JPS58132719A - Optical scanning system having inclination correcting function using semicondutor laser - Google Patents

Optical scanning system having inclination correcting function using semicondutor laser

Info

Publication number
JPS58132719A
JPS58132719A JP1536282A JP1536282A JPS58132719A JP S58132719 A JPS58132719 A JP S58132719A JP 1536282 A JP1536282 A JP 1536282A JP 1536282 A JP1536282 A JP 1536282A JP S58132719 A JPS58132719 A JP S58132719A
Authority
JP
Japan
Prior art keywords
lens
scanned
semiconductor laser
image forming
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1536282A
Other languages
Japanese (ja)
Inventor
Yukio Ogura
小椋 行夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1536282A priority Critical patent/JPS58132719A/en
Publication of JPS58132719A publication Critical patent/JPS58132719A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make a titled system provided with an inclination correcting function, and also to shorten optical path length of the optical system, by placing a deflecting surface and a surface to be scanned, in conjugate relation, as to an image forming lens and a troidal lens, when a laser beam is deflected by a rotary polyhedral mirror. CONSTITUTION:A beam emitted from a semiconductor laser 1 is focused onto a deflecting surface 4 by a coupling lens 2. A cylindrical concave lens 3 has no refractive power on the surface in the sub-scanning direction, and there is no influence. The deflecting surface 4 is in conjugate relation geometrically to a surface to be scanned 7 as to an image forming lens 5 and a troidal lens 6, and it does not occur that a position of an image forming spot on the surface to be scanned 7 is influenced by inclination of the deflecting surface. In the main scanning direction, the beam emitted from the semiconductor laser 1 becomes an almost parallel luminous flux by the operation of the cylindrical concave lens 3, is made incident to the deflecting surface 4, and forms an image forming spot on the surface to be scanned 7 by th image forming lens 5 having an fTHETA characteristic. In this way, it is possible to form a spot of desired size on the surface to be scanned, by providing an inclination correcting function, and using a semiconductor laser having different light emitting size, in the orthogonal direction.

Description

【発明の詳細な説明】 本発明は、半導体レーザを光源とし、回転多面@により
レーザビームflJA向する光走査に智に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical scanning using a semiconductor laser as a light source and directing a laser beam flJA using a rotating polygon.

光偏向器として回転多m鏡を用いる光走責装置において
は、(ロ)転多面繞の各反財面が、製作誤差によりその
(ロ)転軸に対して傾斜するのを防ぐことが出来ず、こ
れが走査線のピッチむらの原因となっており1回転多r
kU#I!、の梢Itを上げることによってこの誤差を
除こうとすれVi一端なコスト上昇を招く結果となる。
In an optical travel device that uses a rotating polygonal mirror as an optical deflector, it is possible to prevent (b) each anti-reflective surface of the multifaceted mirror from tilting with respect to its (b) rotational axis due to manufacturing errors. This is the cause of the pitch unevenness of the scanning line, and the number of revolutions per rotation is
kU#I! , an attempt is made to eliminate this error by increasing the top It of Vi, resulting in a considerable increase in cost.

このたり、回転鏡の回転軸と平行な、いわゆる副走査方
向ICs?いては、結嫁レンズ系に対し反II4自と走
査面とを幾何学的に兵役関係に置くいわゆる倒れ補正l
!1!能を持つ光学系が導入された。このような光学系
は、走査面内とこれに鹸直な面内とで屈折力の異なる光
字系を必費とし。
In this case, the so-called sub-scanning direction ICs parallel to the rotation axis of the rotating mirror? In this case, the so-called tilt correction l that puts the anti-II4 lens and the scanning plane in a geometrical military relationship is applied to the marriage lens system.
! 1! A powerful optical system was introduced. Such an optical system requires an optical system having different refractive powers in the scanning plane and in a plane perpendicular to the scanning plane.

結II系中にシリンドリカルレンズやトーリックtID
會何するレンズ14人する心安がある。し、かじ、シリ
ンドリカルレンズは一般に帖鍼向の湾曲を生起するため
、走査面の直前に配電する必要があって、光学系が大型
化するのを防ぐことが出来ず、トーリック面の導入は小
型化には何列であっても製造が困離でコスト高を招くの
を免れなかった。
Cylindrical lenses and toric tID in the II system
I have peace of mind knowing that I will be meeting with 14 other lenses. However, since cylindrical lenses generally produce a curvature in the direction of the needle, it is necessary to distribute power just before the scanning surface, which makes it impossible to prevent the optical system from increasing in size, and the introduction of a toric surface is However, no matter how many rows there were, manufacturing was difficult and costs were inevitably high.

このような従来公知の倒れ補正機能を持つ光学系の光源
としては予行光束を出射するガスレーザが多く使用され
ているが、ガスレーザによって光6@込与装置111を
作るには音響光学素子のような光f−器が必要となる。
A gas laser that emits a preliminary light beam is often used as a light source for such a conventionally known optical system having a tilt correction function. An optical f-device is required.

半導体レーザけlli接に発振の制御がoJ能であり、
特に光変調器を必要としないが1発光角が大きく、出射
光の発光角および発光原点位置が活性層方向とこれIC
+&りする方向とで異なる場合もある。このため、出射
光をコリメートするための結合レンズを有する半導体レ
ーザを光源として用いると、光源装置が大型化し、半導
体レーザが小型であるという利点が失なわれる。
OJ function is used to control the oscillation in contact with the semiconductor laser.
No particular optical modulator is required, but the emission angle is large, and the emission angle and emission origin position of the emitted light are in the direction of the active layer.
It may be different depending on the direction of +&. Therefore, if a semiconductor laser having a coupling lens for collimating the emitted light is used as a light source, the light source device becomes large and the advantage of the semiconductor laser being small is lost.

一方、発光原点の異なる半導体レーザを用いても、レー
ザプリンタ等の目的には1口径、焦点距離を適切に選べ
ば、球面レンズの与によっても十分良いスポットが得ら
れることが知られている。(例えば特開昭55−130
512号公帷) 本発明け、光源と1.て半導体レーザを用い、倒れ補正
機能を持たせながら光学系の光路長を出来るだけ短かく
し、コンパクトで製造容易な光走査I!瞳を得ようとす
る本のである0以下図面を参照して詳細に説明する。
On the other hand, it is known that even if semiconductor lasers with different emission origins are used, a sufficiently good spot can be obtained with the aid of a spherical lens, as long as the aperture and focal length are appropriately selected for purposes such as laser printers. (For example, JP-A-55-130
No. 512) The present invention includes a light source and 1. Using a semiconductor laser, the optical path length of the optical system is made as short as possible while having a tilt correction function, making the optical scanning I! compact and easy to manufacture! This will be explained in detail with reference to the drawings below 0, which is a book in which pupils are to be obtained.

第1図は本発明の走査光学系の構成を示す要部の斜視図
であり、半導体V−ザ1からの出射ビームは結合レンズ
2 K、より回転釜(3)鏡等の偏向器4の偏向面に集
束される。結合レンズ2と一向@4の間に配置された凹
シリンドリカルレンズ3は、走査面内で集光ビームを予
行光束とし、偏向面上には線状のスポットを生ずる。−
向−の矢印方向の回転によって偏向走査されたビームは
10%比を持つ結隊レンズ5、トロイダルレンズ6を経
て被走査向7上にスポットを作る。
FIG. 1 is a perspective view of the main parts showing the configuration of the scanning optical system of the present invention, in which the beam emitted from the semiconductor laser 1 is passed through a coupling lens 2K, a rotary pot (3), and a deflector 4 such as a mirror. It is focused on the deflection surface. The concave cylindrical lens 3 disposed between the coupling lens 2 and the lens 4 converts the condensed beam into a preliminary light beam within the scanning plane, and produces a linear spot on the deflection plane. −
The beam deflected and scanned by rotation in the direction of the arrow in the direction passes through a constellation lens 5 having a ratio of 10% and a toroidal lens 6, and forms a spot on the scanned direction 7.

この走査光学の作用を走査方向に垂直ないわゆる副走査
方向について与れば、第2rR<a)に示すように、半
導体レーザlからの出射ビームは結合レンズ2によって
偏向面4上に集束する0このとき凹シリンドリカルレン
ズ3はこの面内では屈折力を持たないので、影IViな
いO偏向面4け結lレンズ5.トロイダルレンズ6に関
し被走査面7と幾何光学的に共役の関係にあり、偏向面
の倒れ罠より被走査面7上の結像スポットの位置が影響
を受けることがないようにされる。一方、tS向而面上
のスポットは結像レンズ5によって集束されるが、−向
(2)よりレーザ側に虚のスポットが生じるようにされ
、この光束Vi疵にトロイダルレンズ6によりてilI
宋され、被走査向7上に所定サイズのビームスポットと
して結像する。
If the effect of this scanning optics is applied to the so-called sub-scanning direction perpendicular to the scanning direction, the beam emitted from the semiconductor laser l is focused onto the deflection surface 4 by the coupling lens 2, as shown in 2nd rR<a). At this time, the concave cylindrical lens 3 has no refractive power within this plane, so there is no shadow IVi. The toroidal lens 6 has a geometrically optically conjugate relationship with the surface to be scanned 7, so that the position of the imaging spot on the surface to be scanned 7 is not affected by the tilting trap of the deflection surface. On the other hand, the spot on the tS metaplane is focused by the imaging lens 5, but an imaginary spot is generated on the laser side from the - direction (2), and this luminous flux Vi is focused by the toroidal lens 6 to
The beam spot is focused on the scanning direction 7 and formed into a beam spot of a predetermined size.

一方、主走査方向にνいては%第2図1b) K示すよ
うに、半導体レーザ1からの出射ビームは、上記と同様
、結合レンズ2により偏向面近くに結癲スポットを作る
ように集束されるが、偏向器との間に配設される凹シリ
ンドリカルレンズ3の作用により、はぼ平行光束となり
偏向1114に入射する。偏光面4の回#によって偏向
走査されたビームは、10%比を持つ結像レンズ5によ
り、はぼIfB潅レンズの焦点面上にある被走査rti
7上に結像スポットを作る。この1i!!1合トロイダ
ルレンズ6け走査曲内では屈折力を持たない方向の転置
となっているので、レンズ作用けしない。ただし、トロ
イダルレンズ5を普通・のシリンドリカルレンズにする
と、主走査方向の被走査面上で大きな像面湾曲が発生し
、こttyt防ぐため被走査面近くに配置すれば、被走
査向7上にわたる長さを必要とし、その上強い屈折力を
必要とする。
On the other hand, as shown in Fig. 2 (1b) K in the main scanning direction, the emitted beam from the semiconductor laser 1 is focused by the coupling lens 2 to form a crystalline spot near the deflection surface, as described above. However, due to the action of the concave cylindrical lens 3 disposed between the deflector and the deflector, the light becomes a substantially parallel light beam and enters the deflector 1114. The beam deflected and scanned by the polarization plane 4 is focused by the imaging lens 5 having a ratio of 10% to the scanned rti which is on the focal plane of the IfB irrigation lens.
Create an imaging spot on 7. This 1i! ! Within the scanning curve of the 6-piece toroidal lens, the lens is transposed in a direction that has no refractive power, so no lens action is exerted. However, if the toroidal lens 5 is an ordinary cylindrical lens, a large curvature of field will occur on the scanned surface in the main scanning direction. It requires length and also requires strong refractive power.

上述のように、結像レンズ5にはほぼ予行光束が入射す
るが、被走査面上の結謙スポットの区は、入射ビーム径
に反比例したものとなる。
As described above, almost all the preliminary light beam is incident on the imaging lens 5, but the area of the light spot on the surface to be scanned is inversely proportional to the diameter of the incident beam.

すなわち、結嫁レンズによるビームスポットの直径をd
、入射光来の直径をφ、レンズの焦点距離を1%ビーム
光の波長をλとしたとき、の関係があることが知られて
いる。
In other words, the diameter of the beam spot due to the marriage lens is d
It is known that there is the following relationship, where φ is the diameter of the incident light beam, and λ is the focal length of the lens and the wavelength of the 1% beam light.

このため所定のスポット径dを得るためには。Therefore, in order to obtain a predetermined spot diameter d.

λ、fが与えられた系ではビーム幅φを変える必豊か生
ずる。
In a system where λ and f are given, it is necessary to change the beam width φ.

一方向、つまり走置(2)内たけて光yL幅を変える方
法として l プリズムを用いる方法 2、 シリンドリカルレンズによるビーム・コンプレッ
サーあるいけビーム・エキスパンダーを用いる方法 3、 スリットで光束を絞る方法 などがあるが、2の方法は光学系が複雑であり、3の方
法は光量の損失の他にビーム幅を拡げることが出来ない
という欠点がある。第3図は、プリズム8を用いてビー
ム411it−絞った場合の光学系の1gt要である。
Methods for changing the light beam width in one direction, that is, in the transverse direction (2), include method 2 using a prism, method 3 using a beam compressor or beam expander using a cylindrical lens, and method 3 constricting the light beam with a slit. However, method 2 has a complicated optical system, and method 3 has the disadvantage that it is not possible to widen the beam width in addition to the loss of light quantity. FIG. 3 shows the 1gt requirement of the optical system when the beam is narrowed down to 411it using the prism 8.

上記の走査光学系の坂体例を示せば次の通りである◎ ガウスビームの集光特注は次式で示される〇ただし、f
:レンズの焦点距離 ω1:1体鎖のビームウェスト半
f4  d、:物体肯ビームウェストとレンズの物体側
主点の間隔 ω2:嫁肯のビームウェスト学区d2:酸
11のビームウェストとレンズのS側主点の間隔 第2図<a)に示す一走査方向VCついては、発光サイ
ズ1μmの半導体レーザを用い、焦点距離f=13.0
4mの結合レンズを、レーザ発光面からd、= 14.
6露の位置に置けば(3)式からビームウェストの位置
d2= 121.84−が得られる。
An example of a sloped body in the above scanning optical system is as follows. ◎ Custom-made Gaussian beam focusing is shown by the following formula 〇 However, f
: Focal length of the lens ω1: Beam waist half of the 1-body chain f4 d, : Distance between the object-side beam waist and the object-side principal point of the lens ω2: The beam waist distance of the wife d2: The beam waist of the acid 11 and the S of the lens For one scanning direction VC shown in the spacing between side principal points in FIG.
A 4m long coupling lens is placed from the laser emitting surface, d, = 14.
If it is placed at the 6 dew position, the beam waist position d2 = 121.84- can be obtained from equation (3).

同様に12)式からω2;9μmとなるが、結会し/ズ
にはケラレがあるため、実際にはω2の籠は上記より大
となる。ここでは02218μmとして以下の計算を進
める◎上記のd2の位置に偏向しを配着するが、この場
合の光源−偏向器間の間隔は従来の凸シリンドリカルレ
ンズを用いた集束系よりも短縮される。
Similarly, from equation 12), ω2 is 9 μm, but since there is vignetting in the concatenation/z, the cage of ω2 is actually larger than the above. Here, proceed with the following calculations assuming 02218 μm ◎ A deflector is placed at the position d2 above, but in this case the distance between the light source and the deflector is shorter than in a conventional focusing system using a convex cylindrical lens. .

次にfθレンズとしてf = 271.3箇のものを用
い、d = 93.58−の位置に置けば、物体肯’f
)ヒームfyエストは結合レンズ2にょルヒームウエス
トであるので、その半径は上記のように(ll、= 1
8 p mであり、<z> r、3>式からd2=−1
42,8■ ω2=27μmの虚のビームウェストが得
られる。
Next, if we use f = 271.3 lenses as fθ lenses and place them at the position of d = 93.58-, the object will be
) The heel fy est is the combined lens 2 yor heem waist, so its radius is (ll, = 1
8 p m, and from <z> r, 3> equation, d2=-1
An imaginary beam waist of 42.8 ω2 = 27 μm is obtained.

次に、fθレンズの焦点面近くに所望のサイズのビーム
スポットが得られるように、トロイダルレンズの諸元を
決定−する。被走査面上の所1のビームスポットサイズ
をω2= o、 u 6■であるとすれば、与えられた
条f+け ω、= 0.027鱈、トロイダルレンズに
よる共役擾は先のd2十fで142.8■千271.3
■=414.2冒 でアルノテ、f = 89.37 
wa、d、=130.18■、d = 283.97■
 を得る。よってf = 89.37■のトロイダルレ
ンズを被走査面から283゜97■の位置に配置すれば
よい。
Next, the specifications of the toroidal lens are determined so that a beam spot of a desired size can be obtained near the focal plane of the fθ lens. If the beam spot size at point 1 on the scanned surface is ω2 = o, u 6■, then the given stripe f + ω, = 0.027, the conjugate motion by the toroidal lens is d2 + f. 142.8 1,271.3
■ = 414.2, Arnote, f = 89.37
wa, d, = 130.18■, d = 283.97■
get. Therefore, a toroidal lens with f = 89.37 cm may be placed at a position of 283°97 cm from the surface to be scanned.

この配置は、トロイダルレンズがfθレンズより偏向器
側に位置することになるが、@2図示のような3枚構成
のfθレンズでは、主点位置はレンズより被走査面側に
突出しているので。
In this arrangement, the toroidal lens is located closer to the deflector than the fθ lens, but in a three-element fθ lens like the one shown in @2, the principal point position protrudes from the lens toward the scanned surface. .

図示のようなレンズ配置が可能となる。Lens arrangement as shown in the figure becomes possible.

一方、第2図(b)に示す主走査方向については、半導
体レーザの発光サイズが副走査方向より小さくω、=α
5μmのとき、副走査方向と同じ条件で計算をすれば、
結合レンズについてはd2==121、84 wm  
ω2= 511 m  となる。[7がし、結合レンズ
のけられの影響で ω2=10μmli度となる。
On the other hand, in the main scanning direction shown in FIG. 2(b), the emission size of the semiconductor laser is smaller than that in the sub-scanning direction, ω, = α
At 5 μm, if you calculate under the same conditions as the sub-scanning direction,
For the coupling lens d2==121, 84 wm
ω2=511 m. [7], and due to the vignetting of the coupling lens, ω2 = 10 μmli degree.

被走査面上のスポットサイズの所望咳をω2=α052
5■とすれば、被走査面がfθレンズの焦点面と一歓し
ているという条件からf = d2= 271.3■で
あり(3)式からd、= fでなければならない。また
(2)式からω、= 1.28■が帰られる。
The desired spot size on the scanned surface is ω2=α052
5■, then f = d2 = 271.3■ from the condition that the surface to be scanned coincides with the focal plane of the fθ lens, and from equation (3), d, = f must be satisfied. Also, from equation (2), ω, = 1.28■ is returned.

結合レンズと結縁レンズの間に配置される凹シリンドリ
カルレンズVi、上記の結果から(al = 10 μ
m  (d2= 1.28 wgx  となる。また、
ω、の位置は先述のようにfθレンズから93.58■
の位置にある偏向面上でおり、ω2の位置がfθレンズ
から271.3■の位置でなければならないので、凹シ
リンドリカルレンズに関してけd、+d2=271.3
(J−93,58=177.72mとなる。これから 
f=−51,678■d=−51,683■d2=−1
2591■を得る。従って f=  51.68mのレ
ンズを、偏向器から51.68■ はなして配設すれば
よいこととなる。
From the above results, the concave cylindrical lens Vi placed between the coupling lens and the coupling lens (al = 10 μ
m (d2= 1.28 wgx. Also,
As mentioned earlier, the position of ω is 93.58■ from the fθ lens.
The position of ω2 must be 271.3 cm from the fθ lens, so with respect to the concave cylindrical lens, d, +d2 = 271.3.
(J-93,58=177.72m. From now on
f=-51,678 d=-51,683 d2=-1
Obtain 2591 ■. Therefore, the lens with f=51.68 m may be placed at a distance of 51.68 mm from the deflector.

本発明の走置光学系は、倒れ補正機能を持たせた上で、
直交する方向で発光サイズの異なる半導体レーザを用い
ながら、被定量面で所望のサイズのスポットを形成させ
ることが出来る。
The traveling optical system of the present invention has a tilt correction function and
A spot of a desired size can be formed on the target surface by using semiconductor lasers with different emission sizes in orthogonal directions.

なお、第3図のように、池の光学系を用いてビーム優形
をし、所望のビームスポットを得る場合には、凹シリン
ドリカルレンズについての自由被がまし、適轟な負の焦
点距−を持つ凹シリンドリカルレンズを、その焦点が1
向面附近になるように配置すればよい。
As shown in Fig. 3, when using Ike's optical system to shape the beam and obtain the desired beam spot, the free cover of the concave cylindrical lens and the appropriate negative focal length - A concave cylindrical lens with a focal point of 1
It may be placed near the opposite side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の走査光学系の1実m例の要部の斜視図
、第2図はその光路図、第3図は他の実施例の光学配置
の部分図である。 1:雫導体レーザ 2:結合レンズ 3:凹シリンドリ
カルレンズ 4:(―向!i  5:fθレンズ 6:
トロイダルレンズ 7:被走査面8ニブリズム 特許出願人 味式会仕 リコー 第   l   (ゾ1
FIG. 1 is a perspective view of the essential parts of one actual example of the scanning optical system of the present invention, FIG. 2 is an optical path diagram thereof, and FIG. 3 is a partial view of the optical arrangement of another embodiment. 1: Droplet conductor laser 2: Coupling lens 3: Concave cylindrical lens 4: (- direction! i 5: fθ lens 6:
Toroidal lens 7: Scanned surface 8 Nibrism Patent applicant Ajishiki Kaishi Ricoh No. 1

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザと、半導体レーザからの光束を集光する結
合レンズと、該光束を走査するための偏向器と、走査さ
れた光束を被走fith上に集光する結饋レンズとを有
する走査光学系において、結iレンズは半導体レーザか
らの光束を偏向面上附近にビームウェストを生ずるよう
に配役され、咳結合レンズと偏向器の1M1l[ti走
査方向の与で光’ifはホ乎行光束とする凹シリ/トリ
カルレンズが配設され、結諺レンズと被走査nの間には
トロイダルレンズが配設されて骸結1クレンズとトロイ
ダルレンズに関し偏向面と被定食面とが兵役の関係に置
かれていることt%鑓とする半導体レーザを用いたーれ
補正機能を何する走査光学系
A scanning optical system having a semiconductor laser, a coupling lens for condensing a light beam from the semiconductor laser, a deflector for scanning the light beam, and a condensing lens for condensing the scanned light beam onto a scanned fith. In this case, the coupling lens is arranged so as to generate a beam waist near the deflection surface of the light beam from the semiconductor laser, and the light 'if' is the horizontal light flux given the scanning direction of the coupling lens and the deflector. A concave cylindrical/trical lens is disposed, and a toroidal lens is disposed between the concave lens and the toroidal lens. A scanning optical system that uses a semiconductor laser to perform a wear correction function.
JP1536282A 1982-02-02 1982-02-02 Optical scanning system having inclination correcting function using semicondutor laser Pending JPS58132719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1536282A JPS58132719A (en) 1982-02-02 1982-02-02 Optical scanning system having inclination correcting function using semicondutor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1536282A JPS58132719A (en) 1982-02-02 1982-02-02 Optical scanning system having inclination correcting function using semicondutor laser

Publications (1)

Publication Number Publication Date
JPS58132719A true JPS58132719A (en) 1983-08-08

Family

ID=11886681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1536282A Pending JPS58132719A (en) 1982-02-02 1982-02-02 Optical scanning system having inclination correcting function using semicondutor laser

Country Status (1)

Country Link
JP (1) JPS58132719A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275718A (en) * 1985-05-31 1986-12-05 Kyocera Corp Photoscanning system
JPS6212117U (en) * 1985-07-05 1987-01-24
US4756584A (en) * 1986-01-24 1988-07-12 Ricoh Company, Ltd. Scanning optical system with irregular deflecting surface correction
JPH02266318A (en) * 1989-04-07 1990-10-31 Canon Inc Optical system for light beam scanning
US5087983A (en) * 1986-07-08 1992-02-11 Ricoh Company, Ltd. Light scanning device
US5249073A (en) * 1990-09-11 1993-09-28 Asahi Kogaku Kogyo Kabushiki Kaisha Installation of optical components in an optical device
US6570696B2 (en) 2000-10-11 2003-05-27 Fuji Photo Optical Co., Ltd. Optical system for scanning and optical scanning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126051A (en) * 1978-03-23 1979-09-29 Ricoh Co Ltd Anamorphic f lens system
JPS5636622A (en) * 1979-09-04 1981-04-09 Canon Inc Scanning optical system having inclination correcting function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126051A (en) * 1978-03-23 1979-09-29 Ricoh Co Ltd Anamorphic f lens system
JPS5636622A (en) * 1979-09-04 1981-04-09 Canon Inc Scanning optical system having inclination correcting function

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275718A (en) * 1985-05-31 1986-12-05 Kyocera Corp Photoscanning system
JPS6212117U (en) * 1985-07-05 1987-01-24
JPH0417926Y2 (en) * 1985-07-05 1992-04-22
US4756584A (en) * 1986-01-24 1988-07-12 Ricoh Company, Ltd. Scanning optical system with irregular deflecting surface correction
US5087983A (en) * 1986-07-08 1992-02-11 Ricoh Company, Ltd. Light scanning device
JPH02266318A (en) * 1989-04-07 1990-10-31 Canon Inc Optical system for light beam scanning
US5249073A (en) * 1990-09-11 1993-09-28 Asahi Kogaku Kogyo Kabushiki Kaisha Installation of optical components in an optical device
US6570696B2 (en) 2000-10-11 2003-05-27 Fuji Photo Optical Co., Ltd. Optical system for scanning and optical scanning apparatus

Similar Documents

Publication Publication Date Title
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
JPH0627904B2 (en) Laser beam scanning optics
JPH0972U (en) Cutting device for integrated circuit connecting path by phase plate adjusting laser beam
JPH0370205B2 (en)
JPH0764003A (en) Scanning optical system
JPH05173087A (en) Automatic focus scanning type optical device
JPH11161992A (en) Two-dimensional laser diode array using multimode diodes
JPS6361646B2 (en)
JP3147282B2 (en) Laser scanner device
JPS58132719A (en) Optical scanning system having inclination correcting function using semicondutor laser
JPS63142316A (en) Semiconductor laser array light source device and laser scanner using the same
US4571021A (en) Plural-beam scanning apparatus
JP3627453B2 (en) Optical scanning device
US4643516A (en) Laser beam scanning apparatus
JP3073790B2 (en) Optical scanning device
JP3679560B2 (en) Adjusting method of scanning optical system
JPH0152728B2 (en)
JPH0462568B2 (en)
JPH04123016A (en) Phase shift element and laser device using the same
JPH05307151A (en) Method and device for deflection scanning
JPS60220309A (en) Light scanning optical system
JPH0618802A (en) Optical scanning device
JPH08309574A (en) Laser light source and laser plotting device
JP2727580B2 (en) Optical scanning device
JPH0441324B2 (en)