JPS5813014A - Tuning circuit - Google Patents

Tuning circuit

Info

Publication number
JPS5813014A
JPS5813014A JP11067281A JP11067281A JPS5813014A JP S5813014 A JPS5813014 A JP S5813014A JP 11067281 A JP11067281 A JP 11067281A JP 11067281 A JP11067281 A JP 11067281A JP S5813014 A JPS5813014 A JP S5813014A
Authority
JP
Japan
Prior art keywords
variable
circuit
power supply
resistor
capacitance diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11067281A
Other languages
Japanese (ja)
Inventor
Tamaki Ohashi
大橋 環
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Technical Co Ltd
Original Assignee
Nihon Technical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Technical Co Ltd filed Critical Nihon Technical Co Ltd
Priority to JP11067281A priority Critical patent/JPS5813014A/en
Publication of JPS5813014A publication Critical patent/JPS5813014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • H03J3/18Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance
    • H03J3/185Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance with varactors, i.e. voltage variable reactive diodes

Abstract

PURPOSE:To freely adjust the electrostatic value of a varactor diode and its variable magnification, to improve tuning characteristics, and to obtain an effect to tracking adjustment, by optionally varying the voltage characteristics of a power source for applying a voltage to the varactor diode. CONSTITUTION:A variable inductance 1 and a varactor diode 2 are connected in parallel, and the diode 2 is supplied with the output of a power source circuit 8, composed of variable voltage circuits 5 and 6 and a variable resistor 7 after the adjustment of a variable adjusting circuit 9. The circuits 5 and 6 couple with the variable inductance 1 to vary the tuning frequency of a tuning circuit. When the movable contact of a variable resistor R7 is moved toward the side of the circuit 5 or 6, the upper limit and lower limit of the capacity value of the diode 2 are adjusted easily, its variable magnification is set easily, and tracking adjustment is facilitated.

Description

【発明の詳細な説明】 本願は、LとCを可変することによって同調周波数を選
択する同調回路に関し、特にCとして可変容量ダイオー
ドを用いると共に、可変容量ダイオード−こ印加する電
源の電圧特性を任意に変更できるようにして静電容量値
並びにその可賓倍車の自由な調整を可能とし、同調特性
が秀れトラッキング調整にも有効な同調回路を提供しよ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present application relates to a tuning circuit that selects a tuning frequency by varying L and C, and in particular uses a variable capacitance diode as C, and allows the voltage characteristics of the power supply applied to the variable capacitance diode to be arbitrarily adjusted. The purpose of this invention is to provide a tuning circuit which enables free adjustment of the capacitance value and its variable multiplier, has excellent tuning characteristics, and is effective for tracking adjustment.

一般にカーラジオ等において、可変インダクタンス素子
η)ら成るL可変の同調器が広く利用されている大きな
理由は、強入力特性が極めて良好であると共に、外部振
動や温度及び湿度の大巾な変化或いは應埃などの影響l
こよって受信特性が変化したり動作が不安定となること
が無く、製品の均一化が容易に得られる点でC可変の同
調器に比べ有利であることによる。ところが可変インダ
クタンス同調器において問題となる点は同調回路相互間
のトラッキングを正確ξこ調整することが極めて困鶏で
ある点及び周波数の高い方で利得が低下しその逆に周波
数の低い方で利得が異常に高くなるため受信機の動作が
不安定になると共に同調回路を増加して受信機の性能の
向上を図ることも望み得なかった。
Generally, the main reason why L variable tuners made of variable inductance elements η) are widely used in car radios and the like is that they have extremely good strong input characteristics, and they can withstand external vibrations, large changes in temperature and humidity, or Effects of dust etc.
Therefore, this is advantageous compared to a C variable tuner in that the reception characteristics do not change or the operation becomes unstable, and products can be easily made uniform. However, the problem with variable inductance tuners is that it is extremely difficult to precisely adjust the tracking between the tuned circuits, and the gain decreases at higher frequencies, while the gain decreases at lower frequencies. Since this becomes abnormally high, the operation of the receiver becomes unstable, and it is impossible to improve the performance of the receiver by increasing the number of tuning circuits.

即ち可変インダクタンス同調器は周知のよう膠こアンテ
ナ回路、RF回路及びO8C回路の各同調回路lこ夫々
可変インダクタンス素子を備えてふり、この各可変イン
ダクタンス素子を同一の摺動部材により、手動操作して
各同調回路のLを可変する4とにより選局を達成する方
式のものであるが、側作上の誤差などによって各々の可
変インダクタンス素子のもつ周波数特性曲線に相違を有
し、従来はこの周波数′特性曲線の相違を、コイル体に
対する高周波磁気9アの出没基点位置を調整するカ;9
或いはμの異なる高周波磁気コアと交換することによっ
て同調回路相互間のトラッキング調整を行つていた。し
かしながら、前者においては出没基点位置を調整しても
、それのもつ周波数特性曲線が殆んど平行移動するだけ
であるD)ら、周波数特性曲線が平行移動して他の可変
インダクタンス素子のもつ周波数特性曲線のある一点に
合わせたとしてもその前後の周波数に対して周波数曲線
が合致することはなく、従ってコイル体に対する高周波
磁気コアの出没基点位置を調整しても同調回路相互間に
おいて周波数特性曲線が相互に近督するにすぎず、而も
、可変インダクタンス素子の可変ストロークは同調器に
おける摺動部材の機械的な摺動ストロークによって定ま
るので、可変インダクタンス素子のコイル体に対する高
周波磁気コアQ出没基点位置を調整した場合に得られる
同調周波数の上限及び下限位置が共暑こ変化し、従って
コイル体に対する磁気コアの出没基点位置の調整のみに
よって正確なトラッキング調整を行うことは至難である
That is, as is well known, the variable inductance tuner is equipped with a variable inductance element for each tuning circuit of the glue antenna circuit, RF circuit, and O8C circuit, and each variable inductance element is manually operated by the same sliding member. This method achieves tuning by varying the L of each tuning circuit, but due to errors in side effects, the frequency characteristic curves of each variable inductance element differ, and conventionally this method The difference in the frequency' characteristic curve can be adjusted by adjusting the position of the origin of the high-frequency magnetism 9a relative to the coil body.
Alternatively, mutual tracking adjustment between the tuning circuits has been performed by exchanging high frequency magnetic cores with different μ. However, in the former case, even if the position of the protruding and retracting base point is adjusted, the frequency characteristic curve of the variable inductance element only shifts in parallel. Even if the characteristic curve is tuned to a certain point, the frequency curve will not match for the frequencies before and after that point.Therefore, even if the position of the protrusion and retraction base point of the high frequency magnetic core with respect to the coil body is adjusted, the frequency characteristic curve between the tuned circuits will not match. are only close to each other, and the variable stroke of the variable inductance element is determined by the mechanical sliding stroke of the sliding member in the tuner. The upper and lower limit positions of the tuning frequency obtained when the position is adjusted change over time, so it is extremely difficult to perform accurate tracking adjustment only by adjusting the position of the protrusion/retraction base of the magnetic core with respect to the coil body.

また後者に2いては高周波伍気コアのμ特性を数多くの
ランクに測定分類してそれを交換する作業が極めて面倒
で作業性を大きく欠いていえ。更に可変インダクタンス
同調器においては、周波数の高い方で利得が低下し同調
周波数の全バンド中において安定した均一の利得が得ら
れないという欠陥があった。
In the latter case, the work of measuring and classifying the μ characteristics of the high frequency core into numerous ranks and exchanging them is extremely troublesome and greatly lacks workability. Furthermore, the variable inductance tuner has the disadvantage that the gain decreases at higher frequencies, making it impossible to obtain a stable and uniform gain over the entire tuning frequency band.

そこで本願は同調周波数を設定するLとCを連動関係に
おいて可変すると共に、Cの容量値並びにその可変倍率
を調整可能にして上記した欠陥を改善しえもので、以下
本願の実施例を図−について靜違すると、(1)は可変
インダクタンス素子で、これに可変容量ダイオード(2
)が固定=ンデンサを介して並判接続されている。(4
)は温度保慣用コンデンサ、(51及び(6:は前記可
変インダクタンス素子11)と夫々連動して可変される
可変電圧回路で、夫々可変抵抗特性の異なる可変抵抗器
−及び−を有しており、この可変電圧回路(51と(6
)が半固定の可変抵抗器術を有し先回変抵抗回路(7)
の両端に橋絡接続されており、この可変電圧回路(51
及び(61と、可変抵抗回路(7)とによって可変容量
ダイオード(21に対する電源回路(8)を構成してい
る。(9)は繭記可変容量ダイオード(21と前記電源
回路(8)との間に接続され先回変容量ダイオード(2
1の動作範囲を調整する可変調整回路で、この可変調整
回路(9)は、十B電源に接続された半固定の可変抵抗
器R4mと、この可変抵抗器R95Lの可動接点と前記
可変抵抗器81の可動接点との間RIG続された半固定
の可変抵抗−R41bとから成り、この可変抵抗1fI
&bの可動接点が鎗記可変容量ダイオード(21に接続
されていゐ。RIGは保護抵抗である。
Therefore, in the present application, the above-mentioned defects can be improved by varying L and C, which set the tuning frequency, in an interlocking relationship, and making it possible to adjust the capacitance value of C and its variable magnification. If I'm being honest about this, (1) is a variable inductance element, and a variable capacitance diode (2) is connected to it.
) are connected parallel to each other via a fixed capacitor. (4
) is a temperature-maintaining capacitor, (51 and (6: variable inductance element 11) are variable voltage circuits that are variable in conjunction with each other, and each has variable resistors - and - with different variable resistance characteristics. , this variable voltage circuit (51 and (6
) has a semi-fixed variable resistor technique and the previous variable resistance circuit (7)
This variable voltage circuit (51
and (61) and the variable resistance circuit (7) constitute a power supply circuit (8) for the variable capacitance diode (21). (9) constitutes the power supply circuit (8) for the variable capacitance diode (21) The previous variable capacitance diode (2
This variable adjustment circuit (9) is a variable adjustment circuit that adjusts the operating range of No. 1, and this variable adjustment circuit (9) includes a semi-fixed variable resistor R4m connected to a 10B power supply, a movable contact of this variable resistor R95L, and the variable resistor It consists of a semi-fixed variable resistor -R41b which is RIG-connected to the movable contact of 81, and this variable resistor 1fI
The movable contacts &b are connected to a variable capacitance diode (21). RIG is a protective resistor.

なお上記において、電源回路(8)を構成する可変電圧
回路(5)及び幡1として、例えば実公昭52−232
064公報に示されるように、一定周波数で卑振する発
振器と、この発振周波数が印加される変成コイルに対し
磁気;アを出没させて出力電圧を可変する変成器と、こ
の変成器の出力をamすみ整流回路とから成る可変電圧
回路を用いてもよ諭ことは勿論である。
In the above, as the variable voltage circuit (5) and the flag 1 constituting the power supply circuit (8), for example,
As shown in Publication No. 064, there is an oscillator that oscillates at a constant frequency, a transformer that varies the output voltage by applying magnetism to a transformer coil to which this oscillation frequency is applied, and an output voltage of the transformer. Of course, it is also advisable to use a variable voltage circuit consisting of an am corner rectifier circuit.

今同調周波数のバンド巾の1限をfmlaとし、その上
限をfm*xとすると、共振周波数fがで表わされるこ
とから h1m社−−−ネタ一一−−−・11・ ■2KJii
51扁d /、tax wz                 
a * * m * a  @2πJ戸高5]盲i 但し Ixinは可変インダクタンスの最小値’Lm*xは可
変インダクタンスの最大値Cm1 mは可変容量ダイオ
ードの最小容量値Cmaxは可変容量ダイオードの最大
容量値1表わされ、L、Cの可変倍率と同調周波数との
呻係は で表わされる。 。
If the first limit of the bandwidth of the tuning frequency is fmla and its upper limit is fm*x, then the resonant frequency f is expressed as
51 d/, tax wz
a * * m * a @2πJ door height 5] Blind i However, Ixin is the minimum value of variable inductance 'Lm*x is the maximum value of variable inductance Cm1 m is the minimum capacitance value of the variable capacitance diode Cmax is the maximum capacitance value of the variable capacitance diode 1, and the relationship between the variable magnification of L and C and the tuning frequency is expressed as . .

今fmimを51 k) kHz、 fm*xを165
0 KH2。
Now fmim is 51k) kHz, fm*x is 165
0KH2.

とすると、このAMバンドの全ての例えばL可変Oみ2
こよってカバーするtのとするとの式からLの可変倍率
は10.47となる。
For example, all of this AM band, such as L variable O and 2
Therefore, if t is covered, the variable magnification of L is 10.47.

巾を得ようとするものであり、今りの可変倍率を−例え
ば7に設定するものとすると の式から、X即ちfrrmxは1349 KH2となり
1AMバンド巾f) 1349KH2乃至16 !$ 
0KH2の範囲の同調周波数の選択が不足するのでこの
バンド巾の不足分をCの可変倍率で補足しようとす小と
、 の式から、X即ちCの可変倍率を求めると、Xは約1.
5となる。
From the formula, assuming that the current variable magnification is set to, for example, 7, X, that is, frrmx, becomes 1349 KH2, which is the 1AM band width f) 1349KH2 to 16! $
Since there is a lack of selection of tuning frequencies in the range of 0KH2, an attempt is made to compensate for this shortfall in bandwidth with the variable magnification of C. From the formula, X, that is, the variable magnification of C, is determined to be approximately 1.
It becomes 5.

従って同調回路の可変容量ダイオードの可変倍率が1.
5となるように設定することによりLの可変倍率が7に
おいて所要のバンド巾をカバーすることができ、この関
係を図示すれはJl!2図の如くなる。即ちFlはコイ
ル体に対して高、周波磁気コアの出没させるインダクタ
ンス可変素子において、磁気コアの出没ストロークを例
えば10暖としたときに得られる同調周波数特性曲線を
、F2は磁気コアの出没ストロークを例えば8■とし、
それにより不足するバンド巾をCの可変倍率で補足した
ときの同調局波数特性曲−を示しており、との両9性曲
IIη)ら明らかなように、Cの可変倍率によ1てLO
可変倍車のみによる特性−1lAF1の傾斜を電化して
磁気コアの短かい出没ス)o−りで所要Qバンド巾を得
ることが理解される。
Therefore, the variable magnification of the variable capacitance diode in the tuning circuit is 1.
By setting it to 5, the variable magnification of L can cover the required band width at 7. This relationship is illustrated in Jl! It will look like Figure 2. That is, Fl is the tuning frequency characteristic curve obtained when the magnetic core protrusion and retraction stroke is, for example, 10 degrees in a variable inductance element in which a high frequency magnetic core protrudes and retracts from the coil body, and F2 is the protrusion and retraction stroke of the magnetic core. For example, 8■,
This shows the tuned station wave number characteristic curve when the insufficient band width is supplemented by the variable magnification of C.
It is understood that the required Q-band width can be obtained by electrifying the slope of characteristic-11AF1 by using only the variable multiplier and shortening the magnetic core's protrusion and retraction.

ところが、一般に製作上の誤差によってLの可変倍率が
7の前後の値を示す場合、或いは使用す″る可変容量ダ
イオードの可変範囲にバラ付きが4享し、このような場
合の補正として、もし可変インダクタンス素子がコイル
体とこのコイル体を出没する高周波磁気コアとから成り
、コイル体に対する高周波磁気コアの出没基点位置が調
整可能となっている構成のものであるときは、高周波磁
気コアのコイル体に対する出没基点位置を調整すると、
すでIこ述ぺたようにそれのもつ同調周波数の特性曲線
が平行移動するので、真えに同調周波数特性曲線の基点
位置が500 KH2或いは520KH2であるときで
も特性曲線のモードを変えることなく、それを510に
1(Z#c合わせることができる。
However, in general, when the variable magnification of L shows a value around 7 due to manufacturing errors, or when there is variation in the variable range of the variable capacitance diode used, as a correction in such a case, if When the variable inductance element is composed of a coil body and a high-frequency magnetic core that moves in and out of the coil body, and the base position of the high-frequency magnetic core in and out of the coil body can be adjusted, the coil of the high-frequency magnetic core By adjusting the appearance base position relative to the body,
As already mentioned above, the characteristic curve of the tuning frequency moves in parallel, so even when the base point position of the tuning frequency characteristic curve is truly 500KH2 or 520KH2, the mode of the characteristic curve does not change. It can be adjusted to 510 by 1 (Z#c).

しかしながら例えば第3図で示すように、1対の導磁板
a旧ζよって挾持され、その挾持方向にコイルa21を
巻設した飽和磁気回路をtつ高周波磁気コアαJと、着
磁側が!対の導磁板a41ζよって挾持されたマグネッ
トa9とを、1対の導磁板aυとa−の側縁同志が互い
に対向するように近接して配列すると共に、これらを対
向面に沿って相対移動させて飽和磁気回路の通過磁束散
を可変するようになし、η)つ相対移動して対向面が外
れた最終位置において、マグネット■又は磁気コアa3
のいづれか一方を挾持し九1対の導磁1[a41を磁気
的に短絡する短絡片a・を備えて成る例えば特公昭51
−32380今公報に示される可変インダクタンス素子
或いは特公1849−3274号、同51−32381
号公報にをいて示されるようlζ可変インダクタンス素
子の如く誤差調整機構を有しない構成のものにおいては
、同調周波数特性曲線の基点位置を補正てきないので、
同調回路相互間で合致させて)ツツ命ング調整を行うこ
とが至′難となる不都合を有する。
However, as shown in FIG. 3, for example, a saturation magnetic circuit consisting of a pair of magnetic conductive plates a and ζ and a coil a21 wound in the sandwiching direction is connected to two high-frequency magnetic cores αJ and the magnetized side! The magnet a9 held between the pair of magnetically conductive plates a41ζ is arranged close to each other so that the side edges of the pair of magnetically conductive plates aυ and a- face each other, and they are placed relative to each other along the opposing surfaces. The magnet ■ or the magnetic core a3 is moved so as to vary the dispersion of the magnetic flux passing through the saturation magnetic circuit, and at the final position where the facing surface is removed by moving η), the magnet ■ or the magnetic core a3
For example, the Japanese Patent Publication No. 51, comprising a short-circuiting piece a.
-32380 Variable inductance element shown in the current publication or Japanese Patent Publication No. 1849-3274, Japanese Patent Publication No. 51-32381
As shown in the above publication, in the case of a structure without an error adjustment mechanism such as the lζ variable inductance element, the base point position of the tuning frequency characteristic curve cannot be corrected.
This has the disadvantage that it is extremely difficult to perform tuning adjustment (matching between the tuning circuits).

そこで本願は、上記のように誤差調整機構を有し、ない
可変インダクタンス素子を用いて可変を行う場合にも有
効に適用し得るLとCとの可変によ今岡調履路を提案す
るもので、更Iこ詳しくは、回前容量ダイオードの印加
電圧対容量のI¥I性−線が二次−一であゐことを利用
して、可変容量ダイオード(劾によって得られる静電容
量値遊びにその可変倍皐を任意に□−整することにより
、同調周波数IIII性自纏の所要のバンド巾とその基
点位置とを容   ;“□畢に調整で11みようにして
同調特性の曳好な、しかもトラッキング調整に有効な同
調回路を提供するものである。
Therefore, the present application proposes an Imaoka track with variable L and C, which has an error adjustment mechanism as described above and can be effectively applied even when variable inductance is performed using a non-variable inductance element. , In more detail, by using the fact that the I\I characteristic line of the applied voltage versus capacitance of the capacitance diode is quadratic-1, the capacitance value play obtained by the variable capacitance diode ( By adjusting the variable multiplier arbitrarily, the required band width of the tuning frequency III characteristic and its base position can be accommodated; Moreover, it provides a tuning circuit that is effective for tracking adjustment.

以下オll1lにおいて本願の作用効果につき詳述する
。先づ電源回路(8)について説明すると、今回変電圧
回路(5)及び(6)の可変インダクタンス素子(1)
と連動して得られる電圧特性−線が才4図のEs。
The effects of the present application will be described in detail below. First, to explain the power supply circuit (8), this time we will explain the variable inductance element (1) of the variable voltage circuit (5) and (6).
The voltage characteristic-line obtained in conjunction with is Es in Figure 4.

胸で夫々表わされるものとし、かつ可変抵抗器R1の可
動接点がその中央位置にあるものとするときは、電源回
路(8)の電圧特性−aIEIIは、前記電圧特性曲線
の中間の特性を示し、そしてこの状態で可変抵抗器R7
の可動接点を可変電圧回路(5)偶に移動すると、電源
回路(8)の電圧特性曲線E8が電圧特性−4IEsに
近づき、また前記可動接点を可変電圧−M (61@−
こ移動すると電源回路(8)の電圧特性−@Vaが電圧
特性−@Esに近づき、従って電源回路(8)の電圧特
性1M1IIIE8を可変抵抗器R7の可変により2つ
の可変電圧回路(5)及び(8)のtつ電圧特性白線ム
からムの間において任意に可変することができる。
When it is assumed that the movable contact of the variable resistor R1 is located in the center position, the voltage characteristic -aIEII of the power supply circuit (8) indicates the characteristic in the middle of the voltage characteristic curve. , and in this state, variable resistor R7
When the movable contact is moved to the variable voltage circuit (5), the voltage characteristic curve E8 of the power supply circuit (8) approaches the voltage characteristic -4IEs, and the movable contact is moved to the variable voltage circuit (5).
When this movement is made, the voltage characteristic -@Va of the power supply circuit (8) approaches the voltage characteristic -@Es, and therefore the voltage characteristic 1M1IIIE8 of the power supply circuit (8) is changed to two variable voltage circuits (5) and 1M1IIIE8 by variable resistor R7. (8) The voltage characteristic can be arbitrarily varied between white lines M and M.

次に可変調整回路(9)の作用lζついて説明すると、
今十B電源が10vであり、かつ前記電源回路(81O
電圧轡性自11F4が可変インダクタンス素子(1)と
連動してOvからtovtで変化するものとし、かつ前
記可変調整回路r91の一方の可変抵抗5R11bの可
動接点がその中心位量ホに調整されているものとすると
、この状態でもし他方の可変抵抗器Raaの可動接点を
最高電位点イに設定すると共−ζ電源回路(81%最高
電位tOVの位置にあるときは、可変抵抗II Rob
の両端電位がIOVであることにより可変容量ダイオー
ド(21にはIOVが印加され、次いで算榔回路(8)
が最低電位ovに至ったときは可変抵餌器−の両端電位
差が10vとなり、そのkの5vが可変容量ダイオード
(2)に印加される(以下第1例という)0次に上記の
回路状態において、可変抵抗器Rsaの可動接点をその
中間位量ハに調整するときは、電源回路(81が最高電
位1ovにあるとき可変抵抗器R9bの一端が5vでそ
の他端が1゜Vであることにより、可変容量ダイオード
(2)にはその中間の電位7.5Vdjtた電源回路(
8)が最低電位Ovに至ったときは、可変抵抗器−bの
一端が5VでそのaIIilIIがOvであることlこ
より可変容量ダィオード(2)にはその中間の電位2.
5vが夫々印加され(以下牙2例という)、更に上記し
た回路状態において、可変抵抗器R@aO可動接点をそ
の最低電位置口に調整するときは、電源回路(81が最
高電位10Vにあるとき可変抵抗器R4bの一端がov
でその他亀が10vであることにより可変容量ダイオー
ド(2)にはその中間の電位5vが、また電源回路(8
)が最低電位Ovに至り九ときは可変抵抗器−の両端が
Ovで可変容量ダイオード(21にはOvが印加される
(以下第3例という)。
Next, the action lζ of the variable adjustment circuit (9) will be explained.
The current 10B power supply is 10V, and the power supply circuit (81O
It is assumed that the voltage characteristic 11F4 changes from Ov to tovt in conjunction with the variable inductance element (1), and the movable contact of one variable resistor 5R11b of the variable adjustment circuit r91 is adjusted to its center position E. In this state, if the movable contact of the other variable resistor Raa is set to the highest potential point A, the -ζ power supply circuit (when it is at the 81% highest potential tOV, the variable resistor II Rob
Since the potential across the terminal is IOV, IOV is applied to the variable capacitance diode (21), and then the calculation circuit (8)
When reaches the lowest potential ov, the potential difference across the variable resistor - becomes 10V, and 5V of that k is applied to the variable capacitance diode (2) (hereinafter referred to as the first example). When adjusting the movable contact of the variable resistor Rsa to the intermediate value C, when the power supply circuit (81) is at the highest potential of 1 ov, one end of the variable resistor R9b should be 5V and the other end should be 1°V. Therefore, the variable capacitance diode (2) is connected to the power supply circuit (with the intermediate potential of 7.5Vdjt).
8) reaches the lowest potential Ov, since one end of the variable resistor -b is 5V and its aIIilII is Ov, the variable capacitance diode (2) is applied to the intermediate potential 2.
5V is applied to each (hereinafter referred to as 2 examples), and in the circuit state described above, when adjusting the variable resistor R@aO movable contact to its lowest voltage position, the power supply circuit (81 is at the highest potential of 10V) When one end of variable resistor R4b is ov
Since the other voltage is 10V, the variable capacitance diode (2) has an intermediate potential of 5V, and the power supply circuit (8
) reaches the lowest potential Ov, both ends of the variable resistor - are Ov and Ov is applied to the variable capacitance diode (21 (hereinafter referred to as the third example)).

即ち上記オl乃至第3例から可変抵抗器−を一定亡して
可変抵抗S−を調整し九ときは、可変容量ダイオード(
2)に印加される電圧が、第1例では10V 〜5VI
C1第2例では7.5V−L5Vに、第3例では5v〜
0■のように、可変電位差は5Vで一定であると共Iζ
、可変容量ダイオード(2)に対する動作基点電圧が上
限においてはlOV%?。
That is, from the above-mentioned examples 1 to 3, when the variable resistor S- is adjusted by eliminating the variable resistor S-, the variable capacitance diode (
2) In the first example, the voltage applied to 10V to 5VI
C1 7.5V-L5V in the second example, 5v ~ in the third example
0■, the variable potential difference is constant at 5V, and Iζ
, the operating reference voltage for the variable capacitance diode (2) is lOV% at the upper limit? .

5v、5vに、ま九下限C門ニては5v、2.5v、O
vに夫々規制されることが理解される。
5v, 5v, M9 lower limit C gate is 5v, 2.5v, O
It is understood that each of these conditions is regulated by v.

次に可変調整回路(91の一方の可変抵抗器R亀の可動
接点が中間点ハの位置に調整すると共にこの状態で他方
の可変抵抗器R11bの可動接点が下位点工と中間点ホ
と上位点へとに夫々調整し、かつ電源回路r81が可変
インダグタンス素子(1)と連動しtloVからOvに
可変した場合について検討する。先づ可変抵抗器R4I
bの可動接点が下位点二に位置し、この状態で電源回路
1B)が最高電位10vにあるときは、可変抵抗11R
ebの可動接点が可変抵抗器R9mの中間点へに直I!
螢゛綬したことになるから、可変容量ダイオード(21
には5vの電圧が印加され、この!svの電圧は電源回
路(8)の電圧変化に不拘一定となる(以下第4例とい
う)。また可変抵抗器&bの可*m点をその中間点ホに
調整した状態で゛電源回路(β1の電圧が可変したとき
は、前妃才2例と同様に可変容量ダイオード−(りに印
加される電圧は7.5V−龜5vに変(1、更に可変抵
抗器R4bの可動接点をそ□の上位点で1′に調整し、
この状態で′電源゛回路(8,。tlEd、1゜肇゛示
ら。v、cw変す、dはア。
Next, the movable contact of one variable resistor R11b of the variable adjustment circuit (91) is adjusted to the intermediate point C, and in this state, the movable contact of the other variable resistor R11b is adjusted to the lower position, the intermediate point E, and the upper position. A case will be considered in which the power supply circuit r81 is linked with the variable inductance element (1) and varied from tloV to Ov.First, the variable resistor R4I
When the movable contact b is located at the lower point 2 and the power supply circuit 1B) is at the highest potential of 10V in this state, the variable resistor 11R
The movable contact of eb is directly connected to the midpoint of variable resistor R9m!
Since this will result in a red ribbon, please use a variable capacitance diode (21
A voltage of 5V is applied to this! The voltage of sv remains constant regardless of voltage changes in the power supply circuit (8) (hereinafter referred to as the fourth example). In addition, when the voltage of the variable resistor &b is adjusted to the midpoint E, the power supply circuit (when the voltage of β1 is varied, the voltage is applied to the variable capacitance diode The voltage is changed to 7.5V-5V (1, and the movable contact of variable resistor R4b is adjusted to 1' at the upper point of that □,
In this state, the 'power supply' circuit (8,. tlEd, 1° is shown. v, cw change, d is a.

□ 可変抵抗器Re&の可動接点を可変抵抗器R7の可動接
点に直Ii!接続したことになるから、可変容量ダイオ
ード(21[印加される電圧は、電源回路(8)の可変
電圧範囲と等しくtoy−ovに変化するC以下第5例
という)。即ち上記した第4例、牙2例及び牙5例から
明らかなように可変調整回路+61の他方の可変抵抗器
Rkを一定にして一方の可変抵抗器Rabを調整し、こ
の状態で電源回路(8)の電圧が可変したとき、可変容
量ダイオード(21に印加される電圧は第4例ではその
可変と無関係に′5vで一定であり、第2例ヤは7.5
v〜龜5vに変化し、3!p5例では10v〜Ovに変
化する。即ちと必ことから可変調整回路(91の一方の
可変抵抗S〜bを調整することにより可変容量ダイオー
ド(2)の動作範囲を調撃てきることが理解される。 
 、 資って可変容量ダイオード(2)と電源回路(8)との
関6ζ骸ダイオード(2)の動作範囲を調整すゐ可変調
整回路(9)を接続するときはMy、e述べるような利
点を有する。すなわち一般に可変容量ダイオード(2)
O容量特性が第5図で示すように二次−線で表わされる
ので、可変調整回路(9)により可変容量ダイオード(
21に印加する可変幅を一定した場合でもva”’va
のと自と九〜死のときとで得られる静電容量値及び可変
倍率を真ならしめることができると共に、可変幅を変更
して例えばvb、、、vcの特性間■を利用することも
できるという利点を有する。
□ Directly connect the movable contact of variable resistor Re& to the movable contact of variable resistor R7! Since it is connected, the variable capacitance diode (21 [The applied voltage changes toy-ov equal to the variable voltage range of the power supply circuit (8), hereinafter referred to as the fifth example). That is, as is clear from the above-mentioned fourth example, fang 2 example, and fang 5 example, one variable resistor Rab of the variable adjustment circuit +61 is adjusted while keeping the other variable resistor Rk constant, and in this state, the power supply circuit ( When the voltage of the variable capacitance diode (21) is varied, the voltage applied to the variable capacitance diode (21) is constant at '5v in the fourth example, regardless of the variation, and in the second example, the voltage applied to the variable capacitance diode (21) is 7.5V.
Changes from v to 5v, 3! In p5 cases, it changes from 10v to Ov. In other words, it is understood that the operating range of the variable capacitance diode (2) can be adjusted by adjusting one of the variable resistors S to b of the variable adjustment circuit (91).
The connection between the variable capacitance diode (2) and the power supply circuit (8) helps to adjust the operating range of the variable capacitance diode (2) and the power supply circuit (8).When connecting the variable adjustment circuit (9), there are advantages as described below. has. That is, generally a variable capacitance diode (2)
Since the O capacitance characteristic is represented by a secondary line as shown in Fig. 5, the variable capacitance diode (
Even if the variable width applied to 21 is constant, va"'va
It is possible to make the capacitance value and variable magnification obtained at the time of death and the time of death true, and it is also possible to change the variable width and use, for example, the characteristics of vb, ..., vc. It has the advantage of being able to

第4閣は可変インダクメンス素子(1)に2個の可変容
量ダイオード(21,(2)′を並列接続すると共に、
可変電圧−路+5L(61を共通にし、この可変電圧回
路+5) 、 (6tK夫々可変抵抗回゛路(71、(
71’の両端を接続して、こO各可変抵抗器(フ)及び
(71′と各可変容量ダイオード(2)及び(21゛と
の間に夫々可変調整回路(9)及び(p)′を接続せし
めて成る他の実施例を示しており、!0111mに′よ
るときは、2個の可変−量ダイオードLl) 、 4!
j’の′合成容量によって同調回路のCが決定され4、
鷺の合成容量値の設定は各可変調整回路の選−組i、j
こよって行われるので、更に仔細な静電−量値及びその
可変倍率のamが可能となる利点を有する。
The fourth cabinet connects two variable capacitance diodes (21, (2)' in parallel to the variable inductance element (1), and
Variable voltage circuit +5L (61 is common, this variable voltage circuit +5), (6tK respectively variable resistance circuit (71, (
Connect both ends of 71' and connect variable resistors (9) and (p)' between each variable resistor (71' and each variable capacitance diode (2) and (21'), respectively). Another embodiment is shown in which two variable quantity diodes Ll) and 4! are connected according to !0111m.
The C of the tuned circuit is determined by the composite capacitance of j', and
The setting of the combined capacitance value of the heron is done by selecting sets i and j of each variable adjustment circuit.
Since it is carried out in this manner, it has the advantage that more detailed electrostatic quantity values and their variable magnifications can be determined.

以上のように本願によれば、可変調整回路の調整によっ
て可変容量ダイオードのもつ容量特性曲線の任意の範囲
を選択することができると共に、鋺記可変調整回路を介
して可変容量ダイオードに印加する電源回路の電圧特性
も任意に変更することができるので、同調回路を構成す
るCの静電容量値の上限及び下限位置の調整及びその可
変倍率の設定も極めて容S#こがつ微細に行うことがで
き、このことは製作上の誤侵或いは可変容量ダイオード
など素子自体のパラ付きの補正にも有効であり、従って
同調特性並びに強入力特性に秀れ九同調n路を提供し得
ると共に、該同調回路をもって選局装曾を構成するとき
は、トラッキング調整4m1JIに行うことができるな
どの利点を有するものである。
As described above, according to the present application, any range of the capacitance characteristic curve of the variable capacitance diode can be selected by adjusting the variable adjustment circuit, and the power supply applied to the variable capacitance diode via the variable adjustment circuit can be selected. Since the voltage characteristics of the circuit can also be changed arbitrarily, the upper and lower limit positions of the capacitance value of C that make up the tuned circuit can be adjusted and the variable magnification can be set extremely precisely. This is effective for correcting production errors or parasitic effects in elements such as variable capacitance diodes. Therefore, it is possible to provide a nine-tuned n-path with excellent tuning characteristics and strong input characteristics. When the tuning circuit is used to configure the channel selection device, it has the advantage that tracking adjustment can be performed at 4m1JI.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実施例を示すもので、第1図は同調回路図
、第2図は同調周波数特性を示す図、第3図は可変イン
ダクタ5ンス素子の構成図、第4図は電圧特性曲線を示
す図、第5図は可変容量ダイオード、の容量特性を示す
−15、第6図は同調回路の他の実施例を示す図である
。 図中(1)は可変インダクタンス素子、(2)、 (2
+’は可変容量ダイオード、+51 、 +61は可変
電圧回路、(7)。 (7)′は可変抵抗回路、(8)は電源回路、 191
 、191’は可変調整回路、Rs、 R6,R7,R
;、 R9m@ Robe R;a、Rs′bは可変抵
抗器である。 、     第1図 第2図 第3図
The drawings show an embodiment of the present application, and FIG. 1 is a tuning circuit diagram, FIG. 2 is a diagram showing tuning frequency characteristics, FIG. 3 is a configuration diagram of a variable inductor element, and FIG. 4 is a voltage characteristic curve. FIG. 5 is a diagram showing the capacitance characteristics of a variable capacitance diode. FIG. 6 is a diagram showing another embodiment of the tuning circuit. In the figure, (1) is a variable inductance element, (2), (2
+' is a variable capacitance diode, +51 and +61 are variable voltage circuits, (7). (7)' is a variable resistance circuit, (8) is a power supply circuit, 191
, 191' is a variable adjustment circuit, Rs, R6, R7, R
;, R9m@Robe R;a and Rs'b are variable resistors. , Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (1)可変インダクタンス素子に並列接続され先回変容
量ダイオードと、電源回路との間に、該可変容量ダイオ
ードの動作範囲を可変調整する可変調整回路を接続し、
前記電源回路を、可変インダクタンス素子と連動しかつ
可変電圧特性の異なる2つの可変電圧回路と、この2つ
の可変電圧回路間に橋絡接続され可動接点が前記可変調
整回路lこ接続された可変抵抗器を有する可変抵抗回路
とから構成せしめたことを特徴とする同調回路。 (2)可変調整回路が、第1可変抵抗器と、電源回路の
可変抵抗器との間Iζ橋絡接続されその可動接点が可変
容量ダイオードにIl!絖され九第2可変抵抗器とから
成り、牙1可変抵抗器をB電源に接続した特許請求の範
囲第1項記載の同調回路・(3)2つの可変電圧回路が
、夫々B電源に接続された可変抵抗器から成る特許請求
の範i!1才1項會えは第2項記載の同調回路。 (4)可変インダクタンス素子に少くとも2個の可賓客
量ダイオードを並列接続すると共に、この各可変容量ダ
イオードと電源回路との間に、該可変容量ダイオードの
動作範囲を可変調整する可変調整回路を夫々接続し、前
配電源回路を可変インダクタンス素子と連動しり)っ可
変電圧特性の異なる2つの可変電圧回路と、この2つの
可変電圧回路間に夫々橋絡接続されて可動接点が前記各
可変調整回路に夫々接続された可変抵抗器をもつ2個の
可変抵抗回路と力)ら構成せしめたことを@徴とする同
調回路。 (51可変調整1路が、第1可変抵抗器と、電源回路の
可変抵抗器との間に橋絡接続されその可動接点が可変容
量ダイオードに接続された第2可変抵抗器とから成り、
第1可変抵抗器をB[源に接続し九特許請求の範囲第4
項記載の同調回路。 (612つの可変電圧回路が、夫々B電源に接続された
可変抵抗器から成る特許請求の範囲第4項ま九は第5項
記載の同調回路。 (7)2個の可変容量ダイオードに対し、電源回路の2
つの可変電圧回路を共用せしめて成る特許請求の範囲第
4項、第5項またはオ6項記載の同調回路。
[Claims] (1) A variable adjustment circuit that variably adjusts the operating range of the variable capacitance diode is connected between the variable capacitance diode connected in parallel to the variable inductance element and the power supply circuit,
The power supply circuit includes two variable voltage circuits that operate in conjunction with a variable inductance element and have different variable voltage characteristics, and a variable resistor that is bridge-connected between the two variable voltage circuits and has a movable contact connected to the variable adjustment circuit. 1. A tuning circuit comprising: a variable resistance circuit having a variable resistance circuit; (2) The variable adjustment circuit is Iζ bridge-connected between the first variable resistor and the variable resistor of the power supply circuit, and its movable contact is connected to the variable capacitance diode Il! A tuning circuit according to claim 1, comprising a second variable resistor and a first variable resistor connected to the B power source. (3) The two variable voltage circuits are each connected to the B power source. Claim i! The 1st term meeting for 1 year old is the tuned circuit described in 2nd term. (4) At least two variable capacitance diodes are connected in parallel to the variable inductance element, and a variable adjustment circuit is provided between each variable capacitance diode and the power supply circuit to variably adjust the operating range of the variable capacitance diode. Two variable voltage circuits with different variable voltage characteristics are connected to each other, and the front distribution power supply circuit is linked to the variable inductance element. Bridge connections are made between these two variable voltage circuits, and the movable contacts are connected to each of the variable inductance elements. A tuning circuit whose characteristic is that it consists of two variable resistance circuits each having a variable resistor connected to the circuit. (51 variable adjustment path consists of a first variable resistor and a second variable resistor that is bridge-connected between the variable resistor of the power supply circuit and whose movable contact is connected to the variable capacitance diode,
The first variable resistor is connected to the source B[9].
Tuned circuit described in section. (Claims 4 and 9 of the patent claim, in which the two variable voltage circuits each include a variable resistor connected to the B power supply, are the tuning circuits described in claim 5. (7) For the two variable capacitance diodes, Power supply circuit 2
A tuning circuit according to claim 4, claim 5, or claim 6, which comprises two variable voltage circuits in common.
JP11067281A 1981-07-17 1981-07-17 Tuning circuit Pending JPS5813014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067281A JPS5813014A (en) 1981-07-17 1981-07-17 Tuning circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067281A JPS5813014A (en) 1981-07-17 1981-07-17 Tuning circuit

Publications (1)

Publication Number Publication Date
JPS5813014A true JPS5813014A (en) 1983-01-25

Family

ID=14541528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067281A Pending JPS5813014A (en) 1981-07-17 1981-07-17 Tuning circuit

Country Status (1)

Country Link
JP (1) JPS5813014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813013A (en) * 1981-07-17 1983-01-25 Nippon Technical Co Ltd Tuning circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180222A (en) * 1981-04-28 1982-11-06 Nippon Technical Co Ltd Tuner
JPS57210715A (en) * 1981-06-22 1982-12-24 Nippon Technical Co Ltd Tuning circuit
JPS5813013A (en) * 1981-07-17 1983-01-25 Nippon Technical Co Ltd Tuning circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180222A (en) * 1981-04-28 1982-11-06 Nippon Technical Co Ltd Tuner
JPS57210715A (en) * 1981-06-22 1982-12-24 Nippon Technical Co Ltd Tuning circuit
JPS5813013A (en) * 1981-07-17 1983-01-25 Nippon Technical Co Ltd Tuning circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813013A (en) * 1981-07-17 1983-01-25 Nippon Technical Co Ltd Tuning circuit

Similar Documents

Publication Publication Date Title
JPH06196928A (en) Voltage control type oscillation circuit
JPS58222601A (en) Variable frequency oscillator
JPS639762B2 (en)
US20170104466A1 (en) Tunable resonator
US4336510A (en) Oscillator with a feedback circuit employing a pre-polarized ceramic piezoelectric oscillating unit
JP2640157B2 (en) Electric circuit device including capacitive coupling
EP0336614B1 (en) UHF RF signal input circuit
JPS5813014A (en) Tuning circuit
JPH0644185Y2 (en) Local oscillator circuit in electronic tuning tuner
EP2091104A1 (en) Antenna device
US2244177A (en) Signal collecting system for radio receivers
JPH021405B2 (en)
JPH0652878B2 (en) Antenna input circuit
JPS62211904A (en) High-frequency inductor
JPH0116057B2 (en)
EP0336613B1 (en) Unitary tuning structure
JPS5813013A (en) Tuning circuit
JPS6243361B2 (en)
JP2661002B2 (en) Intermediate frequency filter circuit and method of manufacturing the same
JPH021404B2 (en)
JPH0716124B2 (en) Tuning device
JP3042230B2 (en) Electronic tuner
JPS6029212Y2 (en) High frequency transistor oscillation circuit
JPH061874B2 (en) Variable tuning transformer device
JPH0448026Y2 (en)