JPS5813009B2 - magnet device - Google Patents

magnet device

Info

Publication number
JPS5813009B2
JPS5813009B2 JP9274777A JP9274777A JPS5813009B2 JP S5813009 B2 JPS5813009 B2 JP S5813009B2 JP 9274777 A JP9274777 A JP 9274777A JP 9274777 A JP9274777 A JP 9274777A JP S5813009 B2 JPS5813009 B2 JP S5813009B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
axis
resin magnet
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9274777A
Other languages
Japanese (ja)
Other versions
JPS5427998A (en
Inventor
伊藤満
坂入忠
船越康友
渡辺貞夫
肥谷耕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9274777A priority Critical patent/JPS5813009B2/en
Priority to US05/928,971 priority patent/US4185262A/en
Priority to DE2833517A priority patent/DE2833517C2/en
Publication of JPS5427998A publication Critical patent/JPS5427998A/en
Publication of JPS5813009B2 publication Critical patent/JPS5813009B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は同一面に異なる磁極を有し、起磁力を増加させ
ることのできる樹脂マグネットを用いたマグネット装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnet device using a resin magnet having different magnetic poles on the same surface and capable of increasing magnetomotive force.

一般に樹脂マグネットは高分子材料と、磁性材たとえば
バリウム、ストロンチウムまたは鉛の少なくとも一種類
を含むフエライト粉末などからなる組成を有する組成物
を機械的な力または磁気的な力により、磁性材の磁化容
易軸方向(磁気的に強い方向)を板面に垂直な方向に配
列した板状成形品より得ている。
Generally, resin magnets are made of a composition consisting of a polymer material and a magnetic material such as ferrite powder containing at least one type of barium, strontium, or lead, which is easily magnetized by mechanical or magnetic force. It is obtained from a plate-shaped molded product whose axial direction (magnetically strong direction) is arranged perpendicular to the plate surface.

このような樹脂マグネットの磁気特性は残留磁束密IB
rが2100〜2530G1保磁力BHCが1850〜
22500e,最大エネルギー積BHmaxが1.04
〜1.49MGOeであって等方性焼結フエライトと同
等またはそれ以上の特性をもっている。
The magnetic properties of such a resin magnet are the residual magnetic flux density IB
r is 2100~2530G1 coercive force BHC is 1850~
22500e, maximum energy product BHmax is 1.04
~1.49MGOe, and has properties equivalent to or better than those of isotropic sintered ferrite.

この樹脂マグネットを第1図a=cに示すように方形状
、円筒状に加工して矢印1の方向に磁化容易軸を有する
構造にして、同一面に異なる磁極を着磁した場合、同一
形状の等方性焼結フエライトのマグネットの7〜8割程
度の表面磁束密変しか得られない。
This resin magnet is processed into a rectangular or cylindrical shape as shown in Fig. 1 a = c, so that it has a structure with an axis of easy magnetization in the direction of arrow 1, and when different magnetic poles are magnetized on the same surface, the same shape The surface magnetic flux density variation is only about 70 to 80% that of isotropic sintered ferrite magnets.

たとえば、第2図Aに示すような板面に垂直な方向の磁
化容易軸1を有する板状樹脂マグネット2を第2図Bに
示すようにステンレスのシャフト3に巻付け、半径方向
に磁化容易軸1を有する積層状ロールマグネットを製作
し、第3図に示すように外周面4に着磁器5により着磁
し、表面の磁束密度を測定すると800〜950Gであ
った。
For example, a plate-shaped resin magnet 2 having an axis of easy magnetization 1 perpendicular to the plate surface as shown in FIG. 2A is wound around a stainless steel shaft 3 as shown in FIG. 2B, and the magnet is easily magnetized in the radial direction. A laminated roll magnet having a shaft 1 was manufactured, and the outer circumferential surface 4 was magnetized by a magnetizer 5 as shown in FIG. 3, and the magnetic flux density on the surface was measured to be 800 to 950G.

一方、これと同形状の等方性焼結フエライトマグネット
では表面の磁束密度はIOOOGであった。
On the other hand, an isotropic sintered ferrite magnet having the same shape as this had a surface magnetic flux density of IOOOG.

従来において、このような表面磁束密度を上昇させるマ
グネット装置の構造として第4図に示すようなものが開
発されている。
Conventionally, a structure of a magnet device shown in FIG. 4 has been developed to increase the surface magnetic flux density.

マグネットシ一トを積層して構成され、異なる磁極を有
する磁石6,7の共通ベースとして軟質磁性材料8を設
けて閉磁路を形成し、磁石6,7の側面から漏れる磁束
を阻止すべく磁石6,7の磁気軸に直角方向に磁気軸を
有する磁石9を配置して構成されている。
A soft magnetic material 8 is provided as a common base for the magnets 6 and 7, which are constructed by stacking magnet sheets and have different magnetic poles, to form a closed magnetic path, and the magnets are used to prevent magnetic flux leaking from the sides of the magnets 6 and 7. A magnet 9 having a magnetic axis perpendicular to the magnetic axes 6 and 7 is arranged.

上述の説明において磁気軸とは、着磁された磁石のN,
Sの磁化方向を意味し、漏洩磁束用の磁石9はN,Sに
磁化されたものであり、この磁石9を磁石6,7の極と
同じ極を近づけるように接合するので、接合にあたり、
磁石9は磁石6,7から反発力を受けてひつくり返りや
すく組込作業が困難となっていた。
In the above explanation, the magnetic axis refers to the N,
This means the direction of magnetization of S, and the magnet 9 for leakage magnetic flux is magnetized in N and S, and this magnet 9 is joined so that the same poles as the poles of magnets 6 and 7 are brought close together, so when joining,
The magnet 9 receives a repulsive force from the magnets 6 and 7 and tends to bend over, making assembly difficult.

しかも、閉磁路を構成するための軟質磁性材料8が必要
となり、部品点数が増加していた。
Furthermore, the soft magnetic material 8 for constructing the closed magnetic circuit is required, increasing the number of parts.

さらに磁石6,7間に間隙があり、この間隙のために発
生する漏洩磁束を阻止するために磁石9を挿入している
がこの磁石9によって隙間を完全に無すことはできず、
漏洩磁束は存在していた。
Furthermore, there is a gap between the magnets 6 and 7, and a magnet 9 is inserted to prevent leakage magnetic flux generated due to this gap, but the gap cannot be completely eliminated by the magnet 9.
Leakage flux was present.

本発明は以上のような従来の欠点を除去しようとするも
のである。
The present invention seeks to eliminate the above-mentioned drawbacks of the prior art.

すなわち、ナイフによる切断も容易で、可撓性に富み曲
げ加工も可能で成形しやすく、熱,圧力,接着剤などで
結合できる樹脂マグネットを利用し、ロールマグネット
とスペーサ間の隙間はほゾ無くすことができ、透磁率の
低下や漏洩磁束によるロスを無くそうとするマグネット
装置に関するものである。
In other words, the gap between the roll magnet and the spacer is eliminated by using a resin magnet that can be easily cut with a knife, has high flexibility, can be bent, is easy to mold, and can be bonded with heat, pressure, adhesive, etc. The present invention relates to a magnet device that is capable of eliminating magnetic permeability reduction and loss due to leakage magnetic flux.

以下、本発明のマグネット装置の原理構成を第5図、第
6図により説明する。
Hereinafter, the principle structure of the magnet device of the present invention will be explained with reference to FIGS. 5 and 6.

半径方向に磁化容易軸10を有するロールマグネット1
1を製作し、その周面12に着磁器13によって着磁し
、この同一面の磁極14.15の間に溝16を設け、こ
の溝16を流れる磁束線17に磁化容易軸10が沿うよ
うに板状樹脂マグネットのスペーサ18を挿入して本発
明のマグネット装置は構成されている。
Roll magnet 1 having an axis of easy magnetization 10 in the radial direction
1, its peripheral surface 12 is magnetized by a magnetizer 13, and a groove 16 is provided between the magnetic poles 14 and 15 on the same surface, so that the axis of easy magnetization 10 is aligned with the magnetic flux line 17 flowing through this groove 16. The magnet device of the present invention is constructed by inserting a spacer 18 made of a plate-shaped resin magnet.

この構成によれば、製作性が優れ、ロールマグネット1
1とスペーサ18との間に隙間が存在することも無くせ
、透磁率を高くし、漏洩磁束を著しく減少できることに
なる。
According to this configuration, the manufacturability is excellent, and the roll magnet 1
It is also possible to eliminate the existence of a gap between 1 and the spacer 18, thereby increasing magnetic permeability and significantly reducing leakage magnetic flux.

次に、本発明のマグネット装置を実施例をもって具体的
に説明する。
Next, the magnet device of the present invention will be specifically explained using examples.

実施例 1 塩素化ポリエチレン6重量係、可塑剤5.9重量係、滑
剤o.i重量係、フエライト88重量係をヘンシエル型
ミキサーで150Orpm5分間混合、混練し、その後
混練物を取出し、ロールミルで90〜130℃,5〜1
0分間混練を行ない、実質的にドメインサイズの板状フ
エライト粒子の磁化容易軸を板面に直角方向に配向させ
た厚さ0.1〜5.0mmの板状の樹脂マグネットシ一
トを得た。
Example 1: 6 parts by weight of chlorinated polyethylene, 5.9 parts by weight of plasticizer, 0.0 parts by weight of lubricant. Mix and knead I weight part and Ferrite 88 weight part in a Henschel type mixer at 150 rpm for 5 minutes, then take out the kneaded material and mix with a roll mill at 90 to 130 °C, 5 to 1
Kneading was carried out for 0 minutes to obtain a plate-shaped resin magnet sheet with a thickness of 0.1 to 5.0 mm in which the axis of easy magnetization of plate-shaped ferrite particles having a substantially domain size was oriented in a direction perpendicular to the plate surface. Ta.

この樹脂マグネットシ一トの磁気特性は、残留磁束密度
Brが2340G,保磁力BHCが18500e,最大
エネルギー積BHmaxが1.26MGOeであった。
The magnetic properties of this resin magnet sheet were as follows: residual magnetic flux density Br was 2340G, coercive force BHC was 18500e, and maximum energy product BHmax was 1.26MGOe.

その後、この樹脂マグネットシ一トの一面にクロロプレ
ン系接着剤を塗布し、第7図Aに示すように直径約7φ
の芯材19に巻付けて直径19φの積層状ロールマグネ
ット11を得た。
After that, apply a chloroprene adhesive to one side of this resin magnet sheet, and as shown in Figure 7A, the diameter is about 7φ.
A laminated roll magnet 11 having a diameter of 19φ was obtained by winding the core material 19 around the core material 19 of the magnet.

この積層状ロールマグネット11に第7図Bに示すよう
に幅8mmの溝16を形成した。
A groove 16 having a width of 8 mm was formed in this laminated roll magnet 11 as shown in FIG. 7B.

この溝16に、第7図Cに示すようにロールマグネット
11の接線方向に磁化容易軸10を配すべく板状の樹脂
マグネットよりなるスペーサ18を挿入後接着して、第
7図Dに示すようなマグネットを製作した。
In order to arrange the axis of easy magnetization 10 in the tangential direction of the roll magnet 11 as shown in FIG. 7C, a spacer 18 made of a plate-shaped resin magnet is inserted into this groove 16 and then glued, as shown in FIG. 7D. I made a magnet like this.

その後、外周面を研削し、第5図、第6図に示すような
磁化容易軸10を有する積層状ロールマグネットを得、
スペーサ18を挟んだ部分を着磁器で着磁してマグネッ
ト装置を得た。
Thereafter, the outer peripheral surface is ground to obtain a laminated roll magnet having an axis of easy magnetization 10 as shown in FIGS. 5 and 6,
A magnet device was obtained by magnetizing the portion sandwiching the spacer 18 using a magnetizer.

このマグネット装置の外周面にホール素子を接触し回転
させて最犬の磁束密度をガウスメータの目盛で読みとる
A Hall element is brought into contact with the outer peripheral surface of this magnet device and rotated, and the maximum magnetic flux density is read on the scale of a Gaussmeter.

この構成のマグネット装置の表面磁束密度は1050〜
IIOOGであった。
The surface magnetic flux density of the magnet device with this configuration is 1050~
It was IIOOG.

実施例 2 上記実施例1と同様に樹脂マグネットシ一トを直径約7
φの芯材19に巻付け、直径26.4φの積層状ロール
マグネット11を得、この積層状ロールマグネット11
に、第8図に示すように巾3mm,深さ57ntの溝1
6を2個所に設け、実施例1と同様にスペーサ18を挿
入接着し、このスペーサ18を挟でS極,N極と着磁し
てマグネット装置を作成した。
Example 2 Similar to Example 1 above, a resin magnet sheet was made with a diameter of about 7 mm.
The laminated roll magnet 11 is wound around a core material 19 of φ to obtain a laminated roll magnet 11 with a diameter of 26.4φ.
As shown in Fig. 8, groove 1 with a width of 3 mm and a depth of 57 nt is formed.
6 were provided at two locations, spacers 18 were inserted and bonded in the same manner as in Example 1, and magnetized with S and N poles with the spacers 18 in between to create a magnet device.

このマグネット装置の表面の最大磁束密度は、スペーサ
18の挿入部にはさまれたN極で1100〜1150G
1その他S極で1050〜1100Gであった。
The maximum magnetic flux density on the surface of this magnet device is 1100 to 1150G at the N pole sandwiched between the insertion portions of the spacer 18.
1 and other S poles were 1050 to 1100G.

実施例 3 実施例1に示すような配合例にしたがってヘンシエル型
ミキサで混合、混線、造粒を行ない成形用組成物を作る
Example 3 A molding composition is prepared by mixing, cross-mixing, and granulation in a Henschel type mixer according to the formulation example shown in Example 1.

この組成物を65φの押出機で押出品有効断面積6.3
cyj,外径29φ,内径10φ円筒状マグネットを得
、この円筒状マグネットにクロロプレン系接着剤を塗布
した芯材を挿入し、円筒状マグネットの外周面と溝を形
成し、板面に垂直な方向に磁化容易軸を有する板状樹脂
マグネットのスペーサを磁化容易軸が接線方向になるよ
う挿入した。
This composition was extruded using a 65φ extruder with an effective cross-sectional area of 6.3
cyj, a cylindrical magnet with an outer diameter of 29φ and an inner diameter of 10φ is obtained, a core material coated with chloroprene adhesive is inserted into this cylindrical magnet, a groove is formed with the outer peripheral surface of the cylindrical magnet, and a groove is formed in a direction perpendicular to the plate surface. A spacer made of a plate-shaped resin magnet having an axis of easy magnetization was inserted into the magnet so that the axis of easy magnetization was in the tangential direction.

その後、外周面を研削し、実施例1と同様に着磁してマ
グネット装置を得た。
Thereafter, the outer peripheral surface was ground and magnetized in the same manner as in Example 1 to obtain a magnet device.

このマグネット装置の表面磁束密度は900〜980G
であった。
The surface magnetic flux density of this magnet device is 900-980G
Met.

上記押出品は押出加工により半径方向に磁化容易軸が配
向するように加工できるため、実施例1の積層状ロール
マグネットと同様の効果が得られる。
Since the above extruded product can be processed by extrusion processing so that the axis of easy magnetization is oriented in the radial direction, the same effect as the laminated roll magnet of Example 1 can be obtained.

以上のように樹脂マグネットは、高分子材料などの非磁
性材が入っているため、焼結フエライト磁石と比べると
、同体積に含まれる磁気エネルギーが少ない。
As described above, since resin magnets contain non-magnetic materials such as polymeric materials, compared to sintered ferrite magnets, the same volume contains less magnetic energy.

しかし、強加工などにより各々の磁性材の磁化容易軸を
一定方向に揃えることにより、揃った方向の磁気特性は
特に配向しない焼結フエライトマグネットより同等もし
くはそれ以上に優れたものとなる。
However, by aligning the axes of easy magnetization of each magnetic material in a certain direction through strong processing, the magnetic properties in the aligned direction become equal to or even better than a sintered ferrite magnet that is not particularly oriented.

けれども、樹脂マグネットの配向させた方向と直角方向
の磁気特性は、Brが500〜800G.BHCが50
0〜8000eと非常に低い。
However, the magnetic properties in the direction perpendicular to the direction in which the resin magnet is oriented are such that Br is 500 to 800G. BHC is 50
Very low, 0-8000e.

また、配向させるためには、ロール加工または押出加工
により非常に強加工しなければならず、磁化容易軸の形
として、板面に直角方向とか中心点より放射秋な方向と
か比較的シンプルなものに限られる。
In addition, in order to achieve orientation, extremely strong processing is required by roll processing or extrusion processing, and the shape of the axis of easy magnetization can be relatively simple, such as at right angles to the plate surface or in a direction radiating from the center point. limited to.

しかし、同一面の異なる磁極間に流れる磁束線は第3図
や第10図A,Bのように曲線状あるいはふくらみをも
った形状になる。
However, the lines of magnetic flux flowing between different magnetic poles on the same surface have a curved or bulging shape as shown in FIG. 3 and FIGS. 10A and 10B.

この第3図に示すような方向に磁化容員軸1を有する構
造では、磁束線はある部分では磁化容易軸1に直角にな
る方向を通り、材料のもっている磁気エネルギーの低い
値しか集められない。
In a structure having the magnetization capacity axis 1 in the direction shown in Fig. 3, the magnetic flux lines pass in a direction perpendicular to the easy magnetization axis 1 in some parts, and only a low value of the magnetic energy of the material is collected. do not have.

本発明は実施例に示すように磁極付近の磁束線方向は、
磁石内部へ向う方向を有しているが、磁極の中間へ移る
につれて、次第に方向を変え、磁極の中央では、磁極を
結ぶ方向と平行な方向になるところに着眼し、磁極間の
部分に磁極を結ぶ方向に磁化容易軸を配しうるようにス
ペーサを挿入し、磁束線の各部の磁束線方向の磁気エネ
ルギーを太きくし、磁極に大きな磁力が発生する構造の
マグネット装置である。
As shown in the embodiments of the present invention, the direction of the magnetic flux lines near the magnetic poles is
It has a direction toward the inside of the magnet, but as it moves to the middle of the magnetic poles, the direction gradually changes, and at the center of the magnetic poles, it is parallel to the direction that connects the magnetic poles. This is a magnet device with a structure in which a spacer is inserted so that the axis of easy magnetization can be arranged in the direction connecting the magnetic flux lines, and the magnetic energy in the direction of the magnetic flux lines is increased in each part of the magnetic flux lines, so that a large magnetic force is generated at the magnetic poles.

本発明の原理をより詳しく説明するため、スペーサ挿入
部の拡大図を第11図に示す。
In order to explain the principle of the present invention in more detail, an enlarged view of the spacer insertion portion is shown in FIG. 11.

異なる極性の磁極14.15の間には磁束線17が流れ
る。
Lines of magnetic flux 17 flow between magnetic poles 14,15 of different polarity.

磁束線17の各部の磁束線ベクトルを材料内部へ向う方
向Aと、それと直角方向Bの2つの方向成分に分割した
成分のうち、材料内部へ向う成分Aの方が大きい領域は
、材料内部へ向う方向に磁化容易軸10を有する第1の
樹脂マグネツ−15A及び第2の樹脂マグネット14A
を配し、B方向の成分の大きい領域はB方向に磁化容易
軸10を有する第3の樹脂マグネット15Bを配する構
造である。
The magnetic flux line vector of each part of the magnetic flux line 17 is divided into two directional components, a direction A toward the inside of the material and a direction B perpendicular to it, and the region where the component A toward the inside of the material is larger is the direction toward the inside of the material. A first resin magnet 15A and a second resin magnet 14A having easy magnetization axes 10 in opposite directions.
The structure is such that a third resin magnet 15B having an axis of easy magnetization 10 in the B direction is arranged in a region with a large component in the B direction.

すなわち第11図において第1の樹脂マグネット15A
はSの磁極を形成し、第2の樹脂マグネツ−14AはN
の磁極を形成しているこれら2つの樹脂マグネットの間
にS極とN極とをむすぶ直線に平行な方向に磁化容易軸
10を有する第3の樹脂マグネット15Bを配する構造
である。
That is, in FIG. 11, the first resin magnet 15A
forms the S magnetic pole, and the second resin magnet-14A forms the N magnetic pole.
In this structure, a third resin magnet 15B having an axis of easy magnetization 10 in a direction parallel to the straight line connecting the S pole and the N pole is arranged between these two resin magnets forming the magnetic poles.

したがって、材料各部分の磁気エネルギーの大きいもの
を磁束線方向に集めることができ、磁束線全域の累積も
大きな磁気エネルギーを有する。
Therefore, the large magnetic energy of each part of the material can be collected in the direction of the magnetic flux lines, and the accumulation of all the magnetic flux lines also has large magnetic energy.

このような考え方に基づき、第9図A,B.第10図A
,Bのような磁化容易軸10を配列した構造のマグネッ
ト装置を製作し得る。
Based on this idea, Figure 9 A, B. Figure 10A
, B can be manufactured with a structure in which the easy magnetization axes 10 are arranged.

また、第10図A,Bのシート状樹脂マグネットを巻加
工し、第9図A,Bのようなマグネット装置とすること
もできる。
Alternatively, the sheet-like resin magnets shown in FIGS. 10A and 10B may be wound to form magnet devices such as those shown in FIGS. 9A and 9B.

以上のように本発明のマグネット装置は構成されるため
、起磁力を大きくでき、磁極の表面磁束密度を大きくで
き、同じ起磁力を得るにしても約27係軽量化された軽
いマグネット装置が得られ、焼結フエライトマグネット
の密度は4.89lcrdであるにもかかわらず、本発
明の樹脂マグネットの密度は3.59/crlとなる しかも、この樹脂マグネットは可撓性があり、割れに<
<、衝撃に強いのみならず、カッターで容易に切断でき
、熱,圧力,接着剤の少なくとも1つで容易に接着でき
る特徴をもっているため、積層構造でも容易に切断,結
合ができ、マグネット材の可塑性を利用し、積層構造体
を1つの型内で熱または圧力の少なくとも1つを加える
ことにより積層境界面のエアギャップをほとんど無すこ
とができ、磁気回路上、透磁率の低下を防ぐことができ
るとともに漏洩磁束のロスが無くなり、また、生産性に
富み、経済的にも有利に製造できる,さらに、磁束の方
向と磁化容易軸が沿うような構成になっているため、マ
グネット装置内の磁束を閉ループにするため、余分な材
料を必要とせず、さらに積層構造にした樹脂マグネット
を着磁するため、着磁した樹脂マグネット素材を積層す
るような互いに吸引したり、反発したり、ごみを吸引す
るような取扱い上の不便さが無く、組立上の作業性が著
しく優れるなどの利点をもち、工業的価値の犬なるもの
である。
Since the magnet device of the present invention is configured as described above, the magnetomotive force can be increased, the surface magnetic flux density of the magnetic poles can be increased, and even if the same magnetomotive force is obtained, a light magnet device that is about 27 times lighter can be obtained. Although the density of the sintered ferrite magnet is 4.89l crd, the density of the resin magnet of the present invention is 3.59/crl.
<Not only is it resistant to impact, it can be easily cut with a cutter, and it can be easily bonded with at least one of heat, pressure, and adhesives, so even laminated structures can be easily cut and bonded, and magnetic materials can be easily cut. Utilizing plasticity and applying at least one of heat and pressure to the laminated structure in one mold, it is possible to almost eliminate the air gap at the laminated interface, and prevent a decrease in magnetic permeability in the magnetic circuit. It also eliminates loss of leakage magnetic flux, making it highly productive and economically advantageous to manufacture.Furthermore, since the direction of magnetic flux is aligned with the axis of easy magnetization, In order to make the magnetic flux into a closed loop, no extra material is required, and since the resin magnet has a laminated structure, it is possible to attract or repel each other, and to remove dust. It has the advantages of not having the inconvenience of handling such as suction and being extremely easy to assemble, making it a valuable product in industry.

【図面の簡単な説明】 第1図a−cは従来の樹脂マグネットの磁化容易軸の方
向を示す斜視図、第2図Aは板状樹脂マグネットの磁化
容易軸の方向を示す斜視図、第2図Bは同マグネットを
巻付ける状態を示す斜視図、第3図は同ロールマグネッ
トの着磁時の説明図、第4図は従来のマグネット装置の
要部断面図、第5図,第6図は本発明のマグネット装置
の基本原理を示す概略構成図、第7図A−Dは同装置の
製造工程を示す斜視図、第8図は他の実施例の概略構成
図、第9図A,Bはさらに他の実施例を示す概略構成図
、第10図A,Bはさらに他の実施例の斜視図、第11
図は本発明の基本原理を示す要部拡大説明図である。 10・・・・・・磁化容易軸、11・・・・・ロールマ
グネット、14.15・・・・・・磁極、16・・・・
・・溝、17・・・・・・磁束線、18・・・・・・ス
ペーサ、19・・・・・・芯材。
[Brief Description of the Drawings] Figures 1 a to c are perspective views showing the direction of the easy axis of magnetization of a conventional resin magnet, Figure 2 A is a perspective view showing the direction of the easy axis of magnetization of a plate-shaped resin magnet, and Figure 2A is a perspective view showing the direction of the easy axis of magnetization of a conventional resin magnet. Figure 2B is a perspective view showing the state in which the magnet is wound, Figure 3 is an explanatory diagram when the roll magnet is magnetized, Figure 4 is a sectional view of the main part of the conventional magnet device, Figures 5 and 6. The figures are schematic configuration diagrams showing the basic principle of the magnet device of the present invention, FIGS. 7A-D are perspective views showing the manufacturing process of the same device, FIG. 8 is a schematic configuration diagram of another embodiment, and FIG. 9A , B are schematic configuration diagrams showing still another embodiment, FIGS. 10A and B are perspective views of still another embodiment, and FIGS.
The figure is an enlarged explanatory diagram of main parts showing the basic principle of the present invention. 10...Easy magnetization axis, 11...Roll magnet, 14.15...Magnetic pole, 16...
... Groove, 17 ... Line of magnetic flux, 18 ... Spacer, 19 ... Core material.

Claims (1)

【特許請求の範囲】 1 相異る極性の磁極をむすぶ直線に略直角な方向に磁
化容易軸を有し一方の極性の磁極を形成する第1の樹脂
マグネットと、同様の磁化容易軸を有し他方の極性の磁
極を形成する第2の樹脂マグネットと、前記第1の樹脂
マグネットと第2の樹脂マグネットとの間にあって相異
る極性の磁極をむすぶ直線に略平行な方向に磁化容易軸
を有する第3の樹脂マグネットとからなり、磁極間に流
れる多数の磁束線の線上の各点に於る磁束線ベクトルを
磁極を直線的に結ぶ方向の成分とそれに直角な成分の二
成分に分解したとき前者の成分が後者の成分より多い領
域には第3の樹脂マグネットを配置し、後者の成分が前
者の成分より多い領域には第1及び第2の樹脂マグネッ
トを配置し相互に固定し、同一面に極性の異なる磁極を
有するマグネット装置。 2 樹脂マグネットとして板面に垂直方向に磁化容易軸
をもつ板状樹脂マグネットを使用した特許請求の範囲第
1項記載のマグネット装置。
[Scope of Claims] 1. A first resin magnet that has an axis of easy magnetization in a direction substantially perpendicular to a straight line connecting magnetic poles of different polarities and forms a magnetic pole of one polarity, and a first resin magnet that has a similar axis of easy magnetization. and a second resin magnet forming a magnetic pole of the other polarity, and an axis of easy magnetization located between the first resin magnet and the second resin magnet in a direction substantially parallel to a straight line connecting the magnetic poles of different polarity. The magnetic flux line vector at each point on the line of many magnetic flux lines flowing between the magnetic poles is decomposed into two components: a component in the direction that connects the magnetic poles linearly, and a component perpendicular to the direction. When this happens, a third resin magnet is placed in an area where the former component is more than the latter component, and the first and second resin magnets are placed in an area where the latter component is more than the former component and fixed to each other. , a magnet device with magnetic poles of different polarities on the same surface. 2. The magnet device according to claim 1, which uses a plate-shaped resin magnet having an axis of easy magnetization perpendicular to the plate surface as the resin magnet.
JP9274777A 1977-08-01 1977-08-01 magnet device Expired JPS5813009B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9274777A JPS5813009B2 (en) 1977-08-01 1977-08-01 magnet device
US05/928,971 US4185262A (en) 1977-08-01 1978-07-28 Magnet device
DE2833517A DE2833517C2 (en) 1977-08-01 1978-07-31 Roller-shaped permanent magnet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9274777A JPS5813009B2 (en) 1977-08-01 1977-08-01 magnet device

Publications (2)

Publication Number Publication Date
JPS5427998A JPS5427998A (en) 1979-03-02
JPS5813009B2 true JPS5813009B2 (en) 1983-03-11

Family

ID=14062998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9274777A Expired JPS5813009B2 (en) 1977-08-01 1977-08-01 magnet device

Country Status (1)

Country Link
JP (1) JPS5813009B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887258U (en) * 1981-12-09 1983-06-13 株式会社村田製作所 Deflection yoke device
JPS58171804A (en) * 1982-04-02 1983-10-08 Canon Inc Magnet roller
JP2005294757A (en) * 2004-04-05 2005-10-20 Minebea Co Ltd Anisotropy rare earth bond magnet
JP2006013055A (en) * 2004-06-24 2006-01-12 Minebea Co Ltd Method for manufacturing anisotropic bond magnet

Also Published As

Publication number Publication date
JPS5427998A (en) 1979-03-02

Similar Documents

Publication Publication Date Title
JP5521820B2 (en) Rotating electric machine and manufacturing method thereof
US4459500A (en) Magnetic field pole assembly
JPS5813009B2 (en) magnet device
US4509031A (en) Magnetic roller device
JP2016207773A (en) Manufacturing method for bond magnet and bond magnet
JPS60929B2 (en) magnetic circuit device
WO1980000196A1 (en) Method of producing roll-type magnet
JPS6035948A (en) Flat brushless motor
JPH01115109A (en) Manufacture of magnet roll
JPH02285613A (en) Composite magnetic core
JPS62282423A (en) Manufacture of magnet roll
JPS6028093Y2 (en) permanent magnet structure
JP2725328B2 (en) Manufacturing method of magnet roll
JPH02211032A (en) Composite-structured magnet member
JP3265876B2 (en) Magnet roll
JPS61116956A (en) Rotor for motor of magnet rotation type
JPH01140614A (en) Manufacture of magnet roll
JP2021097543A (en) IPM motor
JPH06197482A (en) Magnet for field system of small motor
JPS58170347A (en) Rotor magnet
JP2023116318A (en) Magnet, electric motor and manufacturing method of magnet
JPH01140615A (en) Manufacture of magnet roll
JP3417420B2 (en) Magnet roll used for dry electrophotographic equipment
JPS5848904A (en) Preparation of rolled magnet
JP2718134B2 (en) Manufacturing method of magnet roll