JPS58131803A - Ferrite fixing method of nonreversible circuit - Google Patents

Ferrite fixing method of nonreversible circuit

Info

Publication number
JPS58131803A
JPS58131803A JP1330682A JP1330682A JPS58131803A JP S58131803 A JPS58131803 A JP S58131803A JP 1330682 A JP1330682 A JP 1330682A JP 1330682 A JP1330682 A JP 1330682A JP S58131803 A JPS58131803 A JP S58131803A
Authority
JP
Japan
Prior art keywords
ferrite
waveguide
plane
circulator
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1330682A
Other languages
Japanese (ja)
Other versions
JPH0129081B2 (en
Inventor
Takaya Saito
斉藤 隆弥
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1330682A priority Critical patent/JPS58131803A/en
Publication of JPS58131803A publication Critical patent/JPS58131803A/en
Publication of JPH0129081B2 publication Critical patent/JPH0129081B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/39Hollow waveguide circulators

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To suppress the temperature rise in a ferrite at high power flowing in a circulator, by providing ruggedness for a metal contact surface being a main heat dissipating surface of the ferrite, increasing the contact area and the effect of heat dissipation. CONSTITUTION:Grooves are provided on a plane where the ferrite is in contact with a matching projected surface 2 to spread the surface area, and the cutting of the ferrite is deeper possibly to the degree that the high frequency characteristics are satisfied, allowing to take out the heat generated in the ferrite due to the ferrite loss at the high power input from the inside of ferrite effectively and to dissipate the heat to external space via a waveguide. Thus, the thermal gradient to the vertical direction to the bonding surface of the ferrite is decreased, the ferrite performance is much more satisfied than conventional ones, allowing to improve the power-resistance characteristics.

Description

【発明の詳細な説明】 本発明はフェライトを用いる高耐電力非可逆回路(各釉
サーキュレータや単向管等)のフェライト中の放熱対策
および固定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat dissipation measures and fixing methods in ferrite in high-power irreversible circuits (glazed circulators, unidirectional tubes, etc.) using ferrite.

フェライトを用いたマイクロ波帯のY分岐型サーキュレ
ータの構造を第1図に、単向管の構造を第2図に示す。
The structure of a microwave band Y-branch type circulator using ferrite is shown in FIG. 1, and the structure of a unidirectional tube is shown in FIG.

第1図では図(a)、(b)と図(c)、(d)とで二
種類の構造を示してあり、図(a)及び図(e)が正面
図であυ、図(b)及び図(a)がそれぞれのA−A’
切断面の断面図である。
In Figure 1, two types of structures are shown in Figures (a) and (b) and Figures (c) and (d). Figures (a) and (e) are front views; b) and figure (a) are the respective A-A'
FIG. 3 is a sectional view of a cut surface.

第2図では図(a)が正面図であり、図(b)に図(a
)のA −A’断面の断面図を示しである。
In Figure 2, Figure (a) is a front view, and Figure (b) is a front view.
) is a cross-sectional view taken along the line A-A'.

両図を通じて、1はフェライト、2は整合板或いは整合
用突出面、3は導波管部、4はマグネット部を示す。
In both figures, 1 is a ferrite, 2 is an alignment plate or a protruding surface for alignment, 3 is a waveguide section, and 4 is a magnet section.

第1図は、フェライト板1が導波管の内壁面に向い合わ
せで設けられている場合と、フェライト1が導波管部3
のH面にはさみ込まれるように固定される場合との二種
類の構造を示している。
FIG. 1 shows a case where the ferrite plate 1 is provided facing the inner wall surface of the waveguide, and a case where the ferrite plate 1 is provided facing the inner wall surface of the waveguide.
Two types of structures are shown: one in which it is fixed so as to be sandwiched between the H-planes of

これらの場合、フェライト1は接着剤又は半田付は等に
よシ整合板に(整合板が不要の場合には導波管の管壁に
)固定されておシ、整合板2は導波管部3にフェライト
同様接着剤又は半田付けで固定される場合もあシ、また
導波管部の一部突出面として一体的に作られる場合もあ
る。以下これを整合用突出面と呼ぶことにする第3図に
、これらに用いられるフェライトの形状の例を示す。(
a)、(b)、(c)各図の左側の図は平面図であり、
右側は側面図である。
In these cases, ferrite 1 is fixed to the matching plate (or to the waveguide wall if no matching plate is required) by adhesive or soldering, and matching plate 2 is attached to the waveguide. It may be fixed to the part 3 with adhesive or soldering like the ferrite, or it may be made integrally as a partially protruding surface of the waveguide part. FIG. 3, which will hereinafter be referred to as an alignment projecting surface, shows an example of the shape of the ferrite used for these. (
The figure on the left side of each figure a), (b), and (c) is a plan view,
The right side is a side view.

第1図、第2図との関係で用途例を述べると第3図(a
)の形状のものは第1図(a)の場合に、第3図(b)
の形状のものは第1図(c)の場合に、第3図(c)の
形状のものは第2図の単向管の場合にそれぞれ用いられ
る。
To describe an example of use in relation to Figures 1 and 2, Figure 3 (a
) shape is shown in Fig. 1(a), and Fig. 3(b)
The shape shown in FIG. 1(c) is used in the case of the unidirectional tube shown in FIG. 1(c), and the shape shown in FIG. 3(c) is used in the case of the unidirectional tube shown in FIG.

フェライト等の磁性材料は熱伝導特性が非常に悪い。Magnetic materials such as ferrite have very poor thermal conductivity properties.

このため、サーキュレータを例に説明すると、高電力の
信号が通過する際、サーキュレータ損失(主としてフェ
ライト部の損失)によりフェライト中に発生する熱は、
フェライトの熱伝導の悪さからフェライト中にともシ、
導波管の管軸に垂直な方向に対しフェライト中に大きな
温度勾配が生し、ある温度以上になるとフェライト特性
が変化し、挿入損失の増加、アイソレーションの減少等
のサーキュレータ特性の劣化が生じる。さらにフェライ
トの温度上昇によシ、フェライトを固定している接着剤
の強度も低下し、悪い例の場合にはフェライトが脱落し
、その反射電力により増幅器が破壊されることもある。
Therefore, using a circulator as an example, when a high power signal passes through, the heat generated in the ferrite due to circulator loss (mainly loss in the ferrite part) is
Due to the poor thermal conductivity of ferrite, there are
A large temperature gradient occurs in the ferrite in the direction perpendicular to the waveguide tube axis, and when the temperature exceeds a certain point, the ferrite characteristics change, causing deterioration of the circulator characteristics such as increased insertion loss and decreased isolation. . Furthermore, as the temperature of the ferrite increases, the strength of the adhesive that fixes the ferrite decreases, and in bad cases, the ferrite may fall off and the reflected power may destroy the amplifier.

したがって、従来フェライトの厚みを薄くする方法によ
りフェライトの冷却を図ってきたC単向管についても同
様である。
Therefore, the same applies to C unidirectional tubes in which the ferrite has been conventionally cooled by reducing the thickness of the ferrite.

本発明はこれら欠点を除去するため、フェライトの主放
熱面である金属接触面側に凹凸を設け、接触面積を拡は
放熱効果を上け、ツーキュレータ等において、高電力通
過時のフェライトの温度上昇をおさえ、フェライト性能
の低下を防ぎ高電力入力時の挿入損失の増加を無くする
とともに、接着剤等の接着力低下を防ぐことによシ、耐
電力特性の向上を図ったもので、以下回置について詳細
に説明する。
In order to eliminate these drawbacks, the present invention provides unevenness on the metal contact surface side, which is the main heat dissipation surface of the ferrite, to increase the contact area and improve the heat dissipation effect. In addition to suppressing the increase in ferrite performance and eliminating the increase in insertion loss during high power input, it also improves the power resistance characteristics by preventing the adhesive strength of adhesives etc. from decreasing. Rotation will be explained in detail.

第4図は本発明をY分岐型サーキュレータに応用した場
合の実施例であり、1はフェライト、2は導波管と一体
的に製作された整合用突出面、3は導波管部、4はマグ
ネット、5はフェライトを固定している接着剤または高
温半田である。
FIG. 4 shows an embodiment in which the present invention is applied to a Y-branch type circulator, in which 1 is a ferrite, 2 is a matching projecting surface manufactured integrally with a waveguide, 3 is a waveguide portion, and 4 is a magnet, and 5 is an adhesive or high-temperature solder that fixes the ferrite.

本発明ではこの図に示すように、フェライトが整合用突
出面2 (導波管の管壁直接の場合や整合板の場合をも
含む。以下同じ0)に接する匍に第4図(a)または(
b)の様な溝を設け、その面の表面積を拡げると同時に
、高周波特性を満足する程度にフェライトの切り込みを
できるだけ深くすることによシ、高電力入力時にフェラ
イト損失によりフェライト中に発生する熱をフェライト
内部から効果的に引き出し、導波管を経て外部空間に逃
がしている。これによシ、フェライトの接着面に垂直な
方向に対する熱勾配が小さくなり、高電力に対し、従来
のものよシフエライト性能が満足され、耐電力特性が向
上する0 第5図はフェライト1が固定されている整合用突出面2
にもフェライト部の溝が嵌合するような溝を設けたもの
で、第5図(a)、(b)の様にフェライトの溝に整合
用突出面2の溝を嵌合させることにより、フェライトと
整合用突出面2の間に入るフェライト固定用の接着剤ま
たは半田等のI−を必要最少限にでき、これにより生ず
る熱伝導特性の低下を軽減でき、高電力化に対し一層の
効果が得られる。
In the present invention, as shown in this figure, the ferrite is attached to the protruding surface 2 (including the direct wall of the waveguide and the matching plate; hereinafter the same 0) in contact with the protruding surface 2 for alignment as shown in FIG. 4(a). or(
By creating a groove as shown in b) and expanding the surface area of the surface, and at the same time making the cut in the ferrite as deep as possible to satisfy high frequency characteristics, the heat generated in the ferrite due to ferrite loss during high power input can be reduced. is effectively pulled out from inside the ferrite and released into the external space via a waveguide. This reduces the thermal gradient in the direction perpendicular to the bonding surface of the ferrite, satisfies the performance of the siferite compared to the conventional one under high power, and improves the power resistance characteristics. In Fig. 5, the ferrite 1 is fixed. Alignment protruding surface 2
5(a) and 5(b), by fitting the grooves of the alignment projection surface 2 into the grooves of the ferrite, as shown in FIGS. 5(a) and 5(b). It is possible to minimize the amount of adhesive or solder used to fix the ferrite between the ferrite and the alignment protrusion 2, thereby reducing the deterioration of heat conduction properties, which is even more effective in increasing power consumption. is obtained.

フェライトに設ける溝の形状は回路に組込まれるフェラ
イト形状等によっても若干具なるが、例えば導波管と接
する面が円形の場合には、第6図(a)に示すような直
線的な溝の他、多数の同心円状または図(b)のような
放射状と同心円状の組合せ等があシ、フェライトの金属
接触面が方形または三角形等においても同様の形状が考
えられる。
The shape of the groove provided in the ferrite varies depending on the shape of the ferrite incorporated in the circuit, but for example, if the surface in contact with the waveguide is circular, it may be a straight groove as shown in Figure 6(a). In addition, the same shape can be considered, such as a large number of concentric circles or a combination of radial and concentric circles as shown in FIG.

以上、接合型サーキュレータを例にとって本発明の詳細
な説明して米だが、移相器型その他の型のサーキュレー
タにおいても全く同様であり、また単向管の場合におい
ても効果は同様で、第7図に示すように、フェライトと
導波管が対向する面に凹凸(図には軸方向の複数の溝を
示す。)を設けることにより、フェライト部で発生する
熱の放散を良くシ、耐電力特性を高めることかできる。
Although the present invention has been explained in detail above using a junction type circulator as an example, the same applies to phase shifter type and other types of circulators, and the effect is the same in the case of a unidirectional tube. As shown in the figure, by providing unevenness (the figure shows multiple grooves in the axial direction) on the surfaces where the ferrite and waveguide face each other, the dissipation of heat generated in the ferrite part is improved and the power resistance is improved. Can you enhance its properties?

図中5′は、フェライトのみに溝を設けた場合は接着剤
又は半田を示し、他の場合にはフェライトの溝に嵌合す
る管壁側からの突部を示す。
In the figure, 5' indicates adhesive or solder when the groove is provided only in the ferrite, and in other cases indicates a protrusion from the tube wall side that fits into the groove of the ferrite.

なお、フェライトに設ける溝の形状は、サーキュレータ
の場合、電気的性能(挿入損失、アイソレーション、V
SWRl等)の対称性を保つ必要があることから、各端
子から見てその形状が対称形となる様にすることが望ま
しく、その各種の例を第8図に示す。このうち図(1)
は4ポートの場合に適する例である。
In addition, in the case of a circulator, the shape of the groove provided in the ferrite is determined by the electrical performance (insertion loss, isolation, V
Since it is necessary to maintain the symmetry of the terminals (SWR1, etc.), it is desirable that the shape is symmetrical when viewed from each terminal, and various examples thereof are shown in FIG. Figure (1)
is an example suitable for a 4-port case.

また、サーキュレータ等におけるフェライトの発熱は中
心部が最大となることから、溝の間隔は中心部に行くに
したがい密にして行くと効果的である。
Further, since the heat generation of ferrite in a circulator or the like is maximum at the center, it is effective to make the groove spacing closer toward the center.

以上説明したように、各種サーキュレータ、単向管等に
設けられるフェライトの導波管側接触面、またはフェラ
イトおよびフェライトに接する専吸管側の面の両方に凹
凸を設けることにより、熱放散効果が著しく向上するた
め、電磁波の通過時にフェライト中に発生する熱による
フェライトの損失が減少し、従来構造によるサーキュレ
ータ、単向管等に比較して耐電力性が大幅に向上する利
点がある。
As explained above, by providing unevenness on both the waveguide side contact surface of the ferrite provided in various circulators, unidirectional tubes, etc., or on both the ferrite and the surface on the dedicated suction tube side that is in contact with the ferrite, the heat dissipation effect can be significantly improved. This reduces loss in the ferrite due to heat generated in the ferrite when electromagnetic waves pass through it, and has the advantage of greatly improving power durability compared to conventional structures such as circulators and unidirectional tubes.

また、放熱効果を改善するために設けた凹凸の溝が、サ
ーキュレータの場合、どの端子からみても同一の形状に
みえるため、特性の対称性の良いサーキュレータが得ら
れる。
Further, in the case of a circulator, the uneven grooves provided to improve the heat dissipation effect appear to have the same shape no matter which terminal it is viewed from, so a circulator with good symmetry of characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のY分岐サーキュレータの構造図で、(a
)、(c)は正面図、(b)、(d)はその断面図、第
2図(a)は従来の単向管の外観(正面)図、(b)は
断面(内部構造)図、第3図は従来用いられている各糧
フェライトの形状図、第4図は本発明のY分岐サーキュ
レータにおける実施例の内部構造断面図、第5図は本発
明のY分岐サーキュレータにおける他の実施例の内部構
造断面図、第6図は本発明の実施例における各棟フェラ
イトに設けた溝の形状例、第7図は単向管における本発
明の実施例、第8図はフェライトに設ける溝の各種形状
例を示す。 1・・・・・フェライト 21111−・・整合板又は
整合用突出面、3・・・・・導波管部、4・・・・・マ
グネット部、5−・・・・フェライト固定剤、5′・・
・φ・フェライト固定剤又はフェライトの溝に嵌合する
管壁側からの突部 代理人 弁理士  本  間    崇第 7 図 (a)                (b)(c)
                (d)第 2 図 (b) / 第3 図 (α9 (b) (C) 第 4 図 第 5 図 第 6 図 ((1) (6) 第 第 7 図 Cb) (a)          (e) (b)           (f) (c)       (9) (d)          (h) (i) (j) (k) (1)
Figure 1 is a structural diagram of a conventional Y-branch circulator.
) and (c) are front views, (b) and (d) are cross-sectional views, Figure 2 (a) is an external (front) view of a conventional unidirectional tube, and (b) is a cross-sectional view (internal structure). , FIG. 3 is a shape diagram of conventionally used ferrites, FIG. 4 is a sectional view of the internal structure of an embodiment of the Y-branch circulator of the present invention, and FIG. 5 is another embodiment of the Y-branch circulator of the present invention. 6 is an example of the shape of grooves provided in each ridge ferrite in an embodiment of the present invention, FIG. 7 is an embodiment of the present invention in a unidirectional tube, and FIG. 8 is a groove provided in the ferrite. Examples of various shapes are shown. 1... Ferrite 21111-... Matching plate or matching protrusion surface, 3... Waveguide section, 4... Magnet section, 5-... Ferrite fixing agent, 5 '...
・φ・Protrusion from the pipe wall side that fits into the ferrite fixing agent or ferrite groove Agent Patent attorney Takashi Honma Figure 7 (a) (b) (c)
(d) Figure 2 (b) / Figure 3 (α9 (b) (C) Figure 4 Figure 5 Figure 6 ((1) (6) Figure 7 Cb) (a) (e) ( b) (f) (c) (9) (d) (h) (i) (j) (k) (1)

Claims (4)

【特許請求の範囲】[Claims] (1)  フェライトが導波管のH面或いはE面又は線
面に設けられた金属整合板或いは整合用突出面に取シ付
けられる構造のサーキュレータおよび単向管において、
フェライトの表面のうちその取付面に凹凸を設けたこと
を特徴とする非可逆回路のフェライト固定方法。
(1) In a circulator and a unidirectional tube having a structure in which ferrite is attached to a metal matching plate or a matching protruding surface provided on the H-plane, E-plane, or linear plane of the waveguide,
A method for fixing a ferrite in an irreversible circuit, characterized in that a mounting surface of the ferrite is provided with unevenness.
(2)  フェライトに凹凸を設けると同時にフェライ
トと接する導波管のH面或いはE面又は線面に設けられ
た金属整合板或いは整合用突出面にもフェライトに設け
られた凹凸と丁度嵌合する凹凸を設けたことを特徴とす
る特許請求の範囲第(1)項記載の非可逆回路のフェラ
イト固定方法。
(2) At the same time that the ferrite is provided with unevenness, the metal matching plate or matching protruding surface provided on the H-plane, E-plane, or line surface of the waveguide in contact with the ferrite is also fitted with the unevenness provided on the ferrite. A method for fixing ferrite in a nonreciprocal circuit according to claim (1), characterized in that unevenness is provided.
(3)サーキュレータがマルチボートの場合において、
フェライトに設ける凹凸の形状が、各ボートからみた場
合相互に同一であることを特徴とする特許請求の範囲第
(1)項記載の非可逆回路のフェライト固定方法0
(3) If the circulator is a multi-boat,
A method for fixing a ferrite in a non-reciprocal circuit according to claim (1), wherein the shape of the unevenness provided on the ferrite is the same when viewed from each boat.
(4)サーキュレータがマルチポートの場合において、
フェライトに設ける凹凸の形状及び導波管のH面或いは
E面又は線面に設けられた金属整合板或いは整合用突出
面に設ける凹凸の形状が、各ポートからみた場合相互に
同一であることを特徴とする特許請求の範囲第(2)項
記載の非可逆回路のフェライト固定方法。
(4) When the circulator is multi-port,
Make sure that the shape of the unevenness provided on the ferrite and the shape of the unevenness provided on the metal matching plate or matching protruding surface provided on the H-plane, E-plane, or linear surface of the waveguide are the same when viewed from each port. A method for fixing ferrite in an irreversible circuit according to claim (2).
JP1330682A 1982-02-01 1982-02-01 Ferrite fixing method of nonreversible circuit Granted JPS58131803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330682A JPS58131803A (en) 1982-02-01 1982-02-01 Ferrite fixing method of nonreversible circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330682A JPS58131803A (en) 1982-02-01 1982-02-01 Ferrite fixing method of nonreversible circuit

Publications (2)

Publication Number Publication Date
JPS58131803A true JPS58131803A (en) 1983-08-05
JPH0129081B2 JPH0129081B2 (en) 1989-06-07

Family

ID=11829492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330682A Granted JPS58131803A (en) 1982-02-01 1982-02-01 Ferrite fixing method of nonreversible circuit

Country Status (1)

Country Link
JP (1) JPS58131803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221911A1 (en) * 2009-02-10 2010-08-25 SPC Electronics Corporation Waveguide circulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221911A1 (en) * 2009-02-10 2010-08-25 SPC Electronics Corporation Waveguide circulator
US8193872B2 (en) 2009-02-10 2012-06-05 Spc Electronics Corporation Waveguide circulator

Also Published As

Publication number Publication date
JPH0129081B2 (en) 1989-06-07

Similar Documents

Publication Publication Date Title
US3617951A (en) Broadband circulator or isolator of the strip line or microstrip type
US4463330A (en) Dielectric waveguide
US9531050B2 (en) Ferrite circulator with asymmetric dielectric spacers
US3174116A (en) Trough line microstrip circulator with spaced ferrite surrounding transverse conductive rod
US6407646B1 (en) Distributed three port stacked waveguide circulator
US4746833A (en) Coupled cavity travelling wave tubes
JPS58131803A (en) Ferrite fixing method of nonreversible circuit
US4280111A (en) Waveguide circulator having cooling means
US4103207A (en) Coupled cavity type traveling wave tube having improved pole piece structure
JPH0846413A (en) Resonator and high frequency circuit element using the same
US3360750A (en) High frequency waveguide load comprising a dielectric window in contact with lossy coolant fluid
US3212028A (en) Gyromagnetic isolator with low reluctance material within single ridge and fluid coolant adjacent waveguide
US4808949A (en) Integrated hyperfrequency circulator
US4303898A (en) Longitudinally flanged waveguide
JP3230492B2 (en) Dielectric line non-reciprocal circuit element and wireless device
JPS5924170Y2 (en) Phase synthesis type circulator
US4374367A (en) Non-reciprocal microwave-frequency device for high-level operation
JPH0422563Y2 (en)
JP2670640B2 (en) Waveguide termination
CN108649305B (en) SIW field-shifting isolator with special-shaped ferrite structure
US4733201A (en) Stacked ferrite resonance isolator
CN117954816A (en) E-plane double-matching Y-shaped junction waveguide circulator
JPH0817082B2 (en) Waveguide airtight window structure
JPH0538523Y2 (en)
JPH051573B2 (en)