JPS58132720A - Picture recording device - Google Patents

Picture recording device

Info

Publication number
JPS58132720A
JPS58132720A JP57015363A JP1536382A JPS58132720A JP S58132720 A JPS58132720 A JP S58132720A JP 57015363 A JP57015363 A JP 57015363A JP 1536382 A JP1536382 A JP 1536382A JP S58132720 A JPS58132720 A JP S58132720A
Authority
JP
Japan
Prior art keywords
scanning direction
main scanning
spot
diameter
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015363A
Other languages
Japanese (ja)
Inventor
Iwao Hamaguchi
浜口 厳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57015363A priority Critical patent/JPS58132720A/en
Publication of JPS58132720A publication Critical patent/JPS58132720A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To improve a surface quality, by making a beam spot diameter on a surface to be scanned, larger than a scanning line interval, and making its shape elliptical, in an optical scanner. CONSTITUTION:A beam of a gas laser 1 is modulated by a modulating optical system 2 containing an acoustic optical element (AOM)3. When carrier frequency of the AOM3 is varied, as for incident light to a cylindrical lens 4, Wx in the sub-scanning direction remains constant, and a diameter Wy in the main scanning direction is varied, a spot diameter on a photosensitive drum 8 also remains constant in the sub-scanning direction, and a diameter in the main scanning direction is varied. For instance, in case of a portrait system in which the main scanning direction and the longitudinal direction of a character are vertical, the AOM3 is operated, the Wy is made small, and a spot on the photosensitive drum 8 is made an ellipse whose diameter in the main scanning direction is small. It is possible to obtain printing of a good quality, which has eliminated an uneven pitch, by preparing 2 kinds of oscillators, and switching the using oscillator in the main scanning direction and the direction of a character.

Description

【発明の詳細な説明】 本発明は光走査装置において、被走tIfi上でのビー
ムスポットの形状を選択することにより画質の改善を行
なおうとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention attempts to improve image quality in an optical scanning device by selecting the shape of a beam spot on a scanned object tIfi.

光走査表置において、元ビームの偏向器として(2)転
多Ifi@Ii等の機械的偏向器を使用する場合。
(2) When using a mechanical deflector such as an inverter Ifi@Ii as a deflector for the original beam in an optical scanning table.

鏡等の光偏向面がその回転軸に垂直(なっていない、い
わゆる面倒れにより、被走査面上で走査線のピッチムラ
が生じ、1欅に黒条あるいは白条として表われると云う
悪影響を与える。この悪影響を防ぐため、走査線に直角
な、いわゆる副走査方向ではレンズ系(対し偏向面と被
走査面とを兵役の関係に配設することが行なわれる。し
かし、このような光学系による倒れ補正機能にも限度が
あり、影響を総て敗除くことは出来ない。
When the light deflection surface of a mirror or the like is not perpendicular to its axis of rotation (so-called surface tilt), pitch unevenness of scanning lines occurs on the surface to be scanned, which has an adverse effect of appearing as black or white stripes on a single page. In order to prevent this negative effect, in the so-called sub-scanning direction perpendicular to the scanning line, the lens system (in contrast, the deflection surface and the surface to be scanned are arranged in a military relationship). There are limits to the correction function, and it is not possible to eliminate all effects.

このような場合には、第1図に示すように感光体上の副
走査方向のビームスデツ)f!WXt走査線のピッチd
より大とし、隣合う走査線上のスポットが互に嵐なるよ
う7ζして上記の悪影響を避けることが出来る。この場
合でも、主走査方向のビームスポット匝W舛小さいこと
が望まれるので、結局スポット形状は走査−に直角な方
向に長軸を持つ楕円が望ましいこととなる。
In such a case, as shown in FIG. 1, the beam width (f!) in the sub-scanning direction on the photoreceptor is WXt scanning line pitch d
It is possible to avoid the above-mentioned adverse effects by increasing the size of 7ζ so that the spots on adjacent scanning lines overlap each other. Even in this case, since it is desired that the beam spot size W in the main scanning direction be small, it is desirable that the spot shape be an ellipse with its long axis in the direction perpendicular to the scanning direction.

一方、レーザ紀縁談皺により又字を記録する場会、走f
imが文の行方向く平行であるボートレートと、これと
直角方向になるランドスケーグの2方式があるが、第2
図に示すように r@)のポートレート方式でも、tb
)のランドスケープ方式でも、文字を形成するためのス
ポットは、文字の縦方向に長軸のある楕円である方が印
字品vtは良好となる。
On the other hand, a place where characters are recorded by laser dating,
There are two methods: boat rate, where im is parallel to the line direction of the sentence, and land skating, where im is perpendicular to this.
As shown in the figure, even with the portrait method of r@), tb
) also, the printed product vt will be better if the spot for forming the character is an ellipse with the long axis in the vertical direction of the character.

本発明は、従来、光ビーム走査装置においてはスポット
flti小さい方が良く、スポット形状は円形が良いと
いう常a1!に反し、一定の大きさを持たぜた上、スポ
ット形状を文字の縦方向が王走査方向と垂直の場合、主
走査方向ビーム匝対副走食方向ビーム径を07以上1.
0以下1文字の縦方向が王走査方向とf行の場合はこの
比を10以上13以下とすることにより、ピッチムラf
vI4消し、併せて印字品質の改良を可能としたもので
ある。
The present invention is based on a1! that conventionally, in a light beam scanning device, the smaller the spot flti, the better, and the better the spot shape is circular. On the other hand, in addition to having a certain size, if the spot shape is such that the vertical direction of the character is perpendicular to the main scanning direction, the beam diameter in the main scanning direction versus the beam diameter in the sub scanning direction should be 0.7 or more.
If the vertical direction of one character below 0 is in the royal scanning direction and the f line, by setting this ratio to 10 or more and 13 or less, the pitch unevenness f
vI4 eraser and also made it possible to improve print quality.

第3図は、先陣としてガスレーザを用い、出射するレー
ザビーム”を音替光学票子(AOMIを用いてfp4し
た実施列を示す◎ ガスレーザlのビームはAuM”ttむ変−光学系2に
よって変調される。このと色、AuM内の超音波進行方
向は回転多txtts等のビーム偏向器5による走査方
向と垂直になるよう配置される。シリンドリカルレンズ
4によって偏向面上VC@状スポットが形成され、偏向
650回転によって走査されたビームは、fe%性會持
つ結像レンズ6により走査方向において感光体ドラム8
上にスポットを形成すると同時に、銅走方向においては
、fθレンズ6と7リンドリカルレンズ7とによって偏
向面と感光体lとが幾何光学的共役の関係におかれてい
るので、やけりスポットを形成すると同時Vc漏内向面
−れによる走査−の位If化を防止する。
Figure 3 shows an example of an implementation in which a gas laser is used as the vanguard and the emitted laser beam is fp4 using an AOMI. The beam of the gas laser is modulated by the AuM optical system 2. In this case, the direction in which the ultrasonic waves travel within the AuM is arranged perpendicular to the scanning direction by the beam deflector 5 such as a rotary multifunction txtts.A VC@-shaped spot is formed on the deflection surface by the cylindrical lens 4, The beam scanned by 650 rotations of deflection is directed to a photoreceptor drum 8 in the scanning direction by an imaging lens 6 having an fe% ratio.
At the same time as forming a spot on the top, since the deflection surface and the photoreceptor l are placed in a geometrically conjugate relationship in the copper travel direction by the fθ lenses 6 and 7, the lindrical lens 7 creates a spot. At the same time when forming the Vc leakage, the inward facing surface prevents the scanning position from being changed due to the Vc leakage.

ガスレーザから侍られるビームは一般にIffff形で
あるが、AQMで変調された変−ビームは第4図に示す
よう(超音波進行方向に短軸を持り楕円ビームとなる。
The beam emitted from a gas laser is generally Iffff-shaped, but the variable beam modulated by AQM becomes an elliptical beam with its short axis in the direction of ultrasonic propagation, as shown in FIG.

このビーム断面の扱軸・短軸比””4y titレーザ
波長、A□M内でのビーム径、キャリアMIl波叙、超
音波媒体の屈折率・音速等のパラメータによって変化す
るが、この変化は短軸Wy の変化によるものであり、
この間W は一定のままである。第5図にキャリア周波
数の変化によるx4アの変化を示すOここでけHe−N
6v−ザのビームを用い、超音波媒にとしてdNjL=
14m+のPbMo04(n=2.26 ν== 3.
63−、、、c) とし、曲@1はAuM内でのビーム
半径が約50μm1曲[2は同じくビーム′″!P径が
約60μm のVk会を示す。
The handling axis/minor axis ratio of this beam cross section varies depending on parameters such as the 4y tit laser wavelength, the beam diameter in A□M, the carrier MIl waveform, the refractive index and sound speed of the ultrasonic medium, but this change This is due to changes in the short axis Wy,
During this time, W remains constant. Figure 5 shows the change in x4a due to the change in carrier frequency.
Using a beam of 6v-the, as the ultrasonic medium dNjL=
14m+ PbMo04 (n=2.26 ν== 3.
63-,,,c), and the song @1 shows a beam radius of about 50 μm in AuM and the song 2 also shows a Vk meeting where the beam radius!P is about 60 μm.

さて、副走査方向の光路図を第6図で示すよりに、−肉
面5上の1伏スポットPの結像レンズ6による虚1!a
P’が偏向面よりも光源によった位置に@率βで形成さ
れ、この虚潅P′のシリンドリカルレンズ7による掌が
倍率mで感光体ドラム上に形成されるような倒れ補正機
能を持り走置光学系においてけ、シリンドリカルレンズ
4への入射jt、東径を副走査方向でWX、王走査方向
でWx  とし、感光ドラム面上でのスボツIll會主
走査方向でWc、副走査方向でWd  としたとき、第
1シリンドリカルレンズ4の焦点距離f4fθレンズ6
の焦点距離f6.第2シリンドリカルVンズ7の焦点距
離f7  の間に次の関係があれば良いことが知られて
いる。
Now, as shown in FIG. 6, which shows the optical path diagram in the sub-scanning direction, the imaginary 1! a
P' is formed at a position caused by the light source rather than the deflection surface at a rate β, and has a tilt correction function such that the palm of the cylindrical lens 7 of this virtual plate P' is formed on the photoreceptor drum at a magnification m. In the scanning optical system, the incidence on the cylindrical lens 4 is jt, the east diameter is WX in the sub-scanning direction, Wx in the main scanning direction, and the position of the spot on the photosensitive drum surface is Wc in the main scanning direction, and Wc in the sub-scanning direction. When Wd is the focal length of the first cylindrical lens 4, f4fθ lens 6
Focal length f6. It is known that the following relationship between the focal length f7 of the second cylindrical V lens 7 is sufficient.

この関係を利用して、的えばA(JMのキャリヤ周波数
が86MIHzのとき感光ドラム上のビームスポットが
ほぼ円形(wc: ”d )で、その半峰が走査線ピッ
チより少し大きくなるように光学系を設定する。
Using this relationship, for example, when the carrier frequency of A (JM) is 86 MHz, the beam spot on the photosensitive drum is approximately circular (wc: ``d''), and the optical beam spot is adjusted so that the half peak thereof is slightly larger than the scanning line pitch. Set up the system.

このような光学配置にかいて、ALIMのキャリア周波
数1kK化させると、シリンドリカルレンズ4への入射
光は副走査方向のVkWx  は一定のまま、主走査方
向の径Wy  が変化し、それに!ツ”t”感光体ドラ
ム状のスホット匝も副走査方向一定の11.主走査方向
の匝が変化するO例えば、主走査方向と文字の縦方向と
が垂直な。
With such an optical arrangement, when the carrier frequency of ALIM is set to 1 kHz, the diameter Wy of the incident light to the cylindrical lens 4 in the main scanning direction changes while the VkWx in the sub-scanning direction remains constant, and! 11. The photoconductor drum-like hot spot is also constant in the sub-scanning direction. For example, the main scanning direction and the vertical direction of the character are perpendicular.

第2図ra)のポートレート方式の場合は、80MHz
以上でA□Mを作動させればWy  が小となリ、従っ
て感光ドラム上のスポットは、主走査方向の径Wc  
が小さい楕円となる。逆に、第2図1b)のランドスケ
ープ方式の場合は%ALIMを8uM)(s以下で作動
させれば主走査方向の径W(が大きい楕円スポットが得
られることとなる0従って、2檀の発振器を用意し、主
走査方向と文子の方向とで関用発振器を切り換えること
により、ピッチムラを除いた品質の良い印字が得られる
こととなる。
In the case of the portrait method shown in Figure 2 (ra), 80MHz
If A□M is operated in the above manner, Wy becomes small, so the spot on the photosensitive drum has a diameter Wc in the main scanning direction.
becomes a small ellipse. Conversely, in the case of the landscape method shown in Fig. 2 (1b), if the %ALIM is operated at 8 uM) (s or less, an elliptical spot with a large diameter W (in the main scanning direction) can be obtained. By preparing an oscillator and switching the related oscillator between the main scanning direction and the text direction, high-quality printing without pitch unevenness can be obtained.

第7図は別の実施例を示し、この実施例では、光源とし
て半導体レーザ11を筺用している。
FIG. 7 shows another embodiment, in which a semiconductor laser 11 is used as a light source.

半導体レーザの放射光け、活性層にf行な方向とこれに
垂直な方向とでその発散内が看しく相違しており、結合
レンズ12で乎行光束としても、その光束断面は長楕円
形状となることが知6れている。しかし、この場合も、
fθレンズ15の焦点耐111fθと倒れ補正光学系と
して挿入されるシリンドリカルレンズ13の焦点距離f
、、 、およびシリンドリカルレンズ16の焦点距離f
16を上記−1)弐及び12)式の関係を保つように選
択することによって、感光体ドラム17上に所望のスポ
ットサイズwc1wdf得ることが出来る。
The divergence of the emitted light from a semiconductor laser is noticeably different in the direction f to the active layer and in the direction perpendicular to it, and even when the light beam travels through the coupling lens 12, the cross section of the light beam has an elongated elliptical shape. It is known that 6. However, in this case too,
The focal resistance 111fθ of the fθ lens 15 and the focal length f of the cylindrical lens 13 inserted as a tilt correction optical system
, , and the focal length f of the cylindrical lens 16
A desired spot size wc1wdf can be obtained on the photosensitive drum 17 by selecting 16 so as to maintain the relationships of equations -1) 2 and 12).

この場合は、光変鯛のために音響光学素子AOM等の外
部液―器を必要とせず、光学系が簡−で小型に出来るが
、一方、第1実施例のようニ、ハラメータを変える仁と
によってポートレート用とランドスクープ用に切換える
ことにより兼用型とするという筐い方は出来ない。
In this case, an external liquid device such as an acousto-optic device AOM is not required for optically variable sea bream, and the optical system can be made simple and compact. It is not possible to create a dual-purpose type by switching between portrait and land scoop use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は走査線ピッチとスポットティズの関係の説明図
、第2図Vi211Ilの定食方式のθ、明図第3図は
本発明の光走lf製置のl実施例の光学系配置図、第4
図はA□Mによるビーム斯面変化の説明図、第5図はキ
ャリア周波数とビーム断面形状の関係を示すグラフ 第
6図は光走査装置の一走嚢方向の元略図、第7図は本@
明の光走査装置の池の′Iり6施的の光学配置図である
。 1.11:レーザ 2:変調光字系 3:At1M  
4.13ニジリントリカルレンズ5.14:回転多面i
1i!16% t5:fθレンズ 7.16:シリンド
リカルレンズ 8.17:感光体ドラム %杵出願人 味式会仕 リコー 第1図 →W)・ト 第2図 (a l               (b 1第4
図 第5図 第6図
Fig. 1 is an explanatory diagram of the relationship between scanning line pitch and spot size, Fig. 2 is a diagram showing θ of the fixed meal method of Vi211Il, and Fig. 3 is an optical system layout diagram of an embodiment of optical scanning LF production of the present invention. Fourth
The figure is an explanatory diagram of changes in beam surface due to A□M, Figure 5 is a graph showing the relationship between carrier frequency and beam cross-sectional shape, Figure 6 is an original schematic diagram of the optical scanning device in one scanning direction, and Figure 7 is the main @
FIG. 6 is an optical layout diagram of a bright optical scanning device. 1.11: Laser 2: Modulating optical system 3: At1M
4.13 Nijilintrical lens 5.14: Rotating polygon i
1i! 16% t5: fθ lens 7.16: Cylindrical lens 8.17: Photoconductor drum
Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] レーザ光源からの光ビームを回転偏向器によって偏向走
査し、結律光学系により走査面にビームスホットを形成
する光走査装置中に、光源さ上記偏向装置との関に配置
され、上記偏向面に@伏スポット全形成する光学系およ
び結縁レンズと走査面との関に配置され、走査線と直角
な面内において上記−内向と走査面とを幾何光学的な共
役関係に保ち、かつ走査面上のビームスポット径を走査
線間隔より大とし、その形状全楕円としたことを特徴と
する画謙紀録装置
In an optical scanning device that deflects and scans a light beam from a laser light source using a rotating deflector and forms a beam spot on a scanning surface using a condensing optical system, a light source is disposed in relation to the deflection device and is placed on the deflection surface. @ The optical system that forms the entire inward spot, the linking lens, and the scanning surface are arranged at the intersection, and in a plane perpendicular to the scanning line, the above-mentioned inward direction and the scanning surface are kept in a geometrically optical conjugate relationship, and on the scanning surface. An image recording device characterized in that the beam spot diameter is larger than the scanning line interval, and the shape is entirely elliptical.
JP57015363A 1982-02-02 1982-02-02 Picture recording device Pending JPS58132720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015363A JPS58132720A (en) 1982-02-02 1982-02-02 Picture recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015363A JPS58132720A (en) 1982-02-02 1982-02-02 Picture recording device

Publications (1)

Publication Number Publication Date
JPS58132720A true JPS58132720A (en) 1983-08-08

Family

ID=11886709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015363A Pending JPS58132720A (en) 1982-02-02 1982-02-02 Picture recording device

Country Status (1)

Country Link
JP (1) JPS58132720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151171A (en) * 1982-03-03 1983-09-08 Yokogawa Hokushin Electric Corp Laser printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151171A (en) * 1982-03-03 1983-09-08 Yokogawa Hokushin Electric Corp Laser printer

Similar Documents

Publication Publication Date Title
US3944323A (en) Variable spot size scanning system
EP0697782B1 (en) Image forming apparatus
US4577933A (en) Gap modulator for high speed scanners
JP2778776B2 (en) Optical scanner
JPH08111755A (en) Image recording system
JPH08211706A (en) Multispot optical scanning system
JPS58132720A (en) Picture recording device
EP0895185B1 (en) Resolution enhancement on imagesetters
US4270149A (en) Laser beam facsimile apparatus
US4568982A (en) Optical scanning method and apparatus
USRE28375E (en) Recording and display method and apparatus
JPS63279220A (en) Image forming device
JPS61111069A (en) Image recording device
JPS5893038A (en) Laser scan recording method
JPH01279273A (en) Method for scanning with light beam
JPS6184620A (en) Laser scanning and recording device for continuous tone image
JPS61111070A (en) Scanning image-recording device
JPS59172884A (en) Laser picture recorder
JP2927527B2 (en) Optical scanning device
JPS6133073A (en) Picture output system
JPS59188676A (en) Beam scanning type electrostatic recording device
JPH1170698A (en) Printer system
JPH05232394A (en) Optical scanner
JP5021011B2 (en) Printing lenticular images
JPH06202019A (en) Multi-beam scanning optical device