JPS58131894A - Loudspeaker - Google Patents

Loudspeaker

Info

Publication number
JPS58131894A
JPS58131894A JP1467682A JP1467682A JPS58131894A JP S58131894 A JPS58131894 A JP S58131894A JP 1467682 A JP1467682 A JP 1467682A JP 1467682 A JP1467682 A JP 1467682A JP S58131894 A JPS58131894 A JP S58131894A
Authority
JP
Japan
Prior art keywords
diaphragm
elastic
alloys
alloy
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1467682A
Other languages
Japanese (ja)
Inventor
Akira Ono
明 大野
Shigemi Sato
繁美 佐藤
Makoto Watari
亘理 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP1467682A priority Critical patent/JPS58131894A/en
Publication of JPS58131894A publication Critical patent/JPS58131894A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

PURPOSE:To eliminate influence of humidity, and also to obtain an ideal attenuation characteristic, by using a super-elastic alloy as a base material of a diaphragm. CONSTITUTION:Such alloys as Ti-Ni, Ti-Ni-X (X: Cu, Fe, Cr, etc.), Cu-Zn-Al, etc. are called shape memory alloys. These alloys become a super-elastic alloy showing a deformation movement like rubber, by setting a inverse transformation end temperature to a room temperature or below. That is to say, a large elastic strain area is realized, and since elastic hysteresis of a base material is large, an attenuation characteristic against vibration is excellent. Accordingly, if it is used for a diaphragm 6 of a loudspeaker, generation of divided vibration is reduced remarkably, and it is possible to improve a frequency charactoeristic at the time of large amplitude or in intermediate and high temperature areas.

Description

【発明の詳細な説明】 本発明は音質の向上が図れるスピーカに関し、特に振動
板の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speaker capable of improving sound quality, and particularly relates to an improvement in a diaphragm.

一般にスピーカの振動板の素材として紙・母ルプ等の繊
維質のコーンあるいはダイヤフラムが用いられるが、こ
れらは吸湿し易いため湿度の影響を受けて音質が変り易
く、また曲げ剛性および内部損失が小さいため大振幅時
あるいは中・高音域でひずみを生じ易く、かつ成形性が
悪いという欠点があった。そこで上記欠点を解決するた
めに、たとえば金属単板やハ二カムザンドイッチなどを
用いた複合板も提供されているが、これらは振動損失係
数すなわち内部損失が小さく減衰特性に劣るために共振
による分割振動等を生じることがあり、ひずみの発生を
抑える上で完全とは言い難い。
Generally, fibrous cones or diaphragms such as paper or motherboard are used as materials for speaker diaphragms, but these tend to absorb moisture, so the sound quality is easily affected by humidity, and they also have low bending rigidity and internal loss. Therefore, it has the disadvantage that it tends to cause distortion at large amplitudes or in the middle and high frequency ranges, and has poor moldability. Therefore, in order to solve the above drawbacks, composite plates using metal veneers or honeycomb sandwiches, for example, have been provided, but these have a small vibration loss coefficient, that is, internal loss, and have poor damping characteristics, so they are not susceptible to resonance. This may cause split vibrations, etc., and is far from perfect in suppressing the occurrence of distortion.

本発明は上記事情にもとづきなされたものでその目的と
するところは、湿度による影響を受けることなく安定し
た性能を発揮でき、加工性が良く、シかも内部損失が大
きく振動板としての減衰特性が優れ良好な音質が得られ
るスピーカを提供することにある。
The present invention was made based on the above circumstances, and its objectives are to be able to exhibit stable performance without being affected by humidity, have good workability, and have high internal loss and damping characteristics as a diaphragm. The objective is to provide a speaker that provides excellent sound quality.

すなわち本発明は、振動板の素材として超弾性合金を使
用したスピーカである。
That is, the present invention is a speaker using a superelastic alloy as the material of the diaphragm.

以下本発明の一実施例について図面を参照して説明する
。図中1はフレーム、2はヨーク、3は永久磁石を示し
、上記フレーム1には支持部材すなわちエツジ4とスパ
イダ5とを介して、コーン形の振動板6が支持されてい
る。7はダストキャ、fである。また、振動板6の中央
部には?イスコイル8が設けられており、このボイスコ
イル8にポールピース9が挿入されている。以上の構成
は従来のコーン形スピーカと同様である。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, 1 is a frame, 2 is a yoke, and 3 is a permanent magnet. A cone-shaped diaphragm 6 is supported on the frame 1 via a support member, that is, an edge 4 and a spider 5. 7 is Dust Kya, f. Also, what about the center of the diaphragm 6? A voice coil 8 is provided, and a pole piece 9 is inserted into the voice coil 8. The above configuration is similar to a conventional cone-shaped speaker.

そして本発明では上記振動板6の素材として超弾性合金
を使用している。超弾性合金は、例えばTi−Ni、 
Ti−N1−X(X : Cu * Fe + Cr等
)、Cu−Zn−AA’などで代表される合金であり、
これらは全て熱弾性型マルテンサイト変態に起因する形
状記憶効果をもつことから、形状記憶合金とも呼ばれる
。これらの合金は所定の組成と熱処理を施すことにより
、逆変態終了温度(Af点)を室温以下にできるもので
あり、その結果、室温では超弾性または擬弾性と呼ばれ
る特性を有するようになる。超弾性とは、外部応力を加
えて降伏点以上にひずませ、見かけ上の塑性変形を行な
っても、外部応力を除くと変形前の元の形状に戻ってし
まう性質であり、いわば強力なゴムのような変形挙動を
示す。
In the present invention, a superelastic alloy is used as the material for the diaphragm 6. Superelastic alloys include, for example, Ti-Ni,
It is an alloy represented by Ti-N1-X (X: Cu * Fe + Cr, etc.), Cu-Zn-AA', etc.
All of these are also called shape memory alloys because they have a shape memory effect due to thermoelastic martensitic transformation. These alloys can have a reverse transformation end temperature (Af point) below room temperature by applying a predetermined composition and heat treatment, and as a result, they have a property called superelasticity or pseudoelasticity at room temperature. Superelasticity is the property that even if an external stress is applied to cause an apparent plastic deformation by straining the material beyond the yield point, it will return to its original shape before deformation when the external stress is removed. It exhibits rubber-like deformation behavior.

すなわち、大きな弾性ひずみ領域をもち、しかも素材自
体の内部摩擦による弾性ヒステリシスが大きいため、振
動に対する減衰特性が優れている。
That is, it has a large elastic strain region and also has a large elastic hysteresis due to internal friction of the material itself, so it has excellent vibration damping characteristics.

一例として第2図に、900℃真空加熱後水焼入れした
Ti−(51at % )Ni合金の引張応力−ひすみ
曲線を示す。この合金では、ひずみが7.5%までは弾
性領域で完全に元の形に戻り、弾性ヒステリシスはひず
みが大きくなるほど大きくなる。また、約2%のひずみ
を超えるとほぼ一定の応力でひずみが増加するものであ
る。
As an example, FIG. 2 shows a tensile stress-strain curve of a Ti-(51 at %) Ni alloy that was vacuum-heated at 900° C. and then water-quenched. This alloy completely returns to its original shape in the elastic region up to a strain of 7.5%, and the elastic hysteresis increases as the strain increases. Moreover, when the strain exceeds about 2%, the strain increases with a substantially constant stress.

また、減衰特性は、第3図に超弾性Ti−Ni合金、第
4図に一般金属材料として鋼の場合を代表して示したよ
うに、曲げ振動試験による減衰係数比ζは、T 1−N
i合金でζ= 0.04449、鋼でζ=0.0050
93と、超弾性Ti−Ni合金の減衰特性が非常に優れ
ていることが判る。
In addition, the damping characteristics are shown in Fig. 3 for a superelastic Ti-Ni alloy, and Fig. 4 for a general metal material such as steel.The damping coefficient ratio ζ in the bending vibration test is T 1- N
ζ = 0.04449 for i alloy, ζ = 0.0050 for steel
93, it can be seen that the damping characteristics of the superelastic Ti-Ni alloy are very excellent.

したがって振動板6として超弾性合金を使用すれば、振
動板の共振点での分割振動の発生を大幅に低減すること
ができ、特に大振幅時あるいは中・高音域での周波数特
性を大幅に改善できる。
Therefore, if a superelastic alloy is used as the diaphragm 6, the occurrence of split vibration at the resonance point of the diaphragm can be significantly reduced, and the frequency characteristics, especially at large amplitudes or in the middle and high frequency ranges, can be greatly improved. can.

なお次表1は各種材料の振動損失係数ηを比較したもの
である。ここで振動損失係数ηとは機械的仕事が粘性に
よる内部摩擦によって損失を受け、熱エネルギーに変換
されてしまう量を表わす係数で、単に損失係数または内
部損失とも呼ばれる。すなわち損失係数ηの大きい材料
は振動の減衰が速く、シたがってスピーカ用振動板に用
いると、共振による分割振動が抑制され、大振幅時ある
いは中・高音域での音圧−周波数特性が平坦になり、音
質ひずみが大幅に減少する。
Table 1 below compares the vibration loss coefficient η of various materials. Here, the vibration loss coefficient η is a coefficient representing the amount of mechanical work that is lost due to internal friction due to viscosity and converted into thermal energy, and is also simply called a loss coefficient or internal loss. In other words, materials with a large loss coefficient η attenuate vibrations quickly, so when used in speaker diaphragms, split vibrations due to resonance are suppressed, and the sound pressure-frequency characteristics are flat at large amplitudes or in the medium and high frequency ranges. This results in a significant reduction in sound quality distortion.

5− 6− この表1からも明らかなように、超弾性合金を使用した
振動板は、従来の紙・ぐルゾ使用のものと同等の比弾性
率E//’をもち、しかも損失係数ηに関しては紙・や
ルプその他のあらゆる素材よりも優れていることがわか
り、振動板の素材と1〜てきわめて好適であることが明
らかである。
5-6- As is clear from Table 1, the diaphragm using the superelastic alloy has a specific elastic modulus E//' equivalent to that of the conventional one using paper/gurzo, and has a loss coefficient η. It is clear that this material is superior to paper, plastic, and all other materials in terms of quality, and that it is extremely suitable as a material for diaphragms.

なおエツジ4あるいはス・ぐイダ5等の支持部材を超弾
性金属によって振動板6と一体に成形してもよい。こう
すれば構造が簡単となり製作が容易になるのは勿論のこ
と、振動板と支持部材が同一の素材となるから、これら
相互の境界部でスティフネスや質量が不連続となるとと
を防止でき、音質を更に向上できる。壕だ、本発明はコ
ーン形スピーカの振動板に限らず、ドーム形スピーカあ
るいはホーン形スピーカのダイヤフラムにも同様に適用
できることは言うまでもない。
Note that the supporting members such as the edge 4 or the suction guide 5 may be formed integrally with the diaphragm 6 from a superelastic metal. This not only simplifies the structure and makes manufacturing easier, but since the diaphragm and the support member are made of the same material, it is possible to prevent discontinuity in stiffness or mass at the boundary between them. Sound quality can be further improved. It goes without saying that the present invention is not limited to the diaphragm of a cone-shaped speaker, but is equally applicable to the diaphragm of a dome-shaped speaker or a horn-shaped speaker.

本発明は前記したように振動板として超弾性合金を用い
たものであり、超弾性化、高損失化が実現できるだめ、
振動板として理想的な減衰特性を与えることができ音質
が向上する。また金属製の振動板であるから吸湿するこ
とがなく湿度による悪影響を受けず安定した性能を発揮
できるのは勿論のこと、コーンあるいはグイヤフラム形
状に加工し易く、品質が安定し所定の特性のものを得易
いなどの大きな効果がある。
As described above, the present invention uses a superelastic alloy as a diaphragm, and can realize superelasticity and high loss.
It can provide ideal damping characteristics as a diaphragm, improving sound quality. In addition, since the diaphragm is made of metal, it does not absorb moisture and exhibits stable performance without being adversely affected by humidity.It is also easy to process into cone or guyaflame shapes, has stable quality, and has specified characteristics. It has great effects such as making it easier to obtain.

また、超弾性合金を単体として用いる他、他材質に蒸着
、溶射あるいはメッキ等の手段により被覆して用いたり
、張合せ、サンドイッチ等の複合材として用いたりする
こともできる。
Further, in addition to using the superelastic alloy as a single substance, it can also be used by coating other materials by means such as vapor deposition, thermal spraying, or plating, or it can be used as a composite material such as laminated or sandwiched.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すスピーカの断面図、第
2図は超弾性Ti−Ni合金の引張応力−ひずみ曲線図
、第3図は超弾性T i −N i合金の減衰特性図、
第4図は鋼材の減衰特性図である。 4・・・エツジ(支持部材)、5・・・ス・ぐイダ(支
持部材)、6・・・振動板。 出願人代理人  弁理士 鈴 江 武 彦第1図 第3図 第4図
Fig. 1 is a sectional view of a speaker showing an embodiment of the present invention, Fig. 2 is a tensile stress-strain curve diagram of a superelastic Ti-Ni alloy, and Fig. 3 is a damping characteristic of a superelastic Ti-Ni alloy. figure,
FIG. 4 is a diagram showing the damping characteristics of steel materials. 4... Edge (supporting member), 5... Su Guida (supporting member), 6... Vibration plate. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)振動板の少なくとも一部に超弾性合金を用いたこ
とを特徴とするスピーカ。
(1) A speaker characterized in that a superelastic alloy is used for at least a portion of the diaphragm.
(2)上記振動板は、フレームに支持するだめの支持部
材と一体に成形してなることを特徴とする特許請求の範
囲第(1)項記載のスピーカ。
(2) The speaker according to claim (1), wherein the diaphragm is integrally formed with a support member supported on a frame.
JP1467682A 1982-02-01 1982-02-01 Loudspeaker Pending JPS58131894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1467682A JPS58131894A (en) 1982-02-01 1982-02-01 Loudspeaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1467682A JPS58131894A (en) 1982-02-01 1982-02-01 Loudspeaker

Publications (1)

Publication Number Publication Date
JPS58131894A true JPS58131894A (en) 1983-08-05

Family

ID=11867816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1467682A Pending JPS58131894A (en) 1982-02-01 1982-02-01 Loudspeaker

Country Status (1)

Country Link
JP (1) JPS58131894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3535205A1 (en) * 1984-10-03 1986-04-30 Fujikura Ltd., Tokio/Tokyo SPEAKER MEMBRANE
CN103024635A (en) * 2012-12-18 2013-04-03 广东工业大学 Super-elastic alloy diaphragm loudspeaker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810999A (en) * 1981-07-13 1983-01-21 Sharp Corp Speaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810999A (en) * 1981-07-13 1983-01-21 Sharp Corp Speaker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3535205A1 (en) * 1984-10-03 1986-04-30 Fujikura Ltd., Tokio/Tokyo SPEAKER MEMBRANE
DE3535205C2 (en) * 1984-10-03 1994-09-01 Sony Corp Speaker cone
CN103024635A (en) * 2012-12-18 2013-04-03 广东工业大学 Super-elastic alloy diaphragm loudspeaker

Similar Documents

Publication Publication Date Title
WO2021088913A1 (en) Sound production apparatus
US5714722A (en) Loudspeaker
JPS58131894A (en) Loudspeaker
US7319772B2 (en) Speaker device for improving mid/high-range frequencies
JPS58131897A (en) Louspeaker
CN103716746A (en) Sounding membrane plate manufactured by resonance damping (RAD) method and electric loudspeaker thereof
CN209845300U (en) Micro loudspeaker
CN212812031U (en) Bone conduction loudspeaker
KR960016510B1 (en) Diaphragm of electroacoustic transducer and method of manufacturing thereof
CN209250879U (en) The compound electroacoustic transducer of moving-coil electrostatic
JP6597986B1 (en) A speaker system that can increase drive power without changing heat loss in the low frequency range and improve playback characteristics
JPH09275598A (en) Centering spider for speaker and speaker using it
CN105430579A (en) Water-resistant paper cone for loudspeaker
JPS5926160B2 (en) Diaphragm for speaker
SU1137590A1 (en) Material of high-modular metal diaphragm for loudspeaker
JPS62180699A (en) Diaphragm for acoustic device
JPS617797A (en) Ceramic diaphragm speaker
DE377920C (en) Magnetic telephone for loudspeaker purposes
TW202420842A (en) Speaker diaphragm structure with reduced vibration magnitude at resonance frequency and method thereof
CN2338932Y (en) Vibration diaphragm for loudspeaker
KR0130277Y1 (en) Frame of piano
JPS62263799A (en) Damper for speaker
JPS5822000A (en) Piezoelectric speaker
JPS6052639B2 (en) acoustic diaphragm
JPS5824296A (en) Manufacture of speaker