JPS58129815A - Manufacture of small-sized crystal piece - Google Patents

Manufacture of small-sized crystal piece

Info

Publication number
JPS58129815A
JPS58129815A JP1076582A JP1076582A JPS58129815A JP S58129815 A JPS58129815 A JP S58129815A JP 1076582 A JP1076582 A JP 1076582A JP 1076582 A JP1076582 A JP 1076582A JP S58129815 A JPS58129815 A JP S58129815A
Authority
JP
Japan
Prior art keywords
crystal piece
blank
crystal
small
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076582A
Other languages
Japanese (ja)
Inventor
Hiroshi Hishida
菱田紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP1076582A priority Critical patent/JPS58129815A/en
Publication of JPS58129815A publication Critical patent/JPS58129815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Abstract

PURPOSE:To obtain a small-sized crystal piece with good characteristics efficiently by finishing the small-sized crystal piece near ends with adhesive grains of larger grain size than at the center part. CONSTITUTION:A crystal piece blank 4 is placed in a pipe made of cast iron together with abrasive grains of grain side (#400-1,000) and the pipe is rotated to perform so called piping work. Consequently, blank 4 is shaped into a crystal piece blank 7. In this case, curved surface 8 of ends of the crystal piece are nearly finished to finally necessary curved surfaces, but a little bit thicker. Then, the blank 7 is finished by lapping and/or polishing while using abrasive grains of less grain size (#2,000-4,000) to obtain flat parts 10 as center part of main surfaces. Lastly, the shape of the crystal blank 9 is obtained.

Description

【発明の詳細な説明】 本発明は両主面が所定の曲率を持つ曲面を有する小型水
晶片の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a small crystal piece having both main surfaces having curved surfaces having a predetermined curvature.

近年携帯時計の時間精度は周波数基準として水晶振動子
が用いられるようになってから飛躍的に向上し、それま
で機械式で日差数秒であったものが月差5〜10秒と言
った時間精度が達成されるようになった。
In recent years, the time accuracy of mobile watches has improved dramatically since crystal oscillators were used as frequency standards, and the time accuracy of mechanical watches, which used to be a few seconds per day, has now increased to 5 to 10 seconds per month. Accuracy is now achieved.

しかし、精度に対する要求は増々厳しくなり、特に最近
は時間精度が年差数秒の高精度時計の要求が一段と強く
なってきたのが実情である。
However, the requirements for precision are becoming increasingly strict, and the reality is that recently there has been a particularly strong demand for high-precision clocks with a time accuracy of several seconds per year.

このような高精度な時計の時間基準は32Kf(zの音
叉型水晶振動子を使用する単純な方法では達成がむつか
しく、高精度な時計の時間基準として4M Hz程度の
高周波数を有するATカットの厚み滑り水晶振動子が注
目され、研究開発に一層の努力が傾けられるようになっ
た。
The time standard for such a high-precision clock is difficult to achieve using a simple method using a 32Kf (Z tuning fork type crystal oscillator). Thickness-slip crystal oscillators attracted attention, and more efforts were put into research and development.

しカル、この厚み滑り水晶振動子は通信機やクロック等
に使用される比較的大きな寸法のものではこの振動子特
有の副振動を使用節回をさけて設計することも簡単であ
り製造も容どであるが、携帯時計に使用出来るような小
さな寸法のもの(約6岨以下程度のもの)は製造方法に
も種々工夫が必要である。
However, this thickness-sliding crystal resonator is easy to design and manufacture to avoid the secondary vibration peculiar to this resonator in relatively large size devices used in communication equipment, clocks, etc. However, for small-sized watches that can be used in portable watches (approximately 6 cm or less), various ingenuity is required in the manufacturing method.

厚みすべり水晶片の製造方法の従来例は、第1図に示す
断面図のように、厚み寸法を仕上げた水晶片表面の外形
形状が円形や角形の水晶片ブランク1を所定の曲率を持
ったおわん型の回転皿2で砥粒3を供給しつつ少しづつ
摺りながら水晶片端部の曲率を形成していた。
As shown in the cross-sectional view shown in Fig. 1, a conventional method for manufacturing a thickness-sliding crystal blank is to take a crystal blank 1 whose thickness dimension has been finished and whose surface has a circular or square external shape, and which has a predetermined curvature. The curvature of one end of the crystal was formed by rubbing little by little while supplying abrasive grains 3 with a bowl-shaped rotating plate 2.

この方法は手軽であるが一個づつの成形であることから
能率が悪く、また、水晶片の主面の軸中心と曲面の曲率
の中心がずれたりして、曲面の形成精度もよくなかった
Although this method is easy, it is not efficient because it involves molding one piece at a time, and the accuracy of forming the curved surface is also poor because the center of the axis of the main surface of the crystal piece may be misaligned with the center of curvature of the curved surface.

そこで近年は第2図に示す斜視図のようなパイピングと
言われる方法も使用されるようになってきた。
Therefore, in recent years, a method called piping, as shown in the perspective view shown in FIG. 2, has also been used.

この方法は一度に多量の水晶片が製造出来るというメリ
ットがアル反面、#400GC〜#10o。
This method has the advantage of being able to produce a large amount of crystal pieces at one time, but it also has the advantage of being able to produce a large amount of crystal pieces at once.

G C程度の粗い砥粒を使用することもあり、曲面が形
成されると同時に主面も同時に荒らされてしまい、寸法
的にも変化してしまう欠点があった。
Since abrasive grains as coarse as GC are sometimes used, the principal surface is also roughened at the same time as the curved surface is formed, resulting in a dimensional change.

特に、携帯時計に使用されるような水晶片の辺比(厚さ
と外径あるいは辺の長さとの比)が15以下の水晶振動
子になると、形状の加工精度が特性に及ぼす影響が大き
くなることは明らかであり、パイピングにより厚さ寸法
が変化することは主振動に対して、副振動の周波数の固
定化が困難となり、水晶振動子特性の周波数やCI値の
温度特性が悪化し、主面の面粗度は良好なことが必要だ
が荒れることによりエージング特性も年差をねらうよう
な良好なものは得られにくくなる。
In particular, when it comes to crystal units used in mobile watches with a side ratio (ratio of thickness to outer diameter or side length) of 15 or less, the processing precision of the shape has a large effect on the characteristics. It is clear that changing the thickness dimension due to piping makes it difficult to fix the frequency of the secondary vibration with respect to the main vibration, which deteriorates the frequency of the crystal resonator characteristics and the temperature characteristics of the CI value. It is necessary that the surface roughness of the surface be good, but if the surface is rough, it becomes difficult to obtain good aging characteristics such as those aiming for yearly differences.

本発明の目的は前述したような製造方法の欠点を改善し
、携帯時計にも使用可能な小型のしかも特性の良い水晶
片を効率良く製造することにある。
An object of the present invention is to improve the above-mentioned drawbacks of the manufacturing method and to efficiently manufacture a small crystal piece with good characteristics that can be used in portable watches.

この目的を達成するための本発明の要点は、第2図で説
明したパイピングという方法を利用する一方水晶片の中
心部近傍をラッピング及びポリシングの少くとも一つに
より仕上成形し面粗度を良くし、水晶片の端部近傍は中
心部より粗い粒度の砥粒を使用することにより面粗度を
中心部より粗くしようとするものである。
The key point of the present invention to achieve this object is to use the piping method explained in FIG. However, by using abrasive grains with a coarser grain size near the ends of the crystal piece than in the center, the surface roughness is intended to be rougher than in the center.

次に、本発明による水晶片の製造方法について説明する
。水晶片表面の外形はもちろん角形、菱形、円形、多角
形等、何でも可能であるがここでは円形で且つ中心附近
に平担部を有するブランクについて加工法の一実施例を
第2図及び第3図により説明する。
Next, a method for manufacturing a crystal blank according to the present invention will be explained. The outer shape of the surface of the crystal blank can of course be any shape, such as square, diamond, circle, polygon, etc., but here we will show an example of the processing method for a blank that is circular and has a flat part near the center. This will be explained using figures.

始めに、第3図aの如く水晶片ブランクは外径を丸め機
等により仕上り寸法より平面的に多少太き目に仕上げら
れた後に、厚み寸法も仕上り寸法より厚めに加工される
。なお第3図aにおいて点線部が仕上り寸法を示してい
る。
First, as shown in FIG. 3a, the outer diameter of the crystal blank is finished using a rounding machine or the like so that it is slightly thicker in plan than the finished dimension, and then the thickness is processed to be thicker than the finished dimension. In addition, in FIG. 3a, the dotted line portion indicates the finished dimensions.

この水晶片ブランク4を第2図のような鋳鉄のパイプ5
の中に粒度(#400〜#1000)の砥粒6と一緒に
数百側入れ蓋6をかぶせた後にパイプを所定の回転数で
回転するいわゆるパイピング加工を行う。回転が早いと
均一な曲面が形成されないし、遅いと曲面の形成能率が
悪い。約5〜6日の回転の後に取出した水晶片ブランク
7の断面は第3図すのような形状となる。この段階で水
晶片の端部である曲面8の形状は最終的に必要な曲面形
状が得られているが、厚みについては若干厚く仕上って
いる(点線部が仕上がり厚さ寸法である)。
This crystal blank 4 is connected to a cast iron pipe 5 as shown in Figure 2.
A so-called piping process is performed in which several hundreds of abrasive grains 6 of a grain size (#400 to #1000) are placed in a pipe and a lid 6 is placed on the side, and then the pipe is rotated at a predetermined number of revolutions. If the rotation is fast, a uniform curved surface cannot be formed, and if the rotation is slow, the efficiency of forming the curved surface is poor. The cross section of the crystal blank 7 taken out after about 5 to 6 days of rotation has a shape as shown in Figure 3. At this stage, the curved surface 8, which is the end of the crystal piece, has the final required curved shape, but the thickness is slightly thicker (the dotted line is the finished thickness dimension).

この時点では厚みはバラライており、主面の平担部の面
の状態も荒れている。
At this point, the thickness is uneven, and the surface condition of the flat portion of the main surface is also rough.

次に、この形状の水晶片ブランク7をパイピングより、
より細かい粒度の砥粒(#2000〜#4000)を用
いたラップもしくはポリッシュの単独あるいは両方によ
り主面の中心部である平担部10を仕上げる。第4図に
ラッピング工程の部分断面図を示す。7は水晶ブランク
、11は上・下のラップ盤、12はキャリアで、ラップ
盤11を回転して砥粒13により中心部である平担部1
0を仕上加工する。このことにより、振動振巾の大きな
平担部10は曲面部8よりも良好な面状態を得ながら厚
み精度も確実に所定寸法内に仕上げることが出来る。最
終の水晶片ブランク9の断面は第3図Cに示すものであ
るJもちろん表面の加工歪層はライトエツチングにより
除去される。
Next, by piping the crystal piece blank 7 of this shape,
The flat portion 10, which is the center of the main surface, is finished by lapping or polishing using finer abrasive grains (#2000 to #4000), or both. FIG. 4 shows a partial sectional view of the lapping process. 7 is a crystal blank, 11 is an upper and lower lapping machine, and 12 is a carrier.The lapping machine 11 is rotated and the central flat part 1 is cut by abrasive grains 13.
Finish processing 0. As a result, the flat part 10 having a large vibration amplitude can obtain a better surface condition than the curved part 8, and the thickness accuracy can be reliably finished within a predetermined dimension. The cross section of the final crystal blank 9 is shown in FIG. 3C.Of course, the processed strain layer on the surface is removed by light etching.

このような製造方法を行うことにより、パイピングによ
る多量な能率のよいベベルの形成を利用する一方、主面
平担部の厚み精度はラップ、ボリッシェにより精度を上
げて形成することとなり、振動振巾の大きな平担部の面
状態の良好な厚み寸法精度の揃った小型の水晶片の多量
生産が可能となった。
By using this manufacturing method, a large amount of bevels can be formed efficiently by piping, while the thickness accuracy of the flat part on the main surface is increased by lapping and bolishing, and the vibration amplitude is It has become possible to mass produce small crystal blanks with uniform thickness and dimensional accuracy and a good surface condition of the large flat part.

尚、中心部と端部の加工法は端部をパイピング以外の砥
粒加工(例えば中心部をマスクで被ってからホーニング
やエツチングをする等)を行うことにより逆の工程の場
合もあり得る。とれであれば中心部が特に平担でなくて
も良い。
Note that the processing method for the center and end portions may be reversed by performing abrasive processing other than piping on the end portions (for example, covering the center portion with a mask and then honing or etching). The center doesn't need to be particularly flat as long as it's grainy.

更に矩形水晶片の場合は中心部の主面及び側面の面粗度
と端部の主面及び側面の面粗度を上記のような方法によ
り変えることにより1、緒特性を向上させ良好な振動子
を得ることができる。
Furthermore, in the case of a rectangular crystal piece, by changing the surface roughness of the main surface and side surfaces of the center part and the surface roughness of the main surface and side surfaces of the end parts by the above method, 1. Improve the crystal characteristics and achieve good vibration. can have a child.

以上のように本発明を実施することにより、小型の水晶
片による厚み滑り水晶振動子は厚み寸法が管理出来るこ
とから、主振動に対する副振動の固定が確実になされ更
に中心部と端部の面粗度を変えることができる事から良
好な周波数とCI値の温度特性が得られ、主面の面状態
から、良好なエージング特性も達成出来る効果があり、
年差表示の携帯時計の時間基準として非常に有用である
By carrying out the present invention as described above, the thickness of the thickness-sliding crystal resonator using a small crystal piece can be controlled, so that the secondary vibration can be reliably fixed to the main vibration, and the surfaces of the center and end parts can be reliably fixed. Since the roughness can be changed, good frequency and CI value temperature characteristics can be obtained, and the surface condition of the main surface has the effect of achieving good aging characteristics.
It is very useful as a time standard for mobile watches that display yearly differences.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 両主面が所定の曲率を持つ曲面を有する小型水晶片の製
造法において、中心部近傍をラッピング及びポリシング
の少くとも一つにより仕上成形する工程と、前記小型水
晶片の端部近傍を前記中心部より粗い粒度の砥粒により
仕上成形する工程とを有することを特徴とする小型水晶
片の製造方丸
In a method for manufacturing a small crystal piece having curved surfaces on both main surfaces with a predetermined curvature, a step of final forming the vicinity of the center portion by at least one of lapping and polishing, and a step of final forming the vicinity of the center portion of the small crystal piece with a curved surface having a predetermined curvature; A method for manufacturing a small crystal piece, characterized by comprising a final forming process using abrasive grains with a coarser grain size than the previous one.
JP1076582A 1982-01-26 1982-01-26 Manufacture of small-sized crystal piece Pending JPS58129815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076582A JPS58129815A (en) 1982-01-26 1982-01-26 Manufacture of small-sized crystal piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076582A JPS58129815A (en) 1982-01-26 1982-01-26 Manufacture of small-sized crystal piece

Publications (1)

Publication Number Publication Date
JPS58129815A true JPS58129815A (en) 1983-08-03

Family

ID=11759418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076582A Pending JPS58129815A (en) 1982-01-26 1982-01-26 Manufacture of small-sized crystal piece

Country Status (1)

Country Link
JP (1) JPS58129815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230207A (en) * 1988-07-20 1990-01-31 Asahi Denpa Kk Crystal resonator and its manufacture
JP2008166971A (en) * 2006-12-27 2008-07-17 Kyocera Kinseki Corp Cylinder for beveling, and piezo-electric reed processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230207A (en) * 1988-07-20 1990-01-31 Asahi Denpa Kk Crystal resonator and its manufacture
JP2008166971A (en) * 2006-12-27 2008-07-17 Kyocera Kinseki Corp Cylinder for beveling, and piezo-electric reed processing method

Similar Documents

Publication Publication Date Title
KR20060118346A (en) Piezoelectric substrate and method of manufacturing the same
JPS58129815A (en) Manufacture of small-sized crystal piece
JPH0210669Y2 (en)
US4017753A (en) Shaped quartz crystal resonator
JPS58100432A (en) Bevelling process of wafer
US4224547A (en) Adjusting the frequency of piezoelectric crystal devices via fracturing the crystal surface
JP2002126986A (en) Lens machining method
JP5435060B2 (en) Vibrating piece
JP2007104042A (en) Crystal resonation element and manufacturing method thereof
JP2000301451A (en) Polishing device carrier and manufacture thereof
JP3979425B2 (en) Quartz substrate manufacturing method
JP3149835B2 (en) Spherical pot for convex processing
US4905357A (en) Method for manufacturing resonators with beveled ends
JP2608757B2 (en) Quartz crystal crystal wafer
JPS5851032A (en) Manufacture of cylindrical crystal oscillator
CN1047998A (en) Angle, wafer school and the incorporate method and apparatus of grinding
JP2000301447A (en) Machining method of quartz oscillating plate
JPS59110554A (en) Method of manufacturing cylindrical quarts resonator
JPH10209786A (en) Crystal-vibrating piece and machining method for crystal-vibrating piece
Nagaura et al. High-frequency, plano-convex quartz oscillators made by a dual-face lapping machine
JPS5851035A (en) Manufacture of bevel crystal oscillator
JP2000317815A (en) Piezoelectric element and machining method therefor
JP2000317782A (en) Piezoelectric element and its machining method
JPS59175952A (en) Manufacture of small size thick sliding quartz piece
JPS5890814A (en) Small-sized planoconvex oscillating chip and its processing method