシ、一方コンデンサ13の電荷はダ
イオード16によって制御回路口内では放電がなされず
に、もっばら抵抗19mを介して放電する。
Next, the operation of this second embodiment will be explained. In other words, if a load jllK earth leakage accident occurs when the two-way type switching device is in the state shown in Fig. 7, the secondary side of the zero-phase current transformer 90 will receive a zero of the AC sine wave due to the earth leakage. A phase current signal flows and is converted into a stain pressure signal by the resistor 11m. At the input of the control circuit, this voltage signal is compared with a reference voltage to determine whether or not there is a leakage, as shown in detail in FIG. In this case, when the resistor 11a with a large resistance value is connected between the lines on the secondary side of the zero-phase current transformer, the voltage across the resistor 77m, that is, the control circuit When the input voltage of J1 becomes approximately 5 mV or more, current flows from the hold terminal H of the control circuit, and an alternating current flows to the secondary side of the zero-order zero-phase current transformer 90, which charges the capacitor IJ via the diode 16. When one half wave of the sine wave flows and the voltage across the resistor 11m becomes less than the reference voltage of the control circuit W, no current flows from the hold terminal H of the control circuit, while the charge of the capacitor 13 is transferred to the diode. 16, no discharge occurs within the control circuit port, but discharge occurs mainly through the resistor 19m.

次に、再度零相変流器9の2次側に交流正弦波の+側半
波が流れると、抵抗J7&の両端電圧は制御回路1ノの
基準電圧よシ大きくなシ、コンデンサ13を放電する。
Next, when the positive half wave of the AC sine wave flows through the secondary side of the zero-phase current transformer 9 again, the voltage across the resistor J7 becomes larger than the reference voltage of the control circuit 1, and the capacitor 13 is discharged. do.

上述のサイクルを謙り返して、コンデンサ130両端電
圧が所定値以上になると、制御回路口は、その出力端S
よりサイリスタ8のダートにゲート電流を流し、サイリ
スタ1を点弧して、引外しコイル7を励磁し、主回路接
点2を開にする。
Continuing the above-mentioned cycle, when the voltage across the capacitor 130 exceeds a predetermined value, the control circuit port outputs its output terminal S.
A gate current is applied to the dart of the thyristor 8, the thyristor 1 is fired, the tripping coil 7 is energized, and the main circuit contact 2 is opened.

次に2連式タップ切換器Uを切換操作して、第1のタッ
グ切換器111によって、零相変流器902次側の線間
に抵抗Jobが入るようにすると、これと同時に第2の
タッグ切換器Jlbによってコンデンサ13に並列に抵
抗19kが入る。この場合は、制御回路口の入力電圧は
抵抗JFmのときよシも小さい値となシ、またコンデン
t73の電荷の放電量紘抵抗190時よりも大きく、な
る、従ってコンデンサ130両端の電圧が所定値になる
までに要する時間は長くなシ、よって時延時間の長い、
漏電し中断器が実現される。
Next, the double tap changer U is switched so that the first tag changer 111 inserts a resistance job between the lines on the secondary side of the zero-phase current transformer 90. At the same time, the second tap changer U is switched. A resistor 19k is connected in parallel to the capacitor 13 by the tag switch Jlb. In this case, the input voltage at the control circuit port is smaller than that of the resistor JFm, and the discharge amount of the charge of the capacitor t73 is larger than that of the resistor 190. Therefore, the voltage across the capacitor 130 is set to a predetermined value. It takes a long time to reach the value, so the delay time is long.
A current leakage interrupter is realized.

以上述べたように、2連式タッグ切換器りを切換えるこ
とによシ抵抗19m、19bは切換えられ、制御囲路U
の入力電圧は可変でき、まえ制御回路Uに接続されるコ
ンデンサ13の充電時間は可変できるので、時砥形の制
御回路11のICチ、グを新規に用いなくとも、即ち、
部品点数が少数で、低コストな高速形及び時延形の両用
に使用できる漏電し中断器が実現される。尚、上記第2
の実施例は上述の効果の他、第1の実施例と同様の効果
を有するものでめる。
As described above, the resistances 19m and 19b are switched by switching the double tag switch, and the control circuit U
The input voltage can be varied, and the charging time of the capacitor 13 connected to the front control circuit U can be varied, so there is no need to use a new IC chip for the control circuit 11, that is,
A low-cost earth leakage interrupter that can be used for both high-speed type and time delay type is realized with a small number of parts. In addition, the above second
This embodiment has the same effects as the first embodiment in addition to the above-mentioned effects.

次に本発明の第3の実施例について第7図を参照して説
明する。第7図においては制御回路IIの詳細な回路は
第2図と同一であるのでその説明は漬略し、ま九第4図
と同一部分には同一符号を付してその説明は省略する。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 7, the detailed circuit of the control circuit II is the same as that in FIG. 2, so its explanation will be omitted, and the same parts as in FIG. 4 will be given the same reference numerals and their explanation will be omitted.

第3の実施例がMl及び第20実施例と異なるのは、零
相変流器9の2次側の線間に抵抗2oを接続し、また制
御回路のホールド端子Hと一側電源端子N、とに接続さ
れるコンデンサ13抵抗21を並列接続し、そして上記
抵抗20 + 21の抵抗値は任意に交換できる構成と
している。
The third embodiment is different from Ml and the twentieth embodiment in that a resistor 2o is connected between the lines on the secondary side of the zero-phase current transformer 9, and the hold terminal H of the control circuit and the one-side power supply terminal N , a capacitor 13 and a resistor 21 are connected in parallel, and the resistance values of the resistors 20 + 21 can be arbitrarily exchanged.

上記の第3の実施例にあっては、時延形の漏電しゃ断器
として用いる場合は抵抗20.21を比較的低抵抗値な
ものを用い、高′速形の漏電しゃ断器として用いる場合
には、抵抗20.21を比較的高抵抗値のものを用いる
In the third embodiment described above, when used as a time delay type earth leakage breaker, a relatively low resistance value is used for the resistor 20.21, and when used as a high speed type earth leakage breaker, a relatively low resistance value is used. uses resistors 20 and 21 with relatively high resistance values.

上述の第3の実施例の作用効果としては第1及び第2の
実施例と同様なのでその説明は省略する。
The operation and effect of the third embodiment described above are the same as those of the first and second embodiments, so a description thereof will be omitted.

以上述べた本発明は上記実施例だけに限定されるもので
はなく、種々変形して実施できる。
The present invention described above is not limited to the above embodiments, but can be implemented with various modifications.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、時延のための制御回路用の
ICを新規に設けなくとも、高速動作形及び時延動作形
にし得、且つ製品の標準化が容易にし得る漏電し中断器
が提供できる。
According to the present invention described above, there is provided an earth leakage interrupter that can be made into a high-speed operation type and a time delay operation type without the need to newly provide an IC for a control circuit for time delay, and which can facilitate product standardization. Can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の漏電し中断器を示す回路図、第2図は第
1図に示す制御回路の詳細な回路図、第3図は第1図に
示すヒステリシス回路の特性図、第4図は本発明による
漏電し中断器の第1の実施例を示す回路図、第5図は第
4図に示す第1の実施例■動作を説明するための図、菖
6図は第4図に示す第1の実施例の作用効果を説明する
ための図、第7図及び第8図は本発明による第2及び第
3の実施例を示す回路図である。 1・・・電源、2・・・主回路接点、3・・・負荷、4
・・・補助変圧器、5・・・単相全波整流器、6・・・
平滑コン1″ンサ、1・・・引外しコイル、8・・・サ
イリスタ、9・・零相変流器、10・・・抵抗、11・
・・制御回路、12・・・mK、JJ・・・コンデンサ
、14・・・非直線巾−ノ吸収素子、1B・・・2連式
可変抵抗器、16・・・ダイオード、11・・・抵抗、
18・・・2連式タッノ切換器、1ト・抵抗、20・・
・抵抗、21・・・抵抗。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3H 第4図 第511 1 (mA) 第61f 第7閃 第8WJ 特許庁兼官  右 杉 和 夫  殿 1、事件の表示 特願昭57−12859号 2、発明の名称 一電しゃ断器 3、補正をする者 事件との関係 特許出願人 (307)  aQ芝1m電気株式会社4、代理人 6、補IEの対象 明細書 7、補正の内容 (1)  本願明細書第3頁14行目および15行目記
載の[外し9て主接点2を 」を、「”外して主回路接
点2を・」と訂正する。 (2)  同第4頁lO行目紀載の「に接地して」を、
「に接続して」と訂正する。 (3)同s4負20行目記載の「コンデンサ12が」を
、「コンデンサ13が」と訂正する。 (4)  同第6頁6行目および7行目記載の「両端電
圧が、交流正弦波の一側半波であって、制御回路JJの
」を、「両端電圧が、制御回路11の」と訂正する。 (5)同第8負9行目記載の[静電容量は0.05MF
JV、「静電容量は0.05/IFJと訂正する。 (6)同第13頁11行目記載の「曲iI3に」を、「
曲線1に」と訂正する。 (7)同第13員15行目記載の「図中2.1の」を、
「図中2.3の」と訂正する。 (8)同第17員6行目記載の「02次側に交流正弦波
の一側半波が流れ、抵抗」を、「の2次側の抵抗」と訂
正する。 (9)同IJ19頁5行目記載の「 187図を」を、
「第8図を」と訂正する。 (1(I  同第19員6行目記載の「勇7図に」を「
第8図に」と訂正する。
Figure 1 is a circuit diagram showing a conventional earth leakage interrupter, Figure 2 is a detailed circuit diagram of the control circuit shown in Figure 1, Figure 3 is a characteristic diagram of the hysteresis circuit shown in Figure 1, and Figure 4. is a circuit diagram showing the first embodiment of the earth leakage interrupter according to the present invention, FIG. 5 is a diagram for explaining the operation of the first embodiment shown in FIG. FIGS. 7 and 8 are circuit diagrams showing the second and third embodiments of the present invention. 1...Power supply, 2...Main circuit contact, 3...Load, 4
...Auxiliary transformer, 5...Single-phase full-wave rectifier, 6...
Smoothing capacitor 1", 1... tripping coil, 8... thyristor, 9... zero phase current transformer, 10... resistor, 11...
...Control circuit, 12...mK, JJ...Capacitor, 14...Non-linear width absorption element, 1B...Double variable resistor, 16...Diode, 11... resistance,
18...Double type Tano switch, 1 resistor, 20...
・Resistance, 21...Resistance. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 3H Figure 4 Figure 511 1 (mA) 61f 7th Section 8WJ Patent Office Concurrent Official Kazuo Sugi 1, Patent Application for Indication of Case No. 57-12859 No. 2, Name of the invention - Electric circuit breaker 3, Relationship with the amended case Patent applicant (307) aQ Shiba 1m Electric Co., Ltd. 4, Agent 6, Subject specification of supplementary IE 7, Contents of the amendment (1) The phrase ``Remove 9 and connect main circuit contact 2'' on page 3, line 14 and line 15 of the present specification is corrected to ``Remove 9 and connect main circuit contact 2.'' (2) “Grounded to” in the journal, page 4, line lO,
Correct it to "Connect to." (3) "Capacitor 12" written on the negative 20th line of s4 is corrected to "Capacitor 13". (4) On page 6, lines 6 and 7, "the voltage across the control circuit JJ is one half wave of an AC sine wave" is replaced with "the voltage across the control circuit 11 is the voltage across the control circuit 11". I am corrected. (5) The capacitance is 0.05MF as stated in the 8th negative 9th line of the same
JV, ``The capacitance is corrected to 0.05/IFJ.'' (6) ``To song iI3'' written on page 13, line 11, is changed to
"to curve 1," he corrected. (7) "2.1 in the figure" written in the 15th line of the 13th member,
Correct it to "2.3 in the figure". (8) "One half wave of the AC sine wave flows on the secondary side and the resistance" written in the 6th line of the 17th member is corrected to "resistance on the secondary side." (9) "Figure 187" written on page 19, line 5 of the same IJ,
Correct it to "Figure 8." (1
In Figure 8,” it is corrected.

Claims (1)

【特許請求の範囲】[Claims] 主回路接点を設は九主回路導体の一方に電源を接続し、
他方に負荷を接続し、前記主回路導体を1次側とし九苓
相変流器を設け、その2次側の線間に第1の抵抗を接続
し、前記負荷に漏電事故が兄生したとき前記零相変流器
の2次側に一電検出電流が流れ、この電流信号を前記第
1の抵抗にて電圧信号に変換し、これが、予め設定され
た基準電圧を超えていることを条件で直流電R奢コンデ
ンサに充電し、このコンデンサの内端電圧が所定値を超
えたと龜引外しコイルを励磁して、前記主回路接点を開
路する制御部を鳴した漏電し中断器において、前記制御
部の前記コ/フ′ンサが接、続される正極11端子にダ
イオ ドのアノードを接続し、そのカソードをコンデン
サとm2の抵抗の並列回路の−端に接続し、その他端を
前記コンアンサが接続される負極側端子に接続し、前記
第1及び第2の抵抗の値を同時に可変し得る構成とした
ことを%像とする漏電し中断器。
Set the main circuit contacts by connecting the power supply to one of the nine main circuit conductors,
A load is connected to the other side, a nine-phase current transformer is provided with the main circuit conductor as the primary side, and a first resistor is connected between the lines on the secondary side, so that an earth leakage accident occurs in the load. When a single current detection current flows through the secondary side of the zero-phase current transformer, this current signal is converted into a voltage signal by the first resistor, and it is detected that this exceeds a preset reference voltage. In the earth leakage interrupter, which charges a DC current R capacitor under certain conditions, and when the internal voltage of this capacitor exceeds a predetermined value, it excites a tripping coil and activates a control unit that opens the main circuit contact. Connect the anode of a diode to the positive terminal 11 to which the capacitor/capacitor of the control section is connected, connect its cathode to the negative end of a parallel circuit of a capacitor and a resistor of m2, and connect the other end to the capacitor. An earth leakage interrupter having a configuration in which the values of the first and second resistors can be varied simultaneously by connecting to a negative terminal to which the resistor is connected.
JP57012859A 1982-01-29 1982-01-29 Leakage breaker Pending JPS58133118A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57012859A JPS58133118A (en) 1982-01-29 1982-01-29 Leakage breaker
KR2019860013527U KR860002721Y1 (en) 1982-01-29 1982-11-26 Leakage breaker
KR1019820005334A KR840002589A (en) 1982-01-29 1982-11-26 Earth leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012859A JPS58133118A (en) 1982-01-29 1982-01-29 Leakage breaker

Publications (1)

Publication Number Publication Date
JPS58133118A true JPS58133118A (en) 1983-08-08

Family

ID=11817130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012859A Pending JPS58133118A (en) 1982-01-29 1982-01-29 Leakage breaker

Country Status (2)

Country Link
JP (1) JPS58133118A (en)
KR (2) KR840002589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020083697A (en) * 2001-04-28 2002-11-04 김동림 Auxiliary apparatus for operating alarm and leak-breaker the electric fire indications of wiring system lines
JP2005327666A (en) * 2004-05-17 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513103B1 (en) * 1970-05-08 1976-01-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513103B1 (en) * 1970-05-08 1976-01-31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020083697A (en) * 2001-04-28 2002-11-04 김동림 Auxiliary apparatus for operating alarm and leak-breaker the electric fire indications of wiring system lines
JP2005327666A (en) * 2004-05-17 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter

Also Published As

Publication number Publication date
KR840002589A (en) 1984-07-02
KR860002721Y1 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
US4245184A (en) AC Solid-state circuit breaker
US3947728A (en) Network protector relay
US3959695A (en) Circuit interrupter with ground fault trip control
Stratford Rectifier harmonics in power systems
JPS58133037A (en) Power switch circuit
JPS58133118A (en) Leakage breaker
Bronzeado et al. Transformer interaction caused by inrush current
US3532935A (en) Static network protective relay
US3303390A (en) Distance relaying
US3631332A (en) Inverter starting circuit
CN104898006B (en) A kind of anticipation device of Current Transformer Secondary side open circuit
US2804578A (en) Phase-comparison distance relay
US3414772A (en) Differential relay with restraining means responsive to transformer bank voltage
US3684949A (en) Voltage regulator utilizing thyristor switch means
JPS62268322A (en) Method and switchgear for connecting inductance element withresidual magnetism to electric source
US3579040A (en) Desensitizing circuit for differential relay
Soliman et al. A proposed algorithm for current differential protection of delta hexagonal phase shifting transformer
JPS596572B2 (en) 3 phase capacitor switchgear
SU1599815A1 (en) Method and apparatus for electrodynamic tests of power transformers
JPS6271424A (en) Private power source switching device
US3588604A (en) Apparatus for reducing switching transients on shunt compensated high voltage transmission lines
JP2008161004A (en) Uninterruptible power unit
Ristic et al. The major differences between electromechanical and microprocessor based technologies in relay setting rules for transformer current differential protection
JPS631559Y2 (en)
SU1081628A1 (en) Device for adjusting a.c.voltage