JPS58132195A - Black liquor burning boiler - Google Patents

Black liquor burning boiler

Info

Publication number
JPS58132195A
JPS58132195A JP1433482A JP1433482A JPS58132195A JP S58132195 A JPS58132195 A JP S58132195A JP 1433482 A JP1433482 A JP 1433482A JP 1433482 A JP1433482 A JP 1433482A JP S58132195 A JPS58132195 A JP S58132195A
Authority
JP
Japan
Prior art keywords
black liquor
furnace
combustion
temperature
combustion boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1433482A
Other languages
Japanese (ja)
Inventor
岸上 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1433482A priority Critical patent/JPS58132195A/en
Publication of JPS58132195A publication Critical patent/JPS58132195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は黒液を燃焼させ1JaOHを回収するボイラ
装置、特に既設の黒液燃焼ボイラを直接苛性ソーダ回収
法による黒液燃焼ボイラに改造したものの構造に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler device for burning black liquor and recovering 1JaOH, and particularly to the structure of an existing black liquor combustion boiler modified into a black liquor combustion boiler using a direct caustic soda recovery method.

製紙工場においてパルプ製造工程では木材成分ノセルロ
ース(繊維)とリグニン(樹脂)t−分離してセルロー
ズのみ取り出すためNaOHを中心とした薬品を用いる
。蒸解工程を経た溶解リグニンとNa成分を混合して含
有する溶液は黒液と称する廃液として排出される。この
黒液を燃焼させることにより熱回収を行ない、がっ同時
にNaOHを回収して再使用する方法が従来がら実施さ
れている。
In the pulp manufacturing process at a paper mill, chemicals such as NaOH are used to separate the wood components cellulose (fiber) and lignin (resin) and extract only the cellulose. A solution containing a mixture of dissolved lignin and Na components after the cooking process is discharged as a waste liquid called black liquor. Conventionally, a method has been practiced in which heat is recovered by burning this black liquor, and at the same time NaOH is recovered and reused.

第1図は従来の黒液燃焼およびNaOH回収方法を示す
系統図である。
FIG. 1 is a system diagram showing a conventional black liquor combustion and NaOH recovery method.

しかし第1図の工程ではNaOH回収のために使用する
aa(oH)2は苛性化工程4で生じた0acO3を加
熱し、かつその復水を加えて消石灰(ca (OH)2
 )を生成するという複雑な工程を経ねばならず、設備
費の増加、エネルギー消費量の増大という問題を生じて
いる。
However, in the process shown in Figure 1, the aa(oH)2 used for NaOH recovery is obtained by heating the OacO3 produced in the causticizing process 4 and adding its condensate to produce slaked lime (ca(OH)2).
) has to go through a complicated process of producing it, resulting in problems such as increased equipment costs and increased energy consumption.

すなわちか焼工程5では通常ライムキルンと称する焼成
装置が使用され、石油等のエネルギを黒液に加えて燃焼
させる直接苛性化方法を提案した。まず発明者の提案す
る方法を第2図により説明する。木材チップは蒸解工程
lにおいてNaOHによりリグニンが分離され、リグニ
ンおよびNa成分を含有する黒液は燃焼過程2において
酸化鉄粉としてFe203を添加されていることにより
次式の反応を行なう。
That is, in the calcination step 5, a calcination device usually called a lime kiln is used, and a direct causticization method is proposed in which energy such as petroleum is added to black liquor and combusted. First, the method proposed by the inventor will be explained with reference to FIG. Lignin is separated from the wood chips using NaOH in the cooking process 1, and the black liquor containing lignin and Na components is added with Fe203 as iron oxide powder in the combustion process 2, so that the following reaction occurs.

2NaOH+ 002 →Na2003     ・・
・(1)Na2003+Fe2O3→2Na?e02 
+CO2・・・(2)このうちNaFe02は次段階の
溶解過程7において加水分解されNaOHが回収される
2NaOH+ 002 →Na2003...
・(1) Na2003+Fe2O3→2Na? e02
+CO2 (2) Of these, NaFe02 is hydrolyzed in the next dissolution step 7 and NaOH is recovered.

2NaFeO2+ H2O2NaOH+ Fe2O3−
(3ンつまり直接苛性化法では(1)(2) (3)の
反応を行なうことによりNaOHの回収を行なうことが
できると共に、この回収に使用したFe2o3を分離し
て循環再使用することができる。
2NaFeO2+ H2O2NaOH+ Fe2O3−
(In other words, in the direct causticization method, NaOH can be recovered by performing the reactions (1), (2), and (3), and the Fe2O3 used for this recovery can be separated and recycled for reuse. can.

以上の方法の実施に際し注目すべきことは、NaFeO
2はその結晶構造がらαβγの三種類が確認されている
が、反応式(3)に示す加水分解を効果的に行なうため
にはβ−NaFeO2の生成が好ましいことが確認され
ている。このβ−NaFeO2を反応生成させるにはN
a2co3とFe2o3の混合物の雰囲気温度を800
〜1ooo’cとする必要がある。
What should be noted when implementing the above method is that NaFeO
Three types of 2, αβγ, have been confirmed based on its crystal structure, and it has been confirmed that production of β-NaFeO2 is preferable in order to effectively carry out the hydrolysis shown in reaction formula (3). To react and generate this β-NaFeO2, N
The ambient temperature of the mixture of a2co3 and Fe2o3 was set to 800
~1ooo'c.

このβ−NaFθ0反応生成は燃焼残渣としてのN a
 2003とFe2O3が炉底に堆積しかつその雰囲気
温度が800〜1000℃に保たれていることにより生
ずる反応であることがまた実験の上でも確められた。
This β-NaFθ0 reaction product is Na as a combustion residue.
It was also confirmed through experiments that this reaction was caused by the fact that 2003 and Fe2O3 were deposited on the bottom of the furnace and the ambient temperature was maintained at 800-1000°C.

従って既設の黒液燃焼ボイラを直接苛性化方法に適する
ボイラに改造するにはこれらの点を考慮する必要がある
Therefore, it is necessary to take these points into consideration when converting an existing black liquor combustion boiler into a boiler suitable for the direct causticizing method.

この発明は火炉内に突起部を設けてスロート部を形成し
火炉を上下に2分し下部火炉を流動層部をもつものとし
、改造を容易にしようというものである。
This invention is intended to facilitate modification by providing a protrusion in the furnace to form a throat portion, dividing the furnace into upper and lower halves, and making the lower furnace have a fluidized bed portion.

要するにこの発明は黒液燃焼ボイラの火炉に璧面より突
起する突起部を設けてスロート部を形成し、このスロー
ト部を介して上部火炉と下部火炉とを形成し、下部火炉
の底部を燃焼残渣による流動層部に形成し、燃焼排ガス
と空気を1部火炉に供給しこの流動層の温度を制御する
装置を設けた黒液燃焼ボイラであることを特徴とする。
In short, this invention provides a furnace of a black liquor combustion boiler with a protrusion protruding from the wall surface to form a throat part, forms an upper furnace and a lower furnace via this throat part, and connects the bottom of the lower furnace with combustion residue. A black liquor combustion boiler is characterized in that it is formed in a fluidized bed section, and is equipped with a device for supplying part of the combustion exhaust gas and air to the furnace and controlling the temperature of the fluidized bed.

先ず前述の式(2)に示す反応において、黒液燃焼によ
り生じた1JaFeo□を中心とする灰の軟化点および
溶融点を示せば次の表のとおりである。
First, in the reaction shown in the above-mentioned formula (2), the softening point and melting point of the ash mainly composed of 1 JaFeo□ produced by black liquor combustion are shown in the following table.

なおここで原液とはFe203を含まない黒液のことを
意味する。
Note that the stock solution here means a black liquor that does not contain Fe203.

表1 以上の場合においてFeとNaのモル比、より具体的に
はFe203とN a2 Cj 03のモル比(もしく
はFe/Na)は1以上で反応させることが必要であり
黒液燃焼過程において式(2)に基づいて生じるNaF
e02の軟化点は前記表のモル比1の場合にはl・10
0℃であり、これ以下であればモル比を上昇させてもN
aFeO2は軟化せず粉末状を程しており、さらに80
0°C〜1000℃の範囲に制御すれば発生したNaF
eO2の結晶構造は殆んどβ型となることが実験により
確められている。
Table 1 In the above cases, the molar ratio of Fe and Na, more specifically the molar ratio of Fe203 and Na2 Cj 03 (or Fe/Na), must be 1 or more for the reaction, and in the black liquor combustion process, the formula NaF generated based on (2)
The softening point of e02 is l・10 when the molar ratio is 1 in the table above.
0℃, and if it is below this, even if the molar ratio is increased, N
aFeO2 does not soften and becomes powdery, and furthermore, 80
If the temperature is controlled within the range of 0°C to 1000°C, the generated NaF
It has been confirmed through experiments that the crystal structure of eO2 is mostly β-type.

また黒液中のFθ7Na比が1以上の黒液を燃焼させた
とし、β−NaFeO3を好適につるためにはその堆積
部の温度を前記800〜1000℃に保持することが必
要である。そのための条件を考慮すると、バーナ火炎の
輻射による昇温の防止と800〜1000℃の間に堆積
部の温度を保持する手段を講する必要があることが判る
Further, assuming that black liquor having an Fθ7Na ratio of 1 or more is burnt, in order to suitably hang β-NaFeO3, it is necessary to maintain the temperature of the deposited portion at the above-mentioned 800 to 1000°C. Considering the conditions for this, it is clear that it is necessary to take measures to prevent temperature rise due to burner flame radiation and to maintain the temperature of the deposition portion between 800 and 1000°C.

つぎにこの発明の実施にかかる黒液燃焼ボイラの構造に
つき説明する。もとより新設の黒液燃焼ボイラにおいて
は容易にこの発明の提案する構造を採用できるが、特に
数段の黒液燃焼ボイラを直接苛性化手段に適用する黒液
燃焼ボイラ構造に改造するのに適した構造を示すもので
あることに注目する必要がある。
Next, the structure of a black liquor combustion boiler according to the present invention will be explained. Of course, the structure proposed by this invention can be easily adopted in a newly constructed black liquor combustion boiler, but it is particularly suitable for modifying a multi-stage black liquor combustion boiler to a black liquor combustion boiler structure that is directly applied to causticizing means. It is important to note that it shows the structure.

第3図は従来のトムリンソン型の黒液燃焼ボイラ101
の構造を示すものでバーナ102より噴霧された黒液は
木管壁に付着し乾燥し脱落しチャーペット103を形成
して燃焼し、Na2003を主体とするスメルトは出口
104より流下しNaOHは各工程を経て回収される。
Figure 3 shows a conventional Tomlinson-type black liquor combustion boiler 101.
The black liquor sprayed from the burner 102 adheres to the wood pipe wall, dries, falls off, forms charpet 103 and burns, and the smelt mainly composed of Na2003 flows from the outlet 104 and NaOH is It is recovered through a process.

燃焼用空気は1次空気用ウィンドボックス105.2次
空気ウィンドボックス106から炉壁に設けられた開口
であるノズル105a、 106 aより火炉内に供給
される。
Combustion air is supplied into the furnace from a primary air wind box 105 and a secondary air wind box 106 through nozzles 105a and 106a, which are openings provided in the furnace wall.

炉底はスタッド付の木管107が細長鋼板たる接続部材
108で接続され火炉の底板を形成している。
A wood tube 107 with studs is connected to a connecting member 108 made of an elongated steel plate to form the bottom plate of the furnace.

この発明においては第3図の火炉のI−I面以下に第4
図に示すように水管による突出部109を設は上部火炉
111と下部火炉112とに形成し、この上下火炉間に
ガス通路たるスロート部110を設けるものである。既
設の黒液燃焼ボイラの炉底水管の部分断面は第5図に示
すようなものであるが、改造に際しては第9図に示すよ
うに接続部材10Bに多数の通気孔であるノズル113
を設ける。またその底部氷壁の下側には圧力ガス室11
4a、114b’、”114cを設ける。要すればウィ
ンドボックス105.106の一部を残し、ウィンドボ
ックス115とし、下部火炉112の燃焼残渣の堆積上
の空間に空気供給用の/グル115aを設ける。第3図
におけるノズル105ブースタ7アン119により管路
118を経由して高温の排ガスを吸引再循環してこれを
圧力ガス室114a、 114b、 114cに供給し
燃焼残渣の流動層部120を形成する。要すれば減温用
の空気を管路118に接続する管路121により供給す
る。
In this invention, a fourth
As shown in the figure, a protrusion 109 formed by a water tube is formed in an upper furnace 111 and a lower furnace 112, and a throat portion 110 serving as a gas passage is provided between the upper and lower furnaces. A partial cross-section of the bottom water pipe of the existing black liquor combustion boiler is as shown in FIG. 5, but when remodeling, as shown in FIG.
will be established. In addition, there is a pressure gas chamber 11 under the bottom ice wall.
4a, 114b', and ``114c.If necessary, part of the wind box 105, 106 is left as a wind box 115, and an air supply/glue 115a is provided in the space above the accumulation of combustion residue in the lower furnace 112. The nozzle 105 booster 7 ann 119 in FIG. 3 sucks and recirculates high-temperature exhaust gas through the pipe 118 and supplies it to the pressure gas chambers 114a, 114b, 114c to form a fluidized bed section 120 of combustion residue. If necessary, air for temperature reduction is supplied through a pipe line 121 connected to the pipe line 118.

この発明の第2実施例を制御系統を含む第7図により説
明する。
A second embodiment of the present invention will be explained with reference to FIG. 7 including a control system.

黒液を燃焼するボイラ201の火炉は氷壁管の一部を(
例えば管列につき一列おきに)火炉内に突出させこの突
出管群によりスロート部202を形成させ火炉を上部火
炉203 aとに区分する。
The furnace of boiler 201 that burns black liquor has a part of the ice wall tube (
For example, every other row of tubes) are made to protrude into the furnace, and this protruding tube group forms a throat portion 202 to divide the furnace into an upper furnace 203a.

黒液と酸化鉄粉を貯槽204で混合しその混合液(以下
単に燃料と称す)は管路205a、、ポンプ205を経
由してバーナ206に供給される。送風器207から燃
焼用空気はダンパ8a、管路8を経由してバーナ206
の風箱に供給される。
Black liquor and iron oxide powder are mixed in a storage tank 204, and the mixed liquid (hereinafter simply referred to as fuel) is supplied to a burner 206 via a pipe 205a and a pump 205. Combustion air from the blower 207 passes through the damper 8a and the pipe 8 to the burner 206.
is supplied to the wind box.

燃料の燃焼残渣(Na2003とFe2O3の混合物)
は前記の氷壁管の突出部9の上側斜面上Gこまず落下す
る。この上面は水平に対し残渣たる粉状物の安息角以上
の角度α(例えば50度)番こ形成しであるので粉状物
はこの突出部9の上側斜面をすべりスロート202を経
由し下部火炉内Gこ落下し堆積部10となる。この堆積
物はその炉底出口10aに接続する冷却袋@11に送ら
れ冷却されてベルトコンベヤ11に供給される。計量器
12でその重量計測がされ、ついで溶解槽13に送られ
る。図面に示す冷却装置11は水冷却外筒と内部水冷バ
レルをもつスクリュー形であることを示す。
Fuel combustion residue (mixture of Na2003 and Fe2O3)
falls onto the upper slope of the protrusion 9 of the ice wall tube. Since this upper surface is formed with an angle α (for example, 50 degrees) that is greater than the angle of repose of the powdery residue with respect to the horizontal, the powdery material slides on the upper slope of this protrusion 9 and passes through the throat 202 to the lower furnace. The inner G falls and becomes the deposit part 10. This deposit is sent to the cooling bag @11 connected to the bottom outlet 10a, cooled, and supplied to the belt conveyor 11. The weight is measured by a weighing device 12 and then sent to a dissolution tank 13. The cooling device 11 shown in the drawings is of a screw type having an outer water-cooled cylinder and an inner water-cooled barrel.

このスクリュー形に代り流動層型冷却器を用い流動用空
気とその内部に冷却管を設けて水冷却を併用するもので
あってもよい。
Instead of this screw type, a fluidized bed type cooler may be used, and a cooling pipe may be provided inside the fluidized bed type cooler to use water cooling.

前記の突出部9の形成により堆積部10はノクーナ20
6の輻射熱を受けるととなく、その堆積部上表面部の温
度が過昇して溶融を起すことを防市されることとなる。
Due to the formation of the protruding portion 9, the deposition portion 10 becomes a nokuna 20.
This prevents the temperature of the upper surface of the deposited portion from rising excessively and causing melting when the deposited portion receives radiant heat.

一方堆積物は炉底壁の水冷却管により冷却されるため温
度低下して、粘着など生ずることのないのは良いが、一
方前述のβ−NaFθ02形成の上からは好ましくない
こととなる。
On the other hand, since the deposits are cooled by the water cooling pipe on the bottom wall of the furnace, the temperature of the deposits is lowered and no adhesion occurs, which is good, but on the other hand, this is not preferable from the viewpoint of the aforementioned formation of β-NaFθ02.

このため必要な熱酸の供給と堆積部にガスを含ませ流動
化しておき排出を容易にするため温度の高いガスをこの
堆積部に供給する必要がある。このためには燃焼ガスの
後流で適当なガス制度の個所例えば蒸発管群の後流に排
ガス抽出口14を設け、これから高温ガスを抽出し管路
15経由炉底部より供給するのが良い。
For this reason, it is necessary to supply the necessary thermal acid and to supply a high temperature gas to the deposition section in order to impregnate the deposition section with gas and fluidize it so that it can be easily discharged. For this purpose, it is preferable to provide an exhaust gas extraction port 14 at a location with a suitable gas flow downstream of the combustion gas, for example, downstream of the evaporator tube group, and to extract high-temperature gas therefrom and supply it from the bottom of the furnace via a pipe 15.

炉底部には圧力ガス室16を設は断熱材17を内面に施
:[する。高温ガスは前述の第1図に示す接続部材10
8に設けたノズル113より噴出し堆積物を流動化し、
かつ800〜1000℃に層の湿度を保持しβ−NaF
e02の生成に好適な条件を保持する。堆積物上方の空
間部には空気供給口24を複数段は堆積物の昇温制御に
貢献せしめる。
A pressure gas chamber 16 is provided at the bottom of the furnace, and a heat insulating material 17 is provided on the inner surface. The high temperature gas is connected to the connecting member 10 shown in FIG.
The deposit is fluidized by ejecting it from the nozzle 113 provided at 8,
And keep the humidity of the layer at 800-1000℃ and β-NaF
Maintain conditions suitable for the generation of e02. A plurality of air supply ports 24 are provided in the space above the deposit to help control the temperature rise of the deposit.

このような高温の燃焼ガスを再循環させて圧力ガス室に
供給することは排ガス中の窒素酸化物(NOx )の低
減にも効果を収める。
Recirculating such high-temperature combustion gas and supplying it to the pressure gas chamber is also effective in reducing nitrogen oxides (NOx) in the exhaust gas.

再循環の圧力ガスの供給量、管路24よりする空気の供
給量、ノズル24よりする空気の供給量の制御は堆積物
の流動層内温度を800−1000℃に保持するために
主とし、て行なわれるものである。
The amount of pressure gas supplied for recirculation, the amount of air supplied from the pipe line 24, and the amount of air supplied from the nozzle 24 are mainly controlled to maintain the temperature within the fluidized bed of the deposit at 800-1000°C. This is what is done.

その信号は、流動層の温度検知器21.混合ガスの温度
検知器20.堆積部上方の空間の湿度検知器25.再循
環する燃焼ガスの温度検知器22がらの湿度信号を記憶
と指令信号を出す制御箱23に送り、これら温度信号を
受けた制御箱からの指令信号により再循環する排ガス量
、空気量が制御される。
The signal is transmitted to the fluidized bed temperature sensor 21. Mixed gas temperature sensor 20. Humidity detector in the space above the deposition section 25. The humidity signal from the temperature sensor 22 of the recirculated combustion gas is sent to a control box 23 that stores and issues command signals, and the amount of exhaust gas and air that is recirculated is controlled by the command signals from the control box that receives these temperature signals. be done.

また要すれば突出部9の上面の堆積物の吹き払いのため
、その面に沿い圧力空気を噴出するノズル26を複数個
設け、燃焼用空気供給管路8から分岐する管路27より
圧力空気をこれらノズル26に供給する。
If necessary, in order to blow off deposits on the upper surface of the protrusion 9, a plurality of nozzles 26 are provided along the upper surface of the protrusion 9 to eject pressurized air. is supplied to these nozzles 26.

この発明を実施することによりβ−NaFe02の生成
晴は増大しNaOH回収の効率をいちぢるしく高いもの
とすることができる。
By carrying out this invention, the production rate of β-NaFe02 can be increased and the efficiency of NaOH recovery can be made significantly higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の黒液燃焼ボイラによる燃焼を含むNaO
Hの回収工程図、第2図はFe2O3と黒液の混合物燃
焼による直接苛性化の工程図、第3図は従来の黒液燃焼
ボイラの断面図、第4図はこの発明の一実施例を示す改
造後の黒液燃焼ボイラの断面図、第5図は従来の炉底の
木管の断面図、第6図は炉底を多孔板に改造した場合を
示す断面図、第7図は制御系統を含むこの発明の第2実
施例の断面図である。 201  ・・・・・・黒液燃焼ボイラ202  ・・
・・・・スロート部 203a・・・・・・上部火炉 203b・・・・・・下部火炉 10  ・・・・・・堆積部 9  ・・・・・・突出部 14  ・・・・・・排ガス抽出口 20  ・・・・・・混合ガスの温度検知器21 ・・
・・・・流動層の温度検知器22  ・・・・・・再循
環する燃焼ガスの温度検知器23  ・・・・・・制御
箱 25  ・・・・・・堆積部上方の空間の温度検知器2
6  ・・・・・・ノズル 108・・・・・・接続部材 113・・・・・・ノズル
Figure 1 shows NaO containing combustion in a conventional black liquor combustion boiler.
Fig. 2 is a process diagram of direct causticization by combustion of a mixture of Fe2O3 and black liquor, Fig. 3 is a sectional view of a conventional black liquor combustion boiler, and Fig. 4 is an embodiment of the present invention. Figure 5 is a cross-sectional view of a modified black liquor combustion boiler, Figure 5 is a cross-sectional view of the conventional wood tube at the bottom of the furnace, Figure 6 is a cross-sectional view of the furnace bottom modified to a perforated plate, and Figure 7 is the control system. FIG. 3 is a cross-sectional view of a second embodiment of the present invention, including a second embodiment of the present invention. 201... Black liquor combustion boiler 202...
...Throat part 203a ... Upper furnace 203b ... Lower furnace 10 ... Deposition part 9 ... Protrusion part 14 ... Exhaust gas Extraction port 20...Mixed gas temperature detector 21...
...Fluidized bed temperature sensor 22 ...Recirculating combustion gas temperature sensor 23 ...Control box 25 ...Temperature detection in the space above the deposition section Vessel 2
6... Nozzle 108... Connection member 113... Nozzle

Claims (1)

【特許請求の範囲】 1、 黒液燃焼ボイラの火炉に壁面より突出する突起部
を設けてスロート部を形成し、このスロート部を介して
上部火炉と下部火炉とを形成し、下部火炉の底部を燃焼
残渣よりなる流動層部に形成し、燃焼排ガスと空気を下
部火炉に供給しこの流動層の温度を制御する装置を設け
たことを特徴とする黒液燃焼ボイラ。 2、前記突起部の上部火炉側斜面の水平面に対  3・
する傾斜角度を燃焼残渣の安息角度以上とすることを特
徴とする特許請求の範囲第1項記載の黒液燃焼ボイラ。 3、前記上部火炉側斜面に沿い燃焼残渣の吹き払い装置
を設けたことを特徴とする特許請求の範囲第1項又は第
2項記載の黒液燃焼ボイラ0 4・排ガスを再循環し堆積部に供給する管路に空気を供
給する管路を接続し、再循環する燃焼ガスの温度検知器
と、混合ガスの温度を検知する温度検知器と、堆積部の
温度を検知する温度検知器と、下部火炉の空間湿度を検
知する湿度検知器とからの信号を受ける制御箱を設け、
この制御箱の指令信号により前記再循環排ガス置と、こ
れと混合する空気量と、堆積部上方空間に供給する空気
量とを制御する指令信号回路を設けたことを特徴とする
特許請求の範囲第1項ないし第3項のいずれかに記載の
黒液燃焼ボイラ。
[Claims] 1. The furnace of the black liquor combustion boiler is provided with a protrusion protruding from the wall surface to form a throat portion, an upper furnace and a lower furnace are formed via this throat portion, and the bottom of the lower furnace A black liquor combustion boiler, characterized in that a fluidized bed section made of combustion residue is formed, and a device is provided for supplying combustion exhaust gas and air to a lower furnace and controlling the temperature of this fluidized bed. 2. Against the horizontal surface of the upper furnace side slope of the protrusion 3.
2. A black liquor combustion boiler according to claim 1, wherein the angle of inclination is greater than the angle of repose of combustion residue. 3. The black liquor combustion boiler according to claim 1 or 2, characterized in that a combustion residue blowing device is provided along the slope on the side of the upper furnace. A temperature sensor for recirculating combustion gas, a temperature sensor for detecting the temperature of the mixed gas, and a temperature sensor for detecting the temperature of the deposition section. A humidity detector detects the spatial humidity of the lower furnace, and a control box is installed to receive signals from the humidity detector.
Claims characterized in that a command signal circuit is provided for controlling the recirculation exhaust gas position, the amount of air mixed therewith, and the amount of air supplied to the space above the deposition section based on a command signal from the control box. The black liquor combustion boiler according to any one of items 1 to 3.
JP1433482A 1982-02-02 1982-02-02 Black liquor burning boiler Pending JPS58132195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1433482A JPS58132195A (en) 1982-02-02 1982-02-02 Black liquor burning boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1433482A JPS58132195A (en) 1982-02-02 1982-02-02 Black liquor burning boiler

Publications (1)

Publication Number Publication Date
JPS58132195A true JPS58132195A (en) 1983-08-06

Family

ID=11858163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1433482A Pending JPS58132195A (en) 1982-02-02 1982-02-02 Black liquor burning boiler

Country Status (1)

Country Link
JP (1) JPS58132195A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142302A (en) * 1978-04-24 1979-11-06 Ishikawajima Harima Heavy Ind Treating apparatus for waste pulping liquor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142302A (en) * 1978-04-24 1979-11-06 Ishikawajima Harima Heavy Ind Treating apparatus for waste pulping liquor

Similar Documents

Publication Publication Date Title
US4682985A (en) Gasification of black liquor
JPH07507113A (en) Circulating fluidized bed black liquor gasification method and equipment
JPH09188985A (en) Combustion system for black liquor recovering boiler
US2377282A (en) Manufacture of sulphite pulp
CN101845766B (en) Method and device for gasifying pulping black liquor and reclaiming directly causticized alkali
US3595806A (en) Method for the production of activated carbon by partial oxidation of atomized cellulose pulping liquor
JPS58132195A (en) Black liquor burning boiler
CN201678895U (en) Alkali recovery device for gasifying and directly causticizing pulping black liquor
US11008704B2 (en) Deposit control for a black liquor recovery boiler
CN102121203A (en) Method for recovering pulping black liquor alkali by virtue of sulfate process
US20050076568A1 (en) Partial oxidation of cellulose spent pulping liquor
CA1319055C (en) Non-peripheral blowing of oxygen-containing gas in steam generating boilers
WO2018026780A1 (en) Deposit control for a black liquor recovery boiler
JPS5936793A (en) Method and apparatus for recovering soda from pulp waste liquor
US4606722A (en) Firing of lime sludge reburning kilns with a solid fuel
US5439557A (en) Method of recovering energy and chemicals from a spent liquor using low frequency sound in a recovery boiler
JPS58136894A (en) Operation of black liquor burning boiler
CA2365410C (en) Apparatus for gasification of spent liquor
US3008800A (en) Method of operating furnace
CN101831827A (en) Preparation method of paper making black liquid semi-coke
EP0678130B1 (en) Method for reburning of lime sludge in fluidised bed
US2982606A (en) Combustion of waste liquors
JPS59146929A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
FI122837B (en) Method for recovering chemicals from a pulp mill
JPS59146926A (en) Method for recovering soda from waste liquor from pulp manufacturing stage