JPS58131532A - Detection of accident of liquid feeding pipe - Google Patents

Detection of accident of liquid feeding pipe

Info

Publication number
JPS58131532A
JPS58131532A JP1447582A JP1447582A JPS58131532A JP S58131532 A JPS58131532 A JP S58131532A JP 1447582 A JP1447582 A JP 1447582A JP 1447582 A JP1447582 A JP 1447582A JP S58131532 A JPS58131532 A JP S58131532A
Authority
JP
Japan
Prior art keywords
accident
time
liquid
liquid feeding
feeding pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1447582A
Other languages
Japanese (ja)
Other versions
JPH022528B2 (en
Inventor
Toyoo Fukuda
福田 豊生
Ichiro Nakahori
一郎 中堀
Junichiro Ozawa
小沢 純一郎
Hisashi Tonegawa
戸根川 寿志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1447582A priority Critical patent/JPS58131532A/en
Publication of JPS58131532A publication Critical patent/JPS58131532A/en
Publication of JPH022528B2 publication Critical patent/JPH022528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To distinguish burst accident from crush accident to detect the accident of a liquid feeding pipe highly accurately by using time series data of two discrimination formulas. CONSTITUTION:Manometers 1301, 1302 and flow meters 1401, 1402 are attached to both the ends of the liquid feeding pipe 1 and a pressure value and a flow rate value measured at a period are accumulated in a data storage device 16. The values of two discrimination formulas are found from the present measured value and the measured value at a past time corresponding to the time required for the transmission of the requid between two measuring points of the liquid feeding pipe 1 out of said stored measurement data, and whether the liquid feeding pipe 1 is normal or not is discriminated by the values of the two discrimination formulas. When an accident is discriminated, the position of the accident is found from the time shearing of the time series data in the two discrimination formulas to discriminate whether the accident in the pipe 1 is burst or crush by a data processor 17.

Description

【発明の詳細な説明】 この発明は、送液管路の事故検知方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting an accident in a liquid delivery pipeline.

従来、この檀の装置として第1図のものがあつた。同図
において、(1)は送液管、(2)は送液管(1)の破
裂個所、(61)〜(6s)は送液管(1)の軸方向へ
分散配置されて管中の圧力が異常に下降したことを検出
するll数個、たとえば第1.第2および第6の6個の
検知器、(41)〜(4,)は各検知器(6,)〜(6
,)に対応して設けられて成田降下に応じて搬送波の中
心周波数を移動させる周波数移相送信器、(5)。
Conventionally, there was a device for this purpose as shown in Fig. 1. In the figure, (1) is the liquid pipe, (2) is the rupture point of the liquid pipe (1), and (61) to (6s) are distributed in the axial direction of the liquid pipe (1). ll to detect that the pressure of the first . The second and sixth six detectors, (41) to (4,) are each detector (6,) to (6,
,), a frequency phase-shifting transmitter, (5), which is provided corresponding to the Narita drop and moves the center frequency of the carrier wave in accordance with the Narita drop.

(6) 、 (γ)は第1.第2および第6の検知装置
であり、いずれも管路(1)の軸方向の各測定器、つま
り検知器(3)と周波数移相送信W#t4)で構成され
ている。t8L(9) s unは前記第1.第2およ
び第6の検知装置(5)。
(6), (γ) is the first. These are the second and sixth detection devices, both of which are composed of measuring instruments in the axial direction of the pipe (1), that is, a detector (3) and a frequency phase shift transmission W#t4). t8L(9) sun is the first. Second and sixth sensing devices (5).

(6) 、 (7)に対応する信号伝送路、(11)は
各周波数移相送信器(4,)〜(4m)から送られた信
号の受信器、(2)は受信−〇)からの出力を時間の関
数として表示する表示手段、たとえばペンレコーダであ
る。
Signal transmission lines corresponding to (6) and (7), (11) are receivers for signals sent from each frequency phase shift transmitter (4,) to (4m), and (2) is a receiver for signals sent from each frequency phase shift transmitter (4,) to (4m). A display means for displaying the output as a function of time, such as a pen recorder.

つぎに動作について説明する。Next, the operation will be explained.

送液管(1)のある点(2)で破裂が生じると、瞬間的
な圧力降下が発生し、これが音速度で軸方向に伝搬する
ことは圧縮性流体の性質としてよく知られた事寮である
。いま、点(2)で発生した圧力降下の波動伝搬は、ま
ず第2の検知装置(6)、つぎに第6の検知装置ffi
 (7)、最後に第1の検知装置(5)に到達する。こ
のとき、各検知器(3+)〜(31)は送液管f1)の
圧力が正常値に比較して、降下したことを検知し、各周
波数移相送信i1 (4)〜(43)は、検知した下降
圧力に比例して搬送波の中心周波数を移動させて受信器
(11)に送る。受信器(1υはこれを受信すると、ペ
ンレコーダーに出力を送出するため、ペンレコーダ(ロ
)では、第11第2および第6の6つの検知装置(5)
 、 [6) 、 (7)に応じて、横軸を時間とする
圧力降下の瞬間を表示する。このとき、圧力降下する時
間のずれτから送液管(1)の破裂点(2)の標定かな
されるもので、d=D−c・τ/2によって破裂位置を
決定する。ここに、Dは第2の検知器(6りと第5の検
知器(3g)との間の距離、0は音速度、dは第2の検
知器c5m>から点(2)までの距離である。
When a rupture occurs at a certain point (2) in the liquid pipe (1), an instantaneous pressure drop occurs, which propagates in the axial direction at the speed of sound, a well-known property of compressible fluids. It is. Now, the wave propagation of the pressure drop generated at point (2) is first transmitted to the second detection device (6), then to the sixth detection device ffi.
(7), and finally reaches the first detection device (5). At this time, each detector (3+) to (31) detects that the pressure in the liquid feeding pipe f1) has decreased compared to the normal value, and each frequency phase shift transmission i1 (4) to (43) , moves the center frequency of the carrier wave in proportion to the detected falling pressure and sends it to the receiver (11). When the receiver (1υ) receives this, it sends the output to the pen recorder, so in the pen recorder (b), there are six detection devices (11, 2nd and 6th) (5).
, [6) and (7), the moment of pressure drop is displayed with time as the horizontal axis. At this time, the rupture point (2) of the liquid feeding pipe (1) is determined from the time difference τ of pressure drop, and the rupture position is determined by d=D−c·τ/2. Here, D is the distance between the second detector (3g) and the fifth detector (3g), 0 is the speed of sound, and d is the distance from the second detector (c5m) to point (2). It is.

従来の送液管路の事故検知方法は以上のように構成され
ているから、送液管の圧潰の事故の場合には一下流側で
圧力降下をもたらし、上流側で圧力上昇をもたらすため
、下流側の検知器のみが作動することになり一事故の状
態を誤って検知をする欠点があった。また、送液管の破
裂事故の場合に1゛オいて、圧力降下は破裂点から上流
および下流の両方向に伝播するが、末端において再び反
射して戻り伝播する現象があり、これらの波動が幅溝し
て複雑な圧力変動が起る傾向にあるから、従来の方法で
はこれに対応できに〈<、検知誤差を生じ易い欠点もあ
った。
The conventional method for detecting an accident in a liquid transfer pipe is configured as described above, so that in the case of an accident in which a liquid transfer pipe collapses, a pressure drop occurs on the downstream side, and a pressure increase occurs on the upstream side. Only the detector on the downstream side is activated, which has the disadvantage of erroneously detecting the state of an accident. In addition, in the case of a rupture accident of a liquid pipe, the pressure drop propagates both upstream and downstream from the rupture point, but there is a phenomenon in which it is reflected again at the end and propagates back, and these waves increase in width. Since complicated pressure fluctuations tend to occur due to the grooves, conventional methods cannot cope with this problem.

この発明は上記のような従来のものの点を除去するため
になされたもので、圧力あるいは流量の異常変動が液中
全音速で伝播することから送液管の両端の圧力あるいは
流量の間に恒等的に成立する関係式に着目し、この関係
式から導かれた判別式を用いることにより、圧力降下と
ともに圧力上昇も計測させて破裂事故のみならず、圧潰
事故も検知でき、しかも圧力あるいは流量変動の波動が
反射して複雑な圧力変動が発生してもこれに対応して送
液管の事故を正確に検知できる送液管路の事故検知方法
を提供することを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional method, and since abnormal fluctuations in pressure or flow rate propagate at the full speed of sound in the liquid, there is no constant difference between the pressure or flow rate at both ends of the liquid sending pipe. By focusing on a relational expression that holds equally true and using a discriminant derived from this relational expression, it is possible to measure both pressure drop and pressure rise, and detect not only rupture accidents but also crushing accidents, and also detect pressure or flow rate. It is an object of the present invention to provide a method for detecting an accident in a liquid sending pipe that can accurately detect an accident in a liquid sending pipe in response to complex pressure fluctuations that occur due to the reflection of fluctuation waves.

以下、この発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図はこの発明に係る送液管路の事故検知方法に用い
られる装置のブロック図であり、第1図と同一部所には
同一符号を付して説明を省略する。
FIG. 2 is a block diagram of a device used in the method for detecting an accident in a liquid delivery pipeline according to the present invention, and the same parts as in FIG.

同図において、(131)、(131)は送液管(1)
の両端にそれぞれ設置された第1および第2の圧力計(
130+)、(130y)からの信号、(14)、(1
4)は送液管(1)の雨漏にそれぞれ設置された第1お
よび第2の流鐘計(1401)、(140鵞)からの信
号、(15+)、(15重)はこれら各信号を伝送する
第1および第2の送信装置、(16*)、(16雪)は
上記信号の受信器を兼ねたデータ蓄債装置、(ロ)はデ
ータ処理装置、(ホ)は処理した結果を表示する表示装
置で、この表示装置(ホ)は、たとえば−例として図示
のような表示を行なうものである。つまり送液管路に破
裂が生じた場合、その事故点の位置を事故確度とともに
、使用者に表示する。なお図中、AおよびBは計測点の
位置、1は事故点の位置を示している。
In the same figure, (131) and (131) are the liquid sending pipe (1)
The first and second pressure gauges (
130+), signals from (130y), (14), (1
4) are the signals from the first and second flow bell meters (1401) and (140) installed at the leak of the liquid pipe (1), respectively, and (15+) and (15) are these signals. (16*) and (16 Yuki) are data storage devices that also serve as receivers for the above signals, (B) is a data processing device, and (E) is the processed result. This display device (e) displays, for example, the one shown in the figure. In other words, if a rupture occurs in the liquid supply pipe, the location of the accident point is displayed to the user along with the accident probability. In the figure, A and B indicate the positions of measurement points, and 1 indicates the position of the accident point.

つぎにこの発明の事故検知方法について説明する。Next, the accident detection method of this invention will be explained.

一般に、管路で圧送される液体は圧縮性流体として扱わ
れるので、任意の距離I、任意の時間tの圧力p(x、
t)あるいは流量q(x、t)は周知のように次式で表
わされる。
In general, a liquid pumped through a pipe is treated as a compressible fluid, so the pressure p(x,
t) or the flow rate q(x, t) is expressed by the following equation as is well known.

q(x、t)=−旺(y(t−1−)−t(t −−)
)   ・・・(2)OOG ここに、?(t+−)は下流から上流に伝播する後進波
成分−r(t−一)は上流から下流に伝播する目1運波
成分、Dは管路を流れる液体の断面積、gは慮力D(l
速度−〇は波動の伝播速度で、液体中を伝播する音速に
等しい、第2図の送液管路で、計測点ムを距離の原点0
とし、計測点Bの距1illを1とすると、波動がこの
2点人、3間を伝播する時間Tは、τ= i / oで
ある。
q(x, t)=-wan(y(t-1-)-t(t--)
)...(2)OOG Here? (t+-) is the backward wave component that propagates from downstream to upstream -r(t-1) is the first wave component that propagates from upstream to downstream, D is the cross-sectional area of the liquid flowing in the pipe, and g is the force D (l
Velocity -〇 is the propagation speed of the wave, which is equal to the speed of sound propagating in the liquid.
Assuming that the distance 1ill of measurement point B is 1, the time T for the wave to propagate between these two points is τ=i/o.

(1) 、 t2)式において、x = Qあるいはx
 = jの値を代入し、かつ、τ=i10f考慮すれば
、つぎの(8)、(4)式が得られる。
(1), t2), x = Q or x
By substituting the value of = j and considering τ=i10f, the following equations (8) and (4) are obtained.

p A(t−τ)−1−k −q A(t −τ )=
p Bjte+に@ q n(t)  ・・・(3)P
 A(t←EC”qA(t)=pB(を−τ)−k・C
IB(を−τ) ・・・(4)ここに、距40に対応し
て、添字Aを、距離!に対応して添字Bで表わしている
。また、kは定数で、k = o / g Dである。
p A(t-τ)-1-k-q A(t-τ)=
p Bjte+ @ q n(t) ...(3)P
A(t←EC”qA(t)=pB(−τ)−k・C
IB(-τ) ... (4) Here, corresponding to distance 40, subscript A is distance! It is represented by the subscript B corresponding to . Further, k is a constant and k = o / gD.

(3)式は、第2図の送液管路における左方の計測点A
で計測された圧力と流量の値の和−pA(t−τ)+に
−qA(t−τ)が、時間τ後に上記送液管路の右方の
点Bで計測された圧力と流量の1匝の和p n(t)+
に−(L B(t)に等しいことを示している。(4)
式も同様に点Aの圧力と流量の差PA(t)−k −q
 h(t)が、時間τiσに送液管路における右方の点
B t’計測された圧力と流量の差E1B(i−τ)−
k”(iB(t−丁)に等しいことを示している。
Equation (3) is calculated from the measurement point A on the left side of the liquid supply pipe in Fig.
The sum of the pressure and flow values measured at -pA(t-τ)+ and -qA(t-τ) are the pressure and flow rate measured at point B on the right side of the liquid sending pipe after time τ. The sum of 1 ton of p n(t)+
This shows that -(LB(t)) is equal to (4)
Similarly, the equation is the difference between pressure and flow rate at point A PA(t)-k-q
h(t) is the difference between the measured pressure and flow rate E1B(i-τ)-
k'' (iB (t-d)).

さて−この発明の方法では、上記(3) 、 (4)式
を基礎として、これらの式(B) 、 (4)から送液
管路の状態、すなわち、正常か事故かの判別をする判別
式を導き、これを用いて上記管路の事故を適確に検知す
る方法全提供するものである。すなわち、時々刻々収集
した計測データならびにデータ蓄4装置に)k:116
1された1時間前のデータからλ(t)=p )、 (
t−τ)+に−qA(t−τ) −p n(t)−に−
+L n(t)・・・(5)μ(t¥=p A(t)−
k I (i A(t)−p B (t−τ)+に−q
B(t−r)・・・(6)なる判別式λ(1)とμ(1
)を計算してつぎの判別を行なう。
Now, in the method of the present invention, based on the above equations (3) and (4), a determination is made to determine the state of the liquid supply pipe, that is, whether it is normal or an accident, from these equations (B) and (4). This paper provides a method for deriving a formula and using the formula to accurately detect accidents in the pipeline. In other words, measurement data collected from time to time and data storage devices) k: 116
λ(t)=p ), (
t-τ)+ to −qA(t-τ) −p n(t)− to −
+L n(t)...(5)μ(t¥=p A(t)-
k I (i A(t)-p B (t-τ)+ -q
B(tr)...(6) The discriminants λ(1) and μ(1
) and make the following determination.

(1) 、 111&X(Iλ(t)l 、 l μ(
t)l )≦−ナラば正常 ・+71値)、 max(
lλ(1、lμ(t、)l )>g fx ラば事故有
す、たたし、その事故種別は λ(→−μけ)くδ  ならば圧潰事故  ・・・(8
)λ(1)−μ(1)≧δ  ならば破裂事故  ・・
・(9)と判別する。
(1) , 111&X(Iλ(t)l , l μ(
t)l)≦−Naraba normal ・+71 value), max(
lλ(1, lμ(t,)l )>g fx There is a mule accident, and the accident type is λ(→−μ−μ)×δ, then it is a crushing accident...(8
) If λ(1)-μ(1)≧δ, then rupture accident...
- Determine (9).

ここに、C1δは対象とする管路、液体の性質を考慮し
て決る定数である。
Here, C1δ is a constant determined by considering the properties of the target pipe and liquid.

(I)のλ(1)あるいはμ(1)が櫂より小さければ
、すなわち、上記(5) * (6)式では零であるが
計測誤差や摩擦圧力損失等を考慮しである許容範囲を設
定してその範囲s内であれば、正常と判定し、それ以外
では上記(It)の事故有りと判定する。つぎに事故と
判定した場合においては圧潰と破裂の両者に分類し、前
者では洩れがなく、後者では洩れがある場合である。
If λ(1) or μ(1) in (I) is smaller than the paddle, that is, it is zero in the above equations (5) * (6), but considering measurement errors, frictional pressure loss, etc., a certain tolerance range can be set. If the setting is within the range s, it is determined to be normal, and otherwise it is determined that the above (It) accident has occurred. Next, if it is determined to be an accident, it is classified into both collapse and rupture, with the former being a case in which there is no leakage, and the latter being a case in which there is a leakage.

第6図に送波管路事故時の圧力あるいは流量の波動伝播
の様子を示す。管路のA点、B点に計測点があり、計測
点Aから距#ldを存した1点で事故があったとする。
Figure 6 shows the wave propagation of pressure or flow rate at the time of a transmission line accident. Assume that there are measurement points at points A and B of the conduit, and an accident occurs at one point that is a distance #ld from measurement point A.

また、横軸に距離を、縦軸に時間をとり、実線(4)は
液体の流れ方向に進む前進波、翰は流れ方向と逆方向に
進む後進波を示し、圧力あるいは流量の変動が速度Oで
伝播する0点A1問および点10間においても、それぞ
れ波動伝播の関係式(1)式と(2〕式が成立すること
から、つぎの叫、(1υ式を得る。いま時刻tn1着目
すると・1点を通ってB点に到達するにはT1.の時間
を要し、一方、時刻tnに1点を通過する後進波はT1
の時間でA点に到達するとする。
In addition, the horizontal axis represents distance and the vertical axis represents time. The solid line (4) represents a forward wave that travels in the direction of liquid flow, and the line represents a backward wave that travels in the opposite direction to the flow direction. Fluctuations in pressure or flow rate represent velocity. Since the relational expressions (1) and (2) of wave propagation hold between the 0 point A1 and the point 10 which propagate at O, we obtain the following equation (1υ).At present time tn1 Then, it takes time T1. to pass through one point and reach point B, while the backward wave passing through one point at time tn takes T1.
Suppose that point A is reached in a time of .

λ(tn+τm )=jlr(tn)十kJqy(tn
)    −an)μ(tn+y+ )=Δhy(tn
)−にΔq y (t n )   −(11)ここに
、Δhy(tn)は、事故点1の直前の点と直後の点の
圧力差であり、Δ(L p(t n )は事故点1の直
前の点と直後の点の流量差、すなわち破裂に伴なう漏洩
流電である。事故が圧潰で漏洩のないときには、Δqy
(tn)は零である。また、破裂事故の場合には、上記
ハ1は圧潰事故に比較して小である。
λ (tn + τm ) = jlr (tn) + kJqy (tn
) −an) μ(tn+y+ )=Δhy(tn
) - Δq y (t n ) - (11) Here, Δhy (tn) is the pressure difference between the point immediately before and after the accident point 1, and Δ(L p (t n ) is the pressure difference between the point immediately before and after the accident point 1. This is the flow rate difference between the point immediately before and the point immediately after point 1, that is, the leakage current accompanying the rupture.When the accident is a crushing and there is no leakage, Δqy
(tn) is zero. Furthermore, in the case of a bursting accident, the above C1 is smaller than that in a crushing accident.

事故のない正常の場合には、Δhy(tn);0.Δq
y(tn)=Q  であるから、上記叫および(11)
式はそれぞれ零である。さて、破裂事故の場合には、Δ
h7(t、n)=0  として、λ(tn十τ、)=−
μ(tn十τ1)であるから、1=1 n十τ1 とし
てかきかえると、λ(t+τ。
In the normal case without any accidents, Δhy(tn); 0. Δq
Since y(tn)=Q, the above equation and (11)
Each expression is zero. Now, in the case of a bursting accident, Δ
As h7 (t, n) = 0, λ (tn + τ,) = -
Since μ (tn + τ1), if we replace it as 1 = 1 n + τ1, we get λ (t + τ).

−T1)ニーμ(1)  である、したがって、λと一
μは時間遅れ=−−T1 をもって等しい値をもつこと
が判る。この時間差−T、−丁、から、事故点1の距離
dはts=ct−o・)/2 で求められる。一方、圧
潰事故の場合には・Δqy(tn)=Oj−L、 テ、
λ(tn十τ、)=μ(tn十τ1)であるから、t=
tn十τ1 としてかきかえると、λ(t+τ、−T1
)=μ(1)である。よって、λとμは時間差=τ、−
τ1 で等しい値をもつことが判る。この時間差=τ1
−τ1 から事故点1の距離dはa=(j−0・)/2
で求められる。実施例でλとμの時間差を求めるのは破
裂事故、圧潰事故の両方に適用できるようにそれらの絶
対値1λ1と1μmの時系列データの比較によって行な
われる。
−T1) knee μ(1), therefore it can be seen that λ and 1 μ have equal values with time delay=−−T1. From this time difference -T, -d, the distance d to the accident point 1 can be found as ts=ct-o·)/2. On the other hand, in the case of a crushing accident, Δqy(tn)=Oj−L, Te,
Since λ(tn+τ,)=μ(tn+τ1), t=
Rewriting it as tn + τ1, we get λ(t+τ, -T1
)=μ(1). Therefore, the time difference between λ and μ is = τ, -
It can be seen that they have equal values for τ1. This time difference = τ1
The distance d from −τ1 to accident point 1 is a=(j−0・)/2
is required. In the embodiment, the time difference between λ and μ is determined by comparing time series data of their absolute values 1λ1 and 1 μm so that it can be applied to both bursting accidents and crushing accidents.

以上の説明をまとめて、この発明を実施する場合の戯作
を第4図にしたがって説明する。
Summarizing the above description, the operation of carrying out the present invention will be explained with reference to FIG.

計測点A(第6図)の圧力p A(t)、流量(L A
(t)および第2図の計測点Bの圧力p m(t) 、
 q”(t)が周期Δtでデータ蓄積装置0呻に送られ
、このデータ蓄積装置aIでは、それぞれの計測データ
時系列pat) 、 p^(を屹り、・・・・・・、q
べt) 、 qa(を見り、・・・・・・−pm(t)
 、 Pa(t−at)、 ・−・−・−、qs(t)
 、 qs(t−41,・・・・・・を順次記憶する(
処理ステップ401)。つぎに、周期Δtごとに判別関
数1(t) 、 At>を計算し、このデータ時系列を
λ(t)、λ(を屹t)、λ(t−2Δす、・・・・・
・、λ(t−rΔt)。
Pressure p A (t) at measurement point A (Fig. 6), flow rate (L A
(t) and the pressure p m(t) at measurement point B in FIG.
q''(t) is sent to the data storage device 0 at a period of Δt, and in this data storage device aI, the respective measured data time series pat), p^( are read),..., q
Bet), qa(see,・・・・・・-pm(t)
, Pa(t-at), ・-・-・-, qs(t)
, qs(t-41,... are stored sequentially (
Processing step 401). Next, a discriminant function 1(t), At> is calculated for each period Δt, and this data time series is expressed as λ(t), λ(t), λ(t-2Δs,...
, λ(t−rΔt).

・・・・・・、ス(を−仏りおよびXt)、μ(を屹t
)、μ(を植t)。
......, Su (wo - Buddhari and Xt), μ (wo 屹t
), μ(planted).

μ(t−2Δt)、・・・・・・、μ(1=Δす、・・
・・・・、μ(t−nΔりとする(処理ステップ402
)。すなわち、時刻tにおいて、スとμは現在時刻の値
λ(1)とmt)とと本に、過去net分のデータを時
系列として蓄積している。さて、処理の内容は、始めに
λ(りあるいはAt)が小であれば((7)式)、管路
は正常と判定する(判断ステップ403)。つぎに、(
ア)式を満足しなければ事故であり、(8)式(9)式
にしたがって事故種別すなわち、圧潰事故あるいは破裂
事故かを判定する(判断ステップ404)。このとき、
2つの判別関数λとμの時系列データのパターンから、
両者の時間差t=も−11を求め、事故点Fの距離dを
((1−0(h −jt ) )/2で計算する(処理
ステップ405゜406)。破裂事故の場合には漏洩流
量Δqrを計算しく処理ステップ407)、圧潰事故の
場合には圧力低下量」rを計算する(処理ステップ40
8)。第5図に判別式、λ、μのそれぞれの絶対値μm
、1μmの時系列データの一例を示している。
μ(t-2Δt),..., μ(1=Δs,...
..., μ(t-nΔ) (processing step 402
). That is, at time t, the past net data is stored as a time series in the current time values λ(1) and mt). Now, as for the contents of the process, if λ (R or At) is small (formula (7)), it is determined that the conduit is normal (judgment step 403). next,(
A) If the equation is not satisfied, it is an accident, and the type of accident, that is, whether it is a crushing accident or a bursting accident, is determined according to equations (8) and (9) (judgment step 404). At this time,
From the pattern of time series data of two discriminant functions λ and μ,
The time difference between the two, t=-11, is also calculated, and the distance d to the accident point F is calculated as ((1-0(h-jt))/2 (processing steps 405 and 406).In the case of a rupture accident, the leakage flow rate is Δqr is calculated (processing step 407), and in the case of a crushing accident, the pressure drop amount ``r'' is calculated (processing step 40).
8). Figure 5 shows the discriminant, the absolute value μm of each of λ and μ.
, shows an example of time series data of 1 μm.

現在時刻tから過去t−nΔを時間前までのデータによ
って判別する。初期の頃はIil、1μmの値が小さく
、管路は正常と判別するが、事故が発生すると、1λ1
.1μmともに変化するので、事故と判定される。
The past t-nΔ from the current time t is determined based on data up to the time before. In the early days, the value of Iil, 1μm is small and the pipe is determined to be normal, but when an accident occurs, the value of 1λ1
.. Since both change by 1 μm, it is judged as an accident.

事故が破裂であるか圧潰であるかは、λ(t)−At>
≦δによって判別される。つぎに、1ス1と1μmの時
系列パターンの比較から1両者の時間ずれを求める。第
5図に示す例では7=3Δtであり、事故点の距離はd
=(1−5・Δt・0)/2として求められる。圧潰事
故と判定したときには−馳r7 (”(t) + Xt
))として、圧力低下分が求められ、破裂事故と判定し
たときKは、Δq””i’λ(t)−mtすで漏洩流量
が求められる。
Whether the accident is a rupture or a crushing is determined by λ(t)−At>
It is determined by ≦δ. Next, by comparing the time series patterns of 1s 1 and 1 μm, the time shift between 1s 1 and 1 μm is determined. In the example shown in Figure 5, 7=3Δt, and the distance to the accident point is d
It is obtained as =(1-5·Δt·0)/2. When it is determined that it is a crushing accident, -chi r7 (”(t) + Xt
)), the pressure drop is determined, and when a bursting accident is determined, K is Δq""i'λ(t)-mt, and the leakage flow rate is determined.

以上のように、この発明によれば2つの判別式の時系列
データを用いるように構成したので、圧潰事故と破裂事
故を区別でき、また、事故による波動が反射して計測す
る圧力や流量の変動があっても、これに対応して高精度
で送液管路の事故を検知できる効果がある。
As described above, according to the present invention, since the time series data of two discriminants are used, it is possible to distinguish between a crushing accident and a bursting accident, and the wave motion caused by the accident is reflected and the measured pressure and flow rate are Even if there are fluctuations, it is possible to detect accidents in the liquid supply pipeline with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の送液管路の事故検知方法に用いる装置の
ブロック図、I!2図はこの発明の一実施例による送液
管路の事故検知方法に用いる装置のブロック図、@3図
はこの発明の一実施例による送液管路の事故検知方法に
用いる判別式を求める波動伝播の説明図、第4図は、こ
の発明の一実施例による送液管路の事故検知方法におけ
る事故判別の方法説明図、11!5図はこの発明の一実
施例による送液管路の事故検知方法に開−る2つの判別
式の値の時系列データの説明図である。 (1)送液管路、(2)・・・破裂点−(13t) 、
(13g)・・・圧力計からの信号、(141)−(1
4g)・・・流量計からの信号、(15t)。 (15t)・・・信号の送信装置、韓・・・データ蓄積
装置、aの・・・信号の受信およびデータ処理装置、(
至)・・・データ処理結果の表示装置、(6)・・・液
体中を伝播する前進波成分の軌跡、四・・・液体中を伝
播する後進波の軌跡、(”0x)−(1501)・・・
圧力計、 (140t) 、 (140t)・・・流量
計。 なお1図中同一符号は同一もしくは相当部分を示す。 代理人 葛野信−(外1名) 第1図 12 第2図 第3図 179− 第4図
Figure 1 is a block diagram of a device used in a conventional method for detecting accidents in liquid delivery pipelines. Figure 2 is a block diagram of a device used in the method for detecting accidents in liquid pipelines according to an embodiment of the present invention, and Figure 3 shows a discriminant used in the method for detecting accidents in liquid pipelines according to an embodiment of the present invention. 4 is an explanatory diagram of wave propagation. FIG. 4 is an explanatory diagram of an accident determination method in an accident detection method for a liquid pipe line according to an embodiment of the present invention. Figures 11 and 5 are diagrams showing a liquid pipe line according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of time-series data of values of two discriminants used in the accident detection method of FIG. (1) Liquid feed pipe line, (2)...Rupture point - (13t),
(13g)...Signal from pressure gauge, (141)-(1
4g)...Signal from flowmeter, (15t). (15t)... Signal transmitting device, Korea... Data storage device, a... Signal receiving and data processing device, (
To)...Display device for data processing results, (6)...Locus of forward wave component propagating in liquid, 4...Locus of backward wave propagating in liquid, ("0x) - (1501) )...
Pressure gauge, (140t), (140t)...flow meter. Note that the same reference numerals in Figure 1 indicate the same or equivalent parts. Agent Makoto Kuzuno (1 other person) Figure 1 12 Figure 2 Figure 3 179- Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)、送液管路の両端に圧力計と流量計を設置し、あ
る周期で計測した圧力値と流量値をデータ記憶Mdに蓄
積して、この記憶された計測データのうち、現在時刻の
計測値と、送液管路の2位置の計測点間を液動が伝播す
る時間だけ遡った過去の時刻のHtm値から、2つの判
別式の値を求め、その判別式の値から送液管路が正常で
あるか否かを判別し−さらに事故と判別したときにはそ
の事故の発生した位置を2つの判別式の時系列データの
時間ずれから標定してそれが管路の圧潰事故であるかあ
るいは破裂事故であるかの判別を行なうことを特徴とす
る送液管路の事故検知方法。
(1) A pressure gauge and a flow meter are installed at both ends of the liquid supply pipe, and the pressure value and flow rate value measured in a certain period are accumulated in the data storage Md, and among this stored measurement data, the current time The values of two discriminants are calculated from the measured value of It is determined whether the liquid pipeline is normal or not, and when it is determined that it is an accident, the location where the accident occurred is located from the time lag of the time series data of the two discriminant formulas, and it is determined that it is a pipeline collapse accident. 1. A method for detecting an accident in a liquid supply pipe, the method comprising determining whether the accident has occurred or a rupture accident has occurred.
JP1447582A 1982-01-29 1982-01-29 Detection of accident of liquid feeding pipe Granted JPS58131532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1447582A JPS58131532A (en) 1982-01-29 1982-01-29 Detection of accident of liquid feeding pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1447582A JPS58131532A (en) 1982-01-29 1982-01-29 Detection of accident of liquid feeding pipe

Publications (2)

Publication Number Publication Date
JPS58131532A true JPS58131532A (en) 1983-08-05
JPH022528B2 JPH022528B2 (en) 1990-01-18

Family

ID=11862081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1447582A Granted JPS58131532A (en) 1982-01-29 1982-01-29 Detection of accident of liquid feeding pipe

Country Status (1)

Country Link
JP (1) JPS58131532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189021A2 (en) * 1984-12-21 1986-07-30 VOEST-ALPINE Aktiengesellschaft Method of and device for detecting a condition of a pump proportional to the leakage of a hydraulic pump or of a hydraulic motor
JPS6330737A (en) * 1986-07-24 1988-02-09 Nippon Kokan Kk <Nkk> Apparatus for detecting abnormality of gas line
US7418354B1 (en) * 2004-03-23 2008-08-26 Invensys Systems Inc. System and method for leak detection based upon analysis of flow vectors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189021A2 (en) * 1984-12-21 1986-07-30 VOEST-ALPINE Aktiengesellschaft Method of and device for detecting a condition of a pump proportional to the leakage of a hydraulic pump or of a hydraulic motor
EP0189021A3 (en) * 1984-12-21 1987-09-23 VOEST-ALPINE Aktiengesellschaft Method of and device for detecting a condition of a pump proportional to the leakage of a hydraulic pump or of a hydraulic motor
JPS6330737A (en) * 1986-07-24 1988-02-09 Nippon Kokan Kk <Nkk> Apparatus for detecting abnormality of gas line
JPH0692922B2 (en) * 1986-07-24 1994-11-16 日本鋼管株式会社 Gas line leak detector
US7418354B1 (en) * 2004-03-23 2008-08-26 Invensys Systems Inc. System and method for leak detection based upon analysis of flow vectors

Also Published As

Publication number Publication date
JPH022528B2 (en) 1990-01-18

Similar Documents

Publication Publication Date Title
US6442999B1 (en) Leak locator for pipe systems
US5548530A (en) High-precision leak detector and locator
EP2435799B1 (en) Method and apparatus for monitoring multiphase fluid flow
CA2155136C (en) System and method for locating release of fluid from a pipeline
US5719329A (en) Ultrasonic measuring system and method of operation
US8428892B2 (en) Viscous fluid flow measurement using a differential pressure measurement and a SONAR measured velocity
EP1186868A2 (en) Technique for measurement of gas liquid flow velocities, and liquid level in a pipe with stratified flow
US20020078737A1 (en) Detection of liquid in gas pipeline
JP2008134267A (en) Ultrasonic flow measurement method
WO1999063317A1 (en) Leak detection in liquid carrying conduits
WO1993021500A1 (en) Method and device in acoustic flow measurement for ensuring the operability of said measurement
US20220260448A1 (en) Pipeline Leak Detection Apparatus, and Methods Thereof
US9435681B2 (en) Method for in-situ calibrating a differential pressure plus sonar flow meter system using dry gas conditions
GB2300265A (en) Flowmeter
JPS58131532A (en) Detection of accident of liquid feeding pipe
CN206291930U (en) A kind of ultrasonic wave mass flowmenter
JP2009085769A (en) Apparatus for measuring fluid in pipe line, and system for diagnosing clogging in connecting pipe
JP2001249039A (en) Ultrasonic gas flow-velocity measuring method
US11609110B2 (en) Ultrasonic flowmeter, method for operating an ultrasonic flowmeter, measuring system and method for operating a measuring system
CN106768104A (en) A kind of ultrasonic wave mass flowmenter
JPS58120143A (en) Detecting method for point of bursting accident of fluid pipeline
JPS596500A (en) Leakage detection method of liquid transferring pipeline
JP3465100B2 (en) Vortex flow meter
JPS5935126A (en) Leak position detection for liquid transporting pipeline
JPH0451719B2 (en)