JPS58132676A - Tracking radar for searching semispherical space - Google Patents

Tracking radar for searching semispherical space

Info

Publication number
JPS58132676A
JPS58132676A JP57015746A JP1574682A JPS58132676A JP S58132676 A JPS58132676 A JP S58132676A JP 57015746 A JP57015746 A JP 57015746A JP 1574682 A JP1574682 A JP 1574682A JP S58132676 A JPS58132676 A JP S58132676A
Authority
JP
Japan
Prior art keywords
antenna
beams
radar
zenith
elevation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015746A
Other languages
Japanese (ja)
Inventor
Yasuji Kimura
木村 靖二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57015746A priority Critical patent/JPS58132676A/en
Publication of JPS58132676A publication Critical patent/JPS58132676A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To shorten a time required for searching and to improve a distance performance, by covering the radar-covered area of the whole upper semispherical space with antennas for the direction of zenith and for a space area at low and medium elevation vertical angles. CONSTITUTION:A zenith area antenna 3 performs beam scanning within a conical space at an open angle of 40 deg. in the direction of zenith, based on a phase control signal 6, while, in horizontal-area antennas 4 and 5 each emitting four beams, the beams totaling eight are made to scan the entire circumference at an elevation vertical angle of 0 deg.-50 deg. based on a phase control signal 7. The eight beams are mae to scan by a mechanical turning in the direction of an azimuth, while they are made to conduct phase scanning independently in the direction of an elevation vertical angle. The antenna 3 is supplied with an excitation output from an exciter 8, and a monopulse receiver 9 processes a reception signal 10 based on a local signal and a COHO signal 11. On the other hand, in the transmission system of each of the horizontal-area antennas, an output of a synthesizer 12 is supplied to an exciter and distributor 13, and a transmission power is supplied via phase shifters 14 and 15, power amplifiers 16 and 17, and a hybrid 18.

Description

【発明の詳細な説明】 この発明はレーダ設置点を中心とした上半球空間全塘の
多目標を捜索追尾するレーダ装置に関するものであり、
fFにそのアンテナとしてマルチビームを電子走査と機
械的走査との組合せによりビーム走査することを特徴と
する実用的なシステムに関するものである。
[Detailed Description of the Invention] The present invention relates to a radar device that searches and tracks multiple targets throughout the upper hemisphere space around a radar installation point.
The present invention relates to a practical system characterized in that beam scanning is performed using a multi-beam as an antenna at fF by a combination of electronic scanning and mechanical scanning.

従来のこの種レーダ装置としては第1図に示すように機
械的に旋回する平面状電子走査アンテナを一面のみ設け
1本のペンシルビームで半球空間をビーム走査するアン
テナ構成が用いられてきた。
As shown in FIG. 1, conventional radar devices of this type have an antenna configuration in which a mechanically rotating planar electronic scanning antenna is provided on only one side and a single pencil beam scans a hemispherical space.

第1図において(1)は多数の位相器等を平面状に配列
した電子走査アンテナであシ、ビーム走査角範囲が実用
上±50角程度しかないこと。
In FIG. 1, (1) is an electronic scanning antenna in which a large number of phase shifters etc. are arranged in a plane, and the beam scanning angle range is practically only about ±50 angles.

ビーム走査角に対応して必然的にアンテナ利得が低下す
ること、ビーム1本による機械的な旋回方向走査のため
全周ビーム走査に長時間を要すること、また目標へのビ
ーム照射が短時間でパスルヒツト数が少ないこと等によ
り探知距離が短かくなる等の欠点があり、これらの欠点
を補うためには大電力送信機を用いねばならず。
The antenna gain inevitably decreases in proportion to the beam scanning angle, it takes a long time to scan the entire circumference of the beam because it is mechanically scanned with a single beam, and the beam irradiation to the target is short. There are drawbacks such as a short detection distance due to a small number of pulse hits, and in order to compensate for these drawbacks, a high-power transmitter must be used.

半球空間を覆域とするレーダの実用化を妨げていた。This hindered the practical application of radar that covers hemispheric space.

この発明はこれらの欠点を解消するため、2種類のアン
テナによる半球状のレーダ覆域の分担、開口面から同時
複数ビームを放射するスロットアレーアンテナを複数個
備えた案用的な低中仰角用のアンテナ構成、電子走査と
機械的走査を組合せたマルチビーム走査等を用い、捜索
時間の短縮と距離性能の改善を両立させた半球空間全域
を対象とする実用的なレーダシステムの提供を可能とす
るものである。
In order to eliminate these drawbacks, this invention uses two types of antennas to share the hemispherical radar coverage area, and a strategic low-to-medium elevation antenna system equipped with multiple slot array antennas that simultaneously radiate multiple beams from an aperture surface. By using the antenna configuration and multi-beam scanning that combines electronic scanning and mechanical scanning, it is possible to provide a practical radar system that can cover the entire hemispheric space while reducing search time and improving distance performance. It is something to do.

以下この発明の一実施例として第2図にアンテナ、第3
図にレーダ送受信機系統を示す。
Below, as an embodiment of the present invention, an antenna is shown in FIG.
The figure shows the radar transceiver system.

第2図において、(2)はレドーム、(3)はアンテナ
マウント固定部に天頂向けに取り付けられた電子走査方
式の第1のアンテナ、 f4H5)は機械旋回軸を中心
に背中合せに配置され導波管スロットアレーの二開ロ面
を持ち俯仰角方向にマルチビームを独立に電子走査でき
る構成の第2のアンテナである。以下の具体例において
は、第1のアンテナ(3)は二軸電子ビーム走査可能な
モノパルスビーム1本を放射し、第2のアンテナ(4)
(5)は、各面につき方位角固定の4本のモノパルスビ
ームが独立に俯仰角方向に位相走査されるとしてアンテ
ナ、レーダ送受信系統の説明を行う。
In Fig. 2, (2) is the radome, (3) is the first electronic scanning antenna attached to the fixed part of the antenna mount facing the zenith, and f4H5) is the waveguide antenna that is placed back to back around the mechanical rotation axis. This is a second antenna that has a double-opening plane of a tube slot array and is configured to be able to electronically scan multiple beams independently in the elevation angle direction. In the specific example below, the first antenna (3) emits one monopulse beam capable of biaxial electron beam scanning, and the second antenna (4)
In (5), the antenna and radar transmission/reception system will be explained assuming that four monopulse beams with fixed azimuth angles are phase-scanned independently in the elevation angle direction for each plane.

なお以後は、第1のアンテナを天myアンテナ、第2の
アンテナを水平域アンテナと呼称する。
Note that hereinafter, the first antenna will be referred to as the sky antenna, and the second antenna will be referred to as the horizontal antenna.

第3図において、天頂塚アンテナ(3)は位相制御信号
(6)Kよシ、天頂方向の開き角40°の円錐空間内を
ビーム走査し、水平域アンテナ+41 +51は各4本
、計8本のビームが全周を仰角00〜50゜まで位相制
御信号(7)に基づき走査される。8本のビームは方位
角方向には機械的旋回により走査され、俯仰角方向には
独立に位相走査される。
In Figure 3, the Zenith Mound antenna (3) scans the beam in a conical space with an opening angle of 40 degrees in the zenith direction using the phase control signal (6) K, and the horizontal area antennas +41 and +51 have 4 each, totaling 8 The book beam is scanned around the entire circumference from an elevation angle of 00 to 50 degrees based on the phase control signal (7). The eight beams are scanned by mechanical rotation in the azimuth direction, and independently phase scanned in the elevation direction.

上記レーダ橿域の分担は適当にオーバラップしてもよい
The division of the radar range may be appropriately overlapped.

天頂砿アンテナ(2)へはエクサイタ(8)から励振出
力が供給され、モノパルス受信機(9)はモノパルス3
チャンネル受信信号翰を受けてローカル信号及びC0H
O信号(11)により受信処理を行う。
Excitation output is supplied to the zenith antenna (2) from the exciter (8), and the monopulse receiver (9) receives the monopulse 3
Local signal and C0H after receiving channel reception signal
Reception processing is performed using the O signal (11).

一方9機械的に旋回する水平域アンテナの送信系におい
ては1周波数シンセサイザqカの出力がエクサイタ及び
分配器0に供給され、さらに可変位相器α4.固定位相
器Q5を経て各々電力増幅器−1翰、電力増幅器−2a
っで電力増幅され。
On the other hand, in the transmission system of 9 mechanically rotating horizontal area antennas, the output of 1 frequency synthesizer q is supplied to exciter and distributor 0, and variable phase shifter α4. Power amplifier-1 and power amplifier-2a are connected through fixed phase shifter Q5, respectively.
The power is amplified.

ハイブリッドQ8で各水平域アンテナ(41(51へ送
信電力が供給される。
Transmission power is supplied to each horizontal area antenna (41 (51) in the hybrid Q8.

この時、ハイブリットJ→への2人力(19m)。At this time, two people (19m) went to Hybrid J →.

(19b)の位相差を増幅前の可変位相器Iで制御し異
なる出力端子(20m)(20b)から加算出力を得る
ようにし1周波数シンセイザQっで発生させた第4図(
イ)に示すf1〜f8の8波サブパルスからなる送信パ
ルスに対しf1〜f4を加算し第4図(ロ)に示す出力
を(20a)として水平域アンテナ(5)へ。
The phase difference of (19b) is controlled by the variable phase shifter I before amplification, and the summed output is obtained from different output terminals (20m) (20b), and is generated by one frequency synthesizer Q.
Add f1 to f4 to the transmission pulse consisting of eight sub-pulses of f1 to f8 shown in a), and output the output shown in FIG. 4(b) as (20a) to the horizontal antenna (5).

またf5〜f8を加算し第4図ビ→に示す出力を(20
b)として水平域アンテナ(4)へ供給する。
Also, add f5 to f8 and get the output shown in Figure 4 B→ (20
b) is supplied to the horizontal antenna (4).

第4図(口IHの振幅が第4図(イJより大きく描かれ
ているのは加算により電力が2倍になっていることを示
す。上記の電力の合成と切換が行われた後、送信波は送
受切換器(21)(22X−経てアンテナへ導ひかれる
。(23)はシステスプログラマ。
The amplitude of IH in Figure 4 (A) is drawn larger than J in Figure 4 (A), indicating that the power is doubled due to addition. After the above power synthesis and switching are performed, The transmitted wave is guided to the antenna via a transmitter/receiver switch (21) (22X-). (23) is a system programmer.

(24)はビーム走査部である。(24) is a beam scanning section.

次に水平域アンテナ+41 (5)の受信系においては
Next, in the reception system of horizontal area antenna +41 (5).

モノパルス和チャンネルとして加算器(26)にてアン
テナ+41 (5)の受信信号が加算され、RFアンプ
で増幅され、ミクサ(28)でローカル信号(29)に
よりIP傷信号カリ、広帯域アンプ(60)で増幅され
た後、フィルタ群(61)によりビーム対応の8信号に
分離され1位相板波器(52)でcon。
The received signals from the antenna +41 (5) are added together in the adder (26) as a monopulse summation channel, amplified by the RF amplifier, and mixed with the local signal (29) by the mixer (28) to convert the IP flaw signal into a broadband amplifier (60). After being amplified by the filter group (61), the signal is separated into eight signals corresponding to the beams, and the signals are converted into eight signals by a single phase plate waveform generator (52).

信号(36)により位相検波され、 A7’b変換器(
34)でディジタル値に変換され以後の信号処理に用い
られる。
The phase is detected by the signal (36), and the A7'b converter (
34), it is converted into a digital value and used for subsequent signal processing.

方位角差チャンネルでは送受切換器(35) 、加算器
(36) 、受信機(37) 、俯仰角差チャンネルで
は、送受切換器(38) 、加算機(39) 、受信機
(40)により和チャンネルと同様な受信処理が行われ
る。
For the azimuth angle difference channel, a transmission/reception switch (35), an adder (36), and a receiver (37), and for the elevation angle difference channel, a transmission/reception switch (38), an adder (39), and a receiver (40). The same reception processing as for channels is performed.

第5図は半球空間のマルチビーム走査を示し。FIG. 5 shows multi-beam scanning in hemispherical space.

(41)は天頂ビーム、他は水平域アンテナからの俯仰
角方向のみの一軸電子走査ビーム8本を示している。
(41) shows the zenith beam, and the others show eight uniaxial electronic scanning beams only in the elevation angle direction from the horizontal area antenna.

以下、水平域アンテナの具体的な実施例を示す。第6図
は、和と俯仰角差のみを有する2チヤンネルモノパルス
ビームを一面当り4本放射する一実施例を、第7図は、
和、俯仰角差、方位角差の3チヤンネルモノバルスビー
ムヲ同様に放射する別の実施例を示す。
Hereinafter, specific examples of horizontal area antennas will be shown. Fig. 6 shows an example in which four two-channel monopulse beams having only the sum and elevation angle difference are emitted per surface, and Fig. 7 shows an example in which four two-channel monopulse beams are emitted per surface.
Another embodiment will be shown in which three channel monolithic beams of sum, elevation angle difference, and azimuth angle difference are emitted in the same way.

第6図において、  (50)は縦方向のコーホレット
フィート、(51)ハ前記コーポレットフィードの上半
部、下半部の和と差からモノパルス和チャンネルと俯仰
角差チャンネルを構成するだめの和差回路、  (52
)は第4図(ロ)に示すf1〜f4のサブパルス4波を
周波数別に分離する分波器。
In Fig. 6, (50) is the longitudinal coalet foot, and (51) is the sum and difference of the upper and lower halves of the corporet feed to form a monopulse sum channel and an elevation angle difference channel. Sum-difference circuit, (52
) is a duplexer that separates the four sub-pulse waves f1 to f4 shown in FIG. 4(b) according to frequency.

(53)は4ビームを独立に俯仰角走査するだめのビー
ム対応の4個の移相器、  (54)は第8図に示す横
列方向の端子数4のパトラ−マトリクス給電回路であり
異なる固定4方位角方向に周波数別のf1〜f4の送信
サブパルスに対応した4ビームを形成する。
(53) is a four-beam phase shifter that scans the elevation angle of four beams independently, and (54) is a Patra matrix power supply circuit with four terminals in the row direction shown in Fig. 8, with different fixed Four beams are formed in four azimuth directions corresponding to transmission sub-pulses of frequencies f1 to f4.

(55)は横列方向のスロット付導波管であり。(55) is a waveguide with slots in the row direction.

縦方向にコーホレット給電(50)の出力端子数だけ配
列されスロットアレーの開口面を構成する。
The number of slots arranged in the vertical direction corresponds to the number of output terminals of the coalette power supply (50), and constitutes the opening surface of the slot array.

(56)は第4図(ロ)に示す送信波、  (5Q (
58)、 (59)。
(56) is the transmitted wave shown in Figure 4 (b), (5Q (
58), (59).

(6[1)、 (61) tiモノパルス和チャゾネル
に関する。
(6[1), (61) for the ti monopulse sum channel.

送受切換器、RFアンプミクサ、広帯域IFアンプ、フ
ィルタ群、  (62)、 (63)、 (64)、 
(65)、 (66)、は俯仰角差チャンネルに関する
送受切換器、  RFアンプ、ミクサ、広帯域IFアン
プ、フィルタ群である。
Transmission/reception switch, RF amplifier mixer, wideband IF amplifier, filter group, (62), (63), (64),
(65) and (66) are a transmitting/receiving switch, an RF amplifier, a mixer, a wideband IF amplifier, and a filter group regarding the elevation angle difference channel.

第7図において、  (70)は縦方向のコーホレット
フィード、  (71)iモノパルスの和チャンネルと
俯仰角差チャンネルを構成するための和差回路、  (
72)は分波器、  (73)け移相器、  (74)
は第9図に示す端子数8のパトラ−マトリクス給電回路
、  (75)は第9図の8本のビームから第10図に
示す4本の和と方位角差を有するモノパルスビームを形
成する合成回路、 (76)は横列方向のスロット付導
波管、  (77)は4ビームに関する4波の方位角差
信号を合成する合波器、  (78)は方位角差信号縦
方向にまとめるコーホレットフィード、  (79)は
和差回路でその相端子が4波の方位角差チャンネル出力
になる。
In FIG. 7, (70) is a longitudinal coholet feed, (71) a sum-difference circuit for configuring the i monopulse sum channel and elevation angle difference channel, (
72) is a branching filter, (73) a phase shifter, (74)
is a Patra-matrix feeder circuit with eight terminals as shown in Fig. 9, and (75) is a combination of the eight beams shown in Fig. 9 to form a monopulse beam having the sum and azimuth difference of the four beams shown in Fig. 10. circuit, (76) is a waveguide with slots in the row direction, (77) is a multiplexer that combines four waves of azimuth difference signals related to four beams, (78) is a coholet that combines the azimuth difference signals in the vertical direction The feed (79) is a sum-difference circuit whose phase terminal becomes a four-wave azimuth difference channel output.

(80)は送信波、 (81)は送受切換器、  (8
2)はRFアンプ(83)はミサク、  (84)は広
帯域IFアンプ、  (a5)はフィルタ群であり、添
字a、b、cは和チャンネル、俯仰角差チャンネル、方
位角差チャンネルの別を示す。
(80) is the transmission wave, (81) is the transmitter/receiver switch, (8
2) is the RF amplifier (83), (84) is the broadband IF amplifier, and (a5) is the filter group, and the subscripts a, b, and c indicate the sum channel, elevation difference channel, and azimuth difference channel. show.

第8図は、端子数4のパトラ−マトリクス回路を示し、
  (90)は3dBハイブリツド、  (91)は−
五の移相器で入力ボート「1」 〜閏に応じて異なる8
方向にビームが形成されることを示す。
FIG. 8 shows a Patra matrix circuit with 4 terminals,
(90) is 3dB hybrid, (91) is -
Input port "1" with 5 phase shifters ~ 8 depending on leap
Indicates that a beam is formed in the direction.

第9図は、端子数8のパトラ−マトリクス回路を示し、
  (92)は3dBハイブリツド、  (93)は3
にの移相器であシ、入力ポート「1」 〜匪に応じて異
なる8方向にビームが形成されることを示す。
FIG. 9 shows a Patra matrix circuit with 8 terminals,
(92) is 3dB hybrid, (93) is 3dB hybrid
This shows that the beam is formed in eight different directions depending on the input port "1" and the input port "1".

第10図祉第7図の合成回路(75)によるモノパルス
4ビーム受信パターンを示し1図中(100)。
Figure 10 shows the monopulse 4-beam reception pattern by the combining circuit (75) of Figure 7 (100) in Figure 1.

(101)は第9図のビームr2j r6Jの和と差の
パターン、  (102)、(103)はビームr4J
 18Jの和と差のパターン、  (104)、(10
5)はビーム「1」「5」の和と差のパターン、  (
106)、(107)はビームr3J  r7Jの和と
差のパターンを示す。
(101) is the sum and difference pattern of beams r2j r6J in Fig. 9, (102) and (103) are beam r4J
18J sum and difference pattern, (104), (10
5) is the pattern of the sum and difference of beams “1” and “5”, (
106) and (107) show the sum and difference patterns of beams r3J r7J.

本発明は9以上のような構成になっているから、従来の
電子走査アンテナ1面からの1ビームにより半球空間を
走査するものに比べ以下に示す各種の利点を有する。
Since the present invention has the above configuration, it has various advantages as shown below compared to the conventional electronic scanning antenna which scans a hemispherical space with one beam from one surface.

第1にマルチビームアンテナのため、充分なパルスヒツ
ト数を保持した上で半球空間全壊のビーム走査時間が短
縮され、レーダ距離性能の向上、高い受信データレート
等が可能となりレーダ総合性能が全般的に改善され実用
の域に達することができる。第2に、1面4ビームの内
2ビームの仰角を水平面に固定し、他2ビームを俯仰角
覆緘捜索に用いることにエリ、近距離点に急に出現する
低空目標を重点的に短時間に発見するモードが構成でき
、第3に水平域の初探知目標に対し、水平域アンテナへ
の送信サブパルス周波数を制御することにより0機械腕
回中のビームのバックスキャンと多ビームの隣接による
広ビーム幅化を行うことによシ、目標捕捉過程で一時的
にパルスヒツト数を増加させ捕捉確率を向上させること
ができる。
First, because it is a multi-beam antenna, the beam scanning time for complete hemispheric space destruction is shortened while maintaining a sufficient number of pulse hits, making it possible to improve radar distance performance, high reception data rate, etc., and improve overall radar performance. It can be improved and put into practical use. Second, the elevation angle of two of the four beams on one surface is fixed to the horizontal plane, and the other two beams are used for covert search of elevation and elevation angles. Thirdly, for the first detection target in the horizontal area, by controlling the transmission sub-pulse frequency to the horizontal area antenna, the beam backscan during zero mechanical arm rotation and the adjacency of multiple beams can be configured. By widening the beam width, it is possible to temporarily increase the number of pulse hits during the target acquisition process and improve the acquisition probability.

第11図、第12図にこの時の送信波形とビーム走査の
一例を示す。
FIGS. 11 and 12 show an example of the transmission waveform and beam scanning at this time.

第11図(イ)は通常の捜索時の波形、第11図(ロ)
はf1〜f4の4波をf、〜f6の近接5vに変更した
送信波形である。
Figure 11 (a) is the waveform during normal search, Figure 11 (b)
is a transmission waveform in which the four waves of f1 to f4 are changed to adjacent 5v waves of f and f6.

第12図において(110)は初探知方位角方向。In Fig. 12, (110) is the initial detection azimuth direction.

(111)〜(115)けfl・〜f0のサブパルスに
対応する隣接5ビーム、  (116)〜(j19)は
f5〜f8のサブパルスに対応するビーム、  (12
0)はアンテナ回転方向である。
(111) to (115) 5 adjacent beams corresponding to the subpulses of ke fl and ~f0, (116) to (j19) beams corresponding to the subpulses of f5 to f8, (12
0) is the antenna rotation direction.

この時、f、〜f6の周波数は接近しているので5ビ一
ム信号は受信系のフィルタで分離されずに特定の1フイ
ルタを通過する。
At this time, since the frequencies f and f6 are close to each other, the 5-beam signal is not separated by the receiving filter but passes through one specific filter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアンテナ構成図、第2図は本発明による
アンテナ構成の一実施例を示す図第3図はこの発明によ
るレーダ方式を説明する図、第4図は送信波形を示す図
、第5図は半球空間のビーム走査を示す図、第6図は水
平域アンテナの一実施例を示す図、第7図は水平域アン
テナの別の実施例を示す図、第8図は4端子のパトラ−
マトリクスを示す図、第9図は8端子のパトラ−マトリ
クスを示す図、第10図は合成パターンを示す図、第1
1図は、補捉時の送信波形を示す図、第12図は、捕捉
時のビーム走査を示す図である。 図中、(1)は電子走査アンテナ、(2)はレドーム。 (3)は天頂アンテナ、 f41(5)は水平域アンテ
ナ、(6)(7)は位相制御信号、(8)はエクサイタ
、(9)はモノパルス受信機、OIUモノパルス3チャ
ンネル受信信号、Ql)はローカル信号及びC0HO信
号1輪は周波数シンセイザ、 113はエクサイタ及び
分配器、a4Fi可変位相i、ttsは固定位相器、α
Gは電力増幅器−1,(Iηは電力増幅器−2,QBは
)・イブリッド、(I9は入力、翰は出力、 CI’1
1(ハ)は送受切換器、(至)はシステムプログラマ、
 Q4(ハ)はビーム走査部、(ハ)は加算器、@はR
Fアンプ、■けミクサ、(至)はローカル信号、C!6
は広帯域IFアンプ、  (31)はフィルタ群、  
(32)は位相検波器。 (55)はC0HO信号、 (54)はA / D変換
器、  (35)は送受切換器、 (36)は加算器、
  (37)は受信機。 (38)は送受切換器、 (39)は加算器、 (40
)は受信1(41)は天頂ビーム、  (50)はコー
ホレフトフィード、 (51)は和差回路、 (52)
は分波器、  (53)は移相器、  (54)はパト
ラ−マトリクス給電回路(55)はスロット付導波管、
 (56)は送信波、  (57)は送受切換器、  
(58)はRFアンプ、  (59)はミクサ、 (6
0)は広帯域IFアンプ、 (61)はフィルタ群、 
(62)は送受切換器、  (63)はRFアンプ。 (64)はミクサ、  (65)は広帯域IFアンプ、
  (66)はフィルタ群、  (70)はコーホレッ
トフィード。 (71)は和差回路、 (72)は分波器、 (73)
は移相器。 (7りはパトラ−マトリクス給電回路、  (75)は
合成回路、  (76)はスロット付導波管、 (77
)は合波器、  (78)はコーホレットフィード、 
 (79)ii和差回路、  (so)は送信波、(8
りは送受切換器、  (82)けRFアンプ、 (83
)はミクサ、 (84)は広帯域■Fアンプ、  (8
5)はフィルタ群、  (90)は3dBノ〜イブリツ
ド、  (91)は−五移相器、  (92)は3dB
/・イブリッド、  (95)は−i移相器、 (94
)は−V移相器、  (95)ld−”−7移相器、 
 (100)ハr2J + r6J 。 (jol)Fir2J−r6J  、  (102)は
 l’−4J  +  lfJ  、 (103)はr
4j  −r8j  、  (104)は11j  +
  [5j  、  (105)は 「1」−[sj 
 、  (106)は r3j  +r7J 、  (
107)は r3J  −r7J  。 (110)は初探知方位角方向、 (111)・〜(1
15)はf、、〜f8の各ビーム、  (116)〜(
119)はf5〜f8の各ビーム。 (120)はアンテナ回転方向である。 なお図中同一あるいは相当部分には同一符号を付して示
しである。 代理人 葛 野 信 − 1n ネ 2 恥 事 4 B ′475 穐 1 θ 塾7 哩 ネ rrgA 峯10 畠 ネ ′l 畠 塾 11  恥
FIG. 1 is a diagram showing a conventional antenna configuration, FIG. 2 is a diagram showing an example of an antenna configuration according to the present invention, FIG. 3 is a diagram explaining a radar system according to the present invention, and FIG. 4 is a diagram showing a transmission waveform. Fig. 5 is a diagram showing beam scanning in hemispherical space, Fig. 6 is a diagram showing one embodiment of the horizontal area antenna, Fig. 7 is a diagram showing another embodiment of the horizontal area antenna, and Fig. 8 is a diagram showing 4 terminals. the patroller
Figure 9 is a diagram showing a matrix, Figure 9 is a diagram showing an 8-terminal Patler matrix, Figure 10 is a diagram showing a composite pattern,
FIG. 1 is a diagram showing a transmission waveform during acquisition, and FIG. 12 is a diagram showing beam scanning during acquisition. In the figure, (1) is an electronic scanning antenna, and (2) is a radome. (3) is the zenith antenna, f41 (5) is the horizontal antenna, (6) and (7) are the phase control signals, (8) is the exciter, (9) is the monopulse receiver, OIU monopulse 3 channel received signal, Ql) is a local signal and C0HO signal 1 ring is a frequency synthesizer, 113 is an exciter and distributor, a4Fi variable phase i, tts is a fixed phase shifter, α
G is power amplifier-1, (Iη is power amplifier-2, QB is) hybrid, (I9 is input, wire is output, CI'1
1 (c) is the transmitter/receiver switch, (to) is the system programmer,
Q4 (c) is the beam scanning section, (c) is the adder, @ is R
F amplifier, ■ mixer, (to) is local signal, C! 6
is a wideband IF amplifier, (31) is a filter group,
(32) is a phase detector. (55) is the C0HO signal, (54) is the A/D converter, (35) is the transmitter/receiver switch, (36) is the adder,
(37) is the receiver. (38) is a transmitter/receiver switch, (39) is an adder, (40
) is the reception 1 (41) is the zenith beam, (50) is the coho left feed, (51) is the sum-difference circuit, (52)
is a duplexer, (53) is a phase shifter, (54) is a Patra-matrix feeder circuit (55) is a slotted waveguide,
(56) is the transmission wave, (57) is the transmitter/receiver switch,
(58) is an RF amplifier, (59) is a mixer, (6
0) is a wideband IF amplifier, (61) is a filter group,
(62) is a transmitter/receiver switch, and (63) is an RF amplifier. (64) is a mixer, (65) is a wideband IF amplifier,
(66) is a filter group, (70) is a coalet feed. (71) is a sum-difference circuit, (72) is a duplexer, (73)
is a phase shifter. (7ri is a Patra matrix feeder circuit, (75) is a synthesis circuit, (76) is a slotted waveguide, (77
) is a multiplexer, (78) is a coalet feed,
(79) ii sum-difference circuit, (so) is the transmitted wave, (8
The transmitter/receiver switch, (82) RF amplifier, (83
) is a mixer, (84) is a wideband F amplifier, (8
5) is a filter group, (90) is a 3 dB phase shifter, (91) is a -5 phase shifter, (92) is a 3 dB
/・Ibrid, (95) is -i phase shifter, (94
) is -V phase shifter, (95)ld-”-7 phase shifter,
(100) ha r2J + r6J. (jol)Fir2J-r6J, (102) is l'-4J + lfJ, (103) is r
4j −r8j , (104) is 11j +
[5j, (105) is "1" - [sj
, (106) is r3j +r7J , (
107) is r3J −r7J. (110) is the initial detection azimuth direction, (111)・〜(1
15) is each beam of f, , ~f8, (116) ~(
119) are each beam of f5 to f8. (120) is the antenna rotation direction. In the drawings, the same or corresponding parts are designated by the same reference numerals. Agent Shin Kuzuno - 1n Ne 2 Shame 4 B '475 Aki 1 θ Juku 7 Hane rrgA Mine 10 Hatake 'l Hatake Juku 11 Shame

Claims (6)

【特許請求の範囲】[Claims] (1)物標に向けて電波を放射しその反射波を用いて目
標の捜索および追尾等を行うレーダ装置において、天頂
方向の円錐9埴をレーダ覆域とし、かつ天頂に向けて設
置された第1のアンテナと、前記円錐空域以外の全周の
低中仰角9緘をレーダ覆域とする第2のアンテナとを備
え、これら第1.第2のアンテナにより上半球空間全域
のレーダ覆域をカバーするようにしたことを特徴とする
半球空間捜索運屋レーダ。
(1) In a radar device that emits radio waves toward a target and uses the reflected waves to search for and track the target, the radar coverage area is a cone of 9 clays in the direction of the zenith, and it is installed facing the zenith. It is equipped with a first antenna and a second antenna whose radar coverage area is 9 ranges of low and medium elevation angles around the entire circumference other than the conical airspace, and the first antenna. A hemispherical space search radar, characterized in that the second antenna covers the radar coverage area of the entire upper hemisphere space.
(2)  レーダ設置点を中心とした上半球空間全域を
レーダ覆域とするレーダ装置において、天頂方向の円錐
空埴をペンシルビームにより電子走査する天頂向きの第
1のアンテナと、上記円錐空域以外の全周低中仰角空球
を、複数個の異なる方角方向に放射されるペンシルビー
ムを有し、かつ各ビームは俯仰角方向のみ独立に電子ビ
ーム走査可能な電子走査アンテナを機械的に旋回させる
ことにより、ビーム走査する第2のアンテナとを具備し
たことを特徴とする半球空間捜索追尾レーダ。
(2) In a radar device whose radar coverage area is the entire upper hemisphere space centered on the radar installation point, a first antenna facing the zenith electronically scans a conical sky area in the zenith direction with a pencil beam, and mechanically rotates an electronic scanning antenna that has a plurality of pencil beams emitted in different directions, and each beam can scan the electron beam independently only in the elevation and elevation directions. A hemispherical spatial search and tracking radar characterized by comprising a second antenna for beam scanning.
(3)上記第1のアンテナ及び第2のアンテナに関する
レーダ送受信装置、およびレーダ信号処理装置等を独立
な複数系統構成し用途、目的に応じレーダ覆域を半球空
間全壊、天頂域のみ、水平域のみに切換可能とした事を
特徴とする特許請求の範囲第(2)項記載の半球空間捜
索追尾レーダ。
(3) Configure multiple independent systems of radar transmitting/receiving devices, radar signal processing devices, etc. related to the first antenna and second antenna, and depending on the application and purpose, the radar coverage area can be completely destroyed in the hemisphere, only in the zenith area, or in the horizontal area. The hemispherical spatial search and tracking radar according to claim (2), characterized in that the hemispherical spatial search and tracking radar can be switched only to
(4)  多数の横列方向ス四ット付導波管を縦に配列
した平面状スロットアンテナを開口面とし。 給電系として複数ビームの和チャンネルと俯仰角差チャ
ンネルを構成する縦方向のコーホレットフィードと和差
回路、コーホレットフィードの各出力端に接続され複数
ビームの俯仰角方向独立ビーム走査を可能とする分波器
及び複数の移相器、これら移相器出力に接続され、送信
用周波数に対応した方位角方向固定の複数ビームを構成
するためのパトラ−マトリクス上りなる給電回路網、上
記パトラ−マトリクスからの複数出力を上記スロット付
導波管に供給する回路を設けた電子走査アンテナを第2
のアンテナとして用いた特許請求の範囲第(2)項記載
の半球空間捜索追尾レーダ。
(4) The aperture is a planar slot antenna in which a large number of waveguides with slots in horizontal rows are arranged vertically. As a feeding system, the vertical coholet feed and sum difference circuit that constitutes the sum channel and elevation difference channel of multiple beams are connected to each output end of the coholet feed, enabling independent beam scanning in the elevation angle direction of multiple beams. A branching filter, a plurality of phase shifters, a power supply circuit network connected to the outputs of these phase shifters, and an upstream power supply circuit of a Patra matrix for configuring a plurality of beams with fixed azimuthal directions corresponding to the transmission frequency, and the above-mentioned Patra matrix A second electronic scanning antenna is provided with a circuit that supplies multiple outputs from the slotted waveguide to the slotted waveguide.
A hemispherical spatial search and tracking radar according to claim (2) used as an antenna for.
(5)  方位角方向固定の複数ビームによシ全周を等
分割するようにパトラ−マトリクスの端子数と第2の電
子走査アンテナの開口面数を選択した事を特徴とする特
許請求の範囲第(2)項記載の半球空間捜索追尾レーダ
(5) Claims characterized in that the number of terminals of the Patra matrix and the number of apertures of the second electronic scanning antenna are selected so as to equally divide the entire circumference into a plurality of beams fixed in the azimuthal direction. The hemispherical spatial search and tracking radar described in paragraph (2).
(6)  多数の横列方向スロット付導波管を縦に配列
した平面状スロットアレーアンチ′すを開口面とし、給
電系として複数ビームの和チャンネルと俯仰角差チャン
ネルを構成する縦方向の第1のコーホレットフィードお
よび和差回路、複数ビームの方向角差チャンネルを構成
するだめの、各スロット付導波管に対応した合波器とこ
れら合波器出力をまとめる第2のコーホレットフィード
および和差回路、第1のコーホレットフィードの各出力
端に接続され複数ビームの俯仰角方向独立ビーム走査を
可能とする分岐器及び複数の移相器、送信周波数に対応
した方位角方向固定の複数ビームを構成するために、所
要ビーム数の2”(nは整数)倍の端子数をもつパトラ
−マトリクスおよび上記パトラ−マトリクスにより構成
される211個のビームから目的とする複数個のビーム
の和チャンネルと方位角差チャンネル出力を得る合成回
路1合成回路からの上記方位角差チャンネル出力を前記
合波器へ供給する回路、パトラ−マトリクスからの2n
個の出力を前記各スロット付導波管へ給電する回路を設
け、所要の複数個の各ビームに対し和、俯仰角差、方位
角差の3チヤンネルを有するモノパルスマルチビーム電
子走査アンチナラ構成し、これを第2のアンテナとして
用いたことを特徴とする特許請求の範囲第(2)項記載
の半球空間捜索追尾レーダ。
(6) The opening plane is a planar slot array anti-waveguide in which a large number of waveguides with slots in the row direction are arranged vertically, and the vertical first waveguide is used as a feed system to constitute the sum channel and the elevation angle difference channel of multiple beams. a cohollet feed and sum-difference circuit, a multiplexer corresponding to each slotted waveguide constituting the direction angle difference channel of multiple beams, and a second coholet feed and summation circuit that combines the outputs of these multiplexers. A difference circuit, a splitter and a plurality of phase shifters connected to each output end of the first coholet feed to enable independent beam scanning of multiple beams in the elevation direction, and multiple beams fixed in the azimuth direction corresponding to the transmission frequency. In order to configure a Patler matrix with a number of terminals that is 2'' (n is an integer) times the number of required beams, and a sum channel of a plurality of target beams from 211 beams formed by the above Patler matrix, and a combining circuit for obtaining the azimuth difference channel output 1. A circuit for supplying the azimuth difference channel output from the combining circuit to the multiplexer, 2n from the Patra matrix.
a monopulse multi-beam electronic scanning anti-narrow configuration having three channels of sum, elevation angle difference, and azimuth angle difference for each of the plurality of required beams; A hemispherical spatial search and tracking radar according to claim (2), characterized in that this antenna is used as a second antenna.
JP57015746A 1982-02-03 1982-02-03 Tracking radar for searching semispherical space Pending JPS58132676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015746A JPS58132676A (en) 1982-02-03 1982-02-03 Tracking radar for searching semispherical space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015746A JPS58132676A (en) 1982-02-03 1982-02-03 Tracking radar for searching semispherical space

Publications (1)

Publication Number Publication Date
JPS58132676A true JPS58132676A (en) 1983-08-08

Family

ID=11897324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015746A Pending JPS58132676A (en) 1982-02-03 1982-02-03 Tracking radar for searching semispherical space

Country Status (1)

Country Link
JP (1) JPS58132676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180306A (en) * 1984-02-28 1985-09-14 Nec Corp Electronic scanning antenna
JPS61217784A (en) * 1985-03-23 1986-09-27 Nec Corp Radar
JPH02253181A (en) * 1989-03-28 1990-10-11 Nec Corp Phased array radar equipment
US7230565B2 (en) * 2002-07-05 2007-06-12 Murata Manufacturing Co., Ltd. Radar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180306A (en) * 1984-02-28 1985-09-14 Nec Corp Electronic scanning antenna
JPS61217784A (en) * 1985-03-23 1986-09-27 Nec Corp Radar
JPH02253181A (en) * 1989-03-28 1990-10-11 Nec Corp Phased array radar equipment
US7230565B2 (en) * 2002-07-05 2007-06-12 Murata Manufacturing Co., Ltd. Radar

Similar Documents

Publication Publication Date Title
Tolkachev et al. A megawatt power millimeter-wave phased-array radar
US3633208A (en) Shaped-beam antenna for earth coverage from a stabilized satellite
US6768456B1 (en) Electronically agile dual beam antenna system
JP5743586B2 (en) Low power spatially coupled phased array radar
US3665481A (en) Multi-purpose antenna employing dish reflector with plural coaxial horn feeds
RU2298267C1 (en) Multibeam active phased antenna array
CN101587188A (en) Monopulse radar system based on time modulation antenna array
RU2740218C2 (en) Radar system
US3568207A (en) Parallel-plate feed system for a circular array antenna
Skolnik Improvements for air-surveillance radar
JPH10197629A (en) Radar
US3757333A (en) Receiving antenna system
US6504516B1 (en) Hexagonal array antenna for limited scan spatial applications
JPH0688869A (en) Digital radar system and method
JP2008005063A (en) Antenna device
US10473776B2 (en) Transmit-array antenna for a monopulse radar system
JPS58132676A (en) Tracking radar for searching semispherical space
WO2018096307A1 (en) A frequency scanned array antenna
Loomis Digital beamforming-a retrospective
Lager et al. Application of the shared aperture antenna concept to radar front-ends: advantages and limitations
JPH06242229A (en) Radar apparatus
US4025921A (en) Technique for obtaining wide bandwidth with optically fed array
US11784403B2 (en) Antenna array and a phased array system with such antenna array
JP2959220B2 (en) Electronic scanning antenna
JP3447946B2 (en) Radar equipment