JPS5812962B2 - Aburaganshin cable - Google Patents

Aburaganshin cable

Info

Publication number
JPS5812962B2
JPS5812962B2 JP5893575A JP5893575A JPS5812962B2 JP S5812962 B2 JPS5812962 B2 JP S5812962B2 JP 5893575 A JP5893575 A JP 5893575A JP 5893575 A JP5893575 A JP 5893575A JP S5812962 B2 JPS5812962 B2 JP S5812962B2
Authority
JP
Japan
Prior art keywords
paper
thickness
cable
polypropylene
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5893575A
Other languages
Japanese (ja)
Other versions
JPS51134887A (en
Inventor
伊藤弘孝
藤田英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP5893575A priority Critical patent/JPS5812962B2/en
Publication of JPS51134887A publication Critical patent/JPS51134887A/en
Publication of JPS5812962B2 publication Critical patent/JPS5812962B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、クラフトパルプとポリプロピレンパルプとポ
リプロピレン繊維の三成分からなる混抄紙(以下、三成
分系ポリプロピレン混抄紙というを主体に絶縁体を構成
した油含浸ケーブル、さらに詳しくは混抄比率および紙
厚の異なる三成分系ポリプロピレン混抄紙を主体に順次
導体上に捲回することにより低誘電損失にして、かつ耐
電圧値の高い超々高圧用油含浸ケーブルを与えんとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil-impregnated cable mainly composed of a three-component mixed paper consisting of kraft pulp, polypropylene pulp, and polypropylene fibers (hereinafter referred to as three-component polypropylene mixed paper) and an insulator. This is intended to provide an ultra-super high voltage oil-impregnated cable with low dielectric loss and high withstand voltage value by sequentially winding three-component polypropylene mixed papers with different mixing ratios and paper thicknesses onto a conductor. It is.

従来より市街化地域における電力輸送は危険防止、美観
などの観点から地下ケーブルにより行なわれているが、
近時都市への入口集中の為都市における電力需要が急増
しており、このため地下ケーブルの大容量化が望まれて
いる。
Traditionally, electricity transportation in urbanized areas has been carried out using underground cables for reasons of safety and aesthetics.
In recent years, the demand for electricity in cities has increased rapidly due to the concentration of entrances to cities, and for this reason, it is desired to increase the capacity of underground cables.

しかしながら、従来のクラフト紙と炭化水素油で絶縁さ
れたケーブルでは、クラフト紙の大きな誘電損失のため
、送電電圧を上げると送電途中における電力の損失がい
ちじるしく増大するので送電電圧をある程度以上に上げ
ることができず、大容量の電力を送電することができな
い。
However, with conventional cables insulated with kraft paper and hydrocarbon oil, due to the large dielectric loss of the kraft paper, increasing the transmission voltage significantly increases power loss during power transmission, so it is difficult to increase the transmission voltage beyond a certain level. It is not possible to transmit large amounts of electricity.

このためクラフト紙に代わる電気絶縁紙の開発が進めら
れており、たとえばクラフト紙と同様の紙状構造を有す
る合成紙がフイルムと異なって油通路の形成が容易であ
る観点から鋭意研究されている。
For this reason, the development of electrically insulating paper to replace kraft paper is progressing, and for example, synthetic paper, which has a paper-like structure similar to kraft paper, is being intensively researched from the viewpoint that unlike film, it is easier to form oil channels. .

かかる合成紙の代表的なものとしてテナツクス紙(オラ
ンダ国アクツオー(AKZO)社製、ポリ−2,6−ジ
フエニル−1,4−フエニレンオキサイドからなる紙)
、ポリプロピレン紙などがあるが、前者はコストが非常
に高いこと、後者は炭化水素油中で膨潤することから、
地下ケーブルへの商業的利用はなされていない。
A typical example of such synthetic paper is Tenax paper (manufactured by AKZO in the Netherlands, paper made of poly-2,6-diphenyl-1,4-phenylene oxide).
, polypropylene paper, etc., but the former is very expensive and the latter swells in hydrocarbon oil.
There is no commercial use for underground cables.

一方、前記のごとき単一ポリマーからなる合成紙とは別
に、クラフトパルプとポリマーとを混抄することによっ
て誘電損失の小さい電気絶縁紙を経済的にえんとする試
みもなされている。
On the other hand, in addition to the synthetic paper made of a single polymer as described above, attempts have also been made to economically produce electrically insulating paper with low dielectric loss by mixing kraft pulp and polymer.

たとえば特公昭38−8421号公報にみられるポリオ
レフイン繊維との混抄あるいは特公昭38−19230
号公報にみられるポリオレフイン粉末との混抄などであ
るが、これラホリオレフイン繊維またはポリオレフイン
粉末はクラフトバルプとの結合が弱いため均質な混抄紙
に抄きあげることができず、良好な電気特性、機械特性
を与える電気絶縁紙をうろことができない。
For example, mixed paper with polyolefin fiber as seen in Japanese Patent Publication No. 38-8421 or Japanese Patent Publication No. 38-19230.
However, since the Lahoriolefin fiber or polyolefin powder has a weak bond with the kraft pulp, it is not possible to make a homogeneous mixed paper, resulting in good electrical properties, Electrical insulating paper that gives mechanical properties cannot be blown.

しかるに本発明者らは、前記のごとき従来の電気絶縁紙
の欠点を排除し、均質な紙質でしかも高気密度であり、
ケーブルのテープ巻に適した機械特性を有し、炭化水素
油中で良好な誘電損失を示し、かつ高価の絶縁油中で膨
潤しない電気絶縁紙をうるべく種々研究を重ねた結果、
クラフトパルプ、ポリプロピレンバルプ及びポリプロピ
レン繊維の三成分からなり、かつ特定の混抄比率範囲内
にある三成分系ポリプロピレン混抄紙が前記目的を達成
することを見出した。
However, the present inventors have eliminated the drawbacks of the conventional electrically insulating paper as described above, and have created a paper that is of homogeneous quality and has high airtightness.
As a result of various research efforts to create an electrical insulating paper that has mechanical properties suitable for cable tape wrapping, shows good dielectric loss in hydrocarbon oil, and does not swell in expensive insulating oil,
It has been found that a three-component polypropylene mixed paper consisting of three components of kraft pulp, polypropylene bulk and polypropylene fibers and within a specific mixing ratio range achieves the above object.

三成分系ポリプロピレン混抄紙の単一混抄組成のものを
紙ケーブルで一般的な方法により紙厚を変えて巻回し油
を含浸してなるケーブルはそれ自身良好な性能結果を与
えるものであるが,本発明者らはさらにより最適なケー
ブルの絶縁構成のあり方について種々の検討を加えた結
果、単一組成のポリプロピレン混抄紙からなるケーブル
よりも一層低誘電損失にしてかつ耐電圧値が高く、しか
も耐電圧値は加熱屈曲後も低下しない特殊なケーブルの
絶縁構成の方法があることを見出し,本発明を完成する
にいたった。
A cable made by winding a single composition of ternary polypropylene mixed paper with different paper thicknesses and impregnating it with oil using the usual method for paper cables gives good performance results in itself; The inventors of the present invention further conducted various studies on the optimal insulation structure for cables, and as a result, they developed a cable with lower dielectric loss and higher withstand voltage value than cables made of polypropylene mixed paper of a single composition. We discovered that there is a method for configuring special cable insulation so that the withstand voltage value does not decrease even after heating and bending, and we were able to complete the present invention.

すなわち本発明は(1)クラフトバルプ、(11)ポリ
プロピレンパルプ及び(110ポリプロピレン繊維から
なり、上記(1)〜(iii)の混抄比率が第1図に示
す三角座標のa点、b点およびC点を直線で結んだ領域
内にある繊維状材料で構成された厚さ70〜125μの
電気絶縁紙を導体遮蔽層上に全絶縁厚の10〜50%厚
さで捲回し、その上に全絶縁厚の残り部分を上記(l)
〜(iii)らなり、かつそれらの混抄比率が第1図に
示す三角座標のb点、C点,d点およびe点を直線で結
んだ領域(但しb点とC点の線上にある成分を除く)内
にある繊維状材料で構成ざれた厚さ125〜250μの
電気絶縁紙あるいは厚さ125〜250μのポリプロピ
レンのみからなる電気絶縁紙のテープを巻回してなるこ
とを特徴とする油含浸ケーブルを提案するものである。
That is, the present invention consists of (1) kraft pulp, (11) polypropylene pulp, and (110 polypropylene fiber), and the mixing ratio of the above (1) to (iii) is at point a, point b, and point C of the triangular coordinates shown in FIG. Electrical insulating paper made of fibrous material with a thickness of 70 to 125 μm is wound on the conductor shielding layer to a thickness of 10 to 50% of the total insulation thickness within the area connected by straight lines. The remaining insulation thickness is the above (l)
~ (iii), and their mixing ratio is an area connecting points b, C, d, and e of the triangular coordinates shown in Figure 1 with a straight line (however, the component on the line between points b and C An oil-impregnated product characterized by being made by winding a tape of electrically insulating paper with a thickness of 125 to 250 μm consisting of a fibrous material (excluding polypropylene) or electrically insulating paper made only of polypropylene with a thickness of 125 to 250 μm. This is a proposal for cables.

すなわち本発明においては、ケーブル導体上に捲回する
電気絶縁紙テープの混抄比率と紙厚を限定すると共にそ
れらのテープの巻き順序および巻上げ比率を規定するこ
とによりケーブルの絶縁構成を最適化しようとするもの
であり、この方法により上層に用いる紙が多少膨潤して
もケーブル全体の性能に何ら変化がないばかりか、多少
の膨潤が許されるためかえって含浸すべき油の選択範囲
を増すことが可能であり、しかも低誘電損失にしてかつ
耐電圧値が高いケーブルが得られる。
That is, in the present invention, the insulation structure of the cable is optimized by limiting the mixing ratio and paper thickness of the electrically insulating paper tapes wound on the cable conductor, as well as defining the winding order and winding ratio of those tapes. By using this method, even if the paper used for the upper layer swells a little, there is no change in the overall performance of the cable, and because it allows some swelling, it is possible to increase the range of oils that can be impregnated. Moreover, a cable with low dielectric loss and high withstand voltage value can be obtained.

本発明の電気絶縁紙に用いるグラフトパルプとしてはJ
IS C2307に規定される電力ケーブル用絶縁紙
を与えるような品質のクラフトパルプであればいずれも
好適に使用されるが,とくに脱イオン水で充分洗浄した
ものが好ましい。
The graft pulp used for the electrically insulating paper of the present invention is J
Any kraft pulp of a quality capable of producing insulating paper for power cables as defined in IS C2307 may be suitably used, but one that has been thoroughly washed with deionized water is particularly preferred.

ポリプロピレン繊維としては通常の延伸処理を伴なう溶
融紡糸あるいは延伸フイルムの割裂などの方法により製
造されたものが用いられ、通常太さ10〜30μの繊維
全長さ2〜15mmに切断したカッティング繊維が好ま
しく用いられる。
The polypropylene fibers used are those produced by methods such as melt spinning or splitting of stretched films that involve ordinary drawing treatment, and cut fibers that are usually cut into fibers with a thickness of 10 to 30 μm and a total length of 2 to 15 mm are used. Preferably used.

かかるものにはバイレン繊維(三菱レイヨン■製)など
があるが、紡糸前の樹脂あるいは紡糸後の繊維を低級ア
ルコール、ケトン、エーテルまたは芳香族炭化水素など
の溶剤もしくは脱イオン水などで洗浄して不純物を極力
除去したものが好ましい。
Such products include Baylene fiber (manufactured by Mitsubishi Rayon ■), but the resin before spinning or the fiber after spinning is washed with a solvent such as a lower alcohol, ketone, ether, or aromatic hydrocarbon, or with deionized water. It is preferable to remove impurities as much as possible.

本発明に用いるポリプロピレンバルプとはポリプロピレ
ンの微細フイブリル化繊維であって,通常上記ポリプロ
ピレン繊維より細く約1μ以上の太さのもので、長さ0
.1〜5mm程度のものが好ましく用いられる。
The polypropylene bulk used in the present invention is a fine fibrillated fiber of polypropylene, which is usually thinner than the above-mentioned polypropylene fiber and has a thickness of about 1 μm or more, and has a length of 0.
.. A thickness of about 1 to 5 mm is preferably used.

しかしてこのものは通常ポリプロピレンの塩化メチレン
などの低沸点溶剤溶液をノズルを有するタンクに入れて
加熱し、その自生圧により吹出させることによりまたは
ポリプロピレンの溶融物をノズルから遠心力により吹出
させるなどの方法によって製造される。
However, levers are usually made by heating a solution of polypropylene in a low boiling point solvent such as methylene chloride in a tank with a nozzle and blowing it out using its own pressure, or by blowing out a melt of polypropylene from a nozzle using centrifugal force. manufactured by the method.

とくに好ましいのはポリプロピレンに水酸基,カルボン
酸基などの親水基を結合させたものを前記の方法などに
よりバルプ化したものであり、その水中へのすぐれた分
散性を利用して抄紙をより均一に行なうことができ、し
たがって均質な混抄紙がえられる。
Particularly preferred is polypropylene with hydrophilic groups such as hydroxyl groups and carboxylic acid groups bonded to it, which is made into a bulge by the method described above, and its excellent dispersibility in water can be used to make paper more uniform. Therefore, a homogeneous mixed paper can be obtained.

かかるポリプロピレンバルプの例としてはSWP(三井
ゼラパツク■製)などがあげられる。
An example of such a polypropylene bulb is SWP (manufactured by Mitsui Zella Pack ■).

本発明にいう三成分系ポリプロピレン紙からなる電気絶
縁紙は上記の三成分の繊維状材料を上記の混抄比率にお
いて、脱イオン水中あるいはポリエチレンオキサイド等
の分散剤を含む水中に分散させ抄紙することにより容易
に得ることができる。
The electrical insulating paper made of three-component polypropylene paper according to the present invention is produced by dispersing the above-mentioned three-component fibrous materials in deionized water or water containing a dispersant such as polyethylene oxide at the above-mentioned mixing ratio. can be obtained easily.

さらにまた本発明にいうポリプロピレンのみからなる電
気絶縁紙もポリプロピレンの繊維またはパルプの湿式抄
紙あるいは乾式抄紙あるいはスパンボンド法により製造
されるが、そのうち特に好ましいのは十分に不純物を除
去したものであり、例えば米国エクソン社製のスパンポ
ンド法によるポリプロピレン紙がある。
Furthermore, the electrical insulating paper made only of polypropylene according to the present invention is produced by wet paper making, dry paper making, or spunbonding of polypropylene fibers or pulp, but particularly preferred is one from which impurities have been sufficiently removed, For example, there is polypropylene paper made by the spunpond method manufactured by Exxon Corporation in the United States.

これらの電気絶縁紙は通常のホツトカレンダーあるいは
スーパーカレンダー処理により気密性を高めることが好
ましく、かつ抄紙後の適当な工程で溶媒中で洗浄するこ
とにより不純物を除去することが好ましい。
It is preferable to improve the airtightness of these electrically insulating papers by ordinary hot calendering or supercalendering, and it is preferable to remove impurities by washing in a solvent in an appropriate step after papermaking.

本発明においては第1図に示す三角座標のa,d,eの
各点を直線で結んだ領域内の混抄比率を有する紙を使用
するが、混抄比率をこの領域に決めた理由は、直線ab
eよりも左の領域では紙の気密性向上を図るべくホット
カレンダー処理を行ってもその際のコントロールが困難
となり紙が均一性に欠けるようになるからであり、直線
acdよりも右の領域では,ケーブルに用いるに充分な
機械的強度を得ることができなくなるからでありさらに
直線edよりも下の領域では絶縁油中における膨潤が大
となるためケーブル絶縁層に用いることができないから
である。
In the present invention, paper is used that has a mixed paper ratio within the area connecting the points a, d, and e of the triangular coordinates shown in Fig. 1 with straight lines.The reason why the mixed paper ratio was determined in this area is that ab
This is because in the area to the left of the line e, even if hot calendering is performed to improve the airtightness of the paper, control at that time will be difficult and the paper will lack uniformity, while in the area to the right of the straight line acd. This is because it becomes impossible to obtain sufficient mechanical strength for use in cables, and furthermore, in the region below the straight line ed, swelling in insulating oil becomes large, so that it cannot be used as a cable insulation layer.

これらの程度は三角座標の座標軸から離れれば離れる程
得られる紙の性質は良好となるが故に、一層好ましい混
抄比率の領域は領域abcに代わり、点a’( 9 ,
0.5 ,0.5)、b’( 5.5 , 3.3
, 1. 2 )およびc’ (5.5 ,1.2 ,
3.3 )を直線で結ぶ領域であり,領域bcdeに
代り, b”, c’, d’(2 , 2, 6 )
、及びe′(2、6、2)を直線で結ぶ領域である。
The further away from the coordinate axis of the triangular coordinates, the better the properties of the obtained paper become.
0.5, 0.5), b'(5.5, 3.3
, 1. 2) and c' (5.5, 1.2,
3.3) is connected by a straight line, and instead of the area bcde, b'', c', d' (2, 2, 6)
, and e' (2, 6, 2) with a straight line.

本発明において、第1図に示す三角座標のa点b点及び
C点を直線で結んだ領域の混抄比率にある厚さ70〜1
25μの紙をケーブルの内層部に全絶縁厚の10〜50
%厚さで捲く理由は、直線bcよりも下の領域では油中
での膨潤が増大して加熱屈曲時の耐圧値が低下する危険
が特に内層部に用いた時あること、厚さ70μ未満では
ケーブルに紙巻をする際紙切れあるいはレジストレーシ
ョンの乱れが生じ、コントロール困難であり、125μ
以上の紙を導体遮蔽層上に用いると十分な耐圧値を得る
ことができず、さらにこれらの紙をケーブルの全絶縁厚
の10%よりも少ししか内層部に用いないと導体遮蔽層
直上の高電気ストレス部分を効果的に絶縁し難いためで
あり、40%を上廻ると紙テープの巻回は数が多くなっ
てテープの捲回効率上不利であるとともに,ケーブル全
体に占めるこの領域の紙テープの割合が増大してケーブ
ルの誘電損失が高くなるからである。
In the present invention, the thickness is 70 to 1, which corresponds to the paper mixing ratio of the area connecting the point a, point b, and point C of the triangular coordinates shown in FIG. 1 with a straight line.
Add 25μ paper to the inner layer of the cable with a total insulation thickness of 10 to 50
% thickness is because there is a risk that swelling in oil will increase in the area below the straight line bc and the withstand pressure value during heating and bending will decrease, especially when used in the inner layer, and the thickness is less than 70μ. However, when wrapping paper around the cable, paper breaks or registration disturbances occur, making control difficult.
If these papers are used on the conductor shielding layer, sufficient voltage resistance cannot be obtained, and if these papers are used for the inner layer part of the cable, which accounts for less than 10% of the total insulation thickness, the This is because it is difficult to effectively insulate areas with high electrical stress, and if it exceeds 40%, the number of turns of paper tape increases, which is disadvantageous in terms of tape winding efficiency, and the paper tape in this area occupies the entire cable. This is because the dielectric loss of the cable increases as the ratio increases.

次に本発明において第1図に示す三角座標のb点、C点
、d点及びe点を直線で結んだ領域の混抄比率にある厚
さ125〜250μの紙あるいは厚さ125〜250μ
のポリプロピレンのみからなる紙をケーブルの外層部に
全絶縁厚の50〜90%厚さで捲く理由は、直線bcよ
りも上の領域では充分低い誘電損失を得るには不十分で
あること125μ以下のテープではテープの捲回数が多
くなってテープの捲回上下不利であること、250μ以
上ではテープに可撓性がなくなりテープ捲回が困難にな
ること、さらにこれらの紙をケーブルの全絶縁厚の50
%よりも少ししか外層部に用いないとテープの捲回効率
上不利であるとともにケーブルの誘電損失を低くするこ
とができなくなり90%を上回るとケーブル全体の膨潤
が増大して加熱屈曲後の耐圧が著しく低下するためであ
る。
Next, in the present invention, paper with a thickness of 125 to 250μ or a paper with a thickness of 125 to 250μ that corresponds to the paper mixing ratio of the area connecting points b, C, d, and e of the triangular coordinates shown in FIG.
The reason why paper made only of polypropylene is wrapped around the outer layer of the cable to a thickness of 50 to 90% of the total insulation thickness is that the area above the straight line bc is insufficient to obtain a sufficiently low dielectric loss. With tapes of 50 of
If less than 90% is used for the outer layer, it will be disadvantageous in terms of winding efficiency and the dielectric loss of the cable cannot be lowered. If it exceeds 90%, the swelling of the entire cable will increase and the withstand voltage after heating and bending will decrease. This is because there is a significant decrease in

以下、第2図により本発明を説明すると、図面中Mは中
心に油通路を有する中空導体、Nは導体遮蔽層、Lは絶
縁体遮蔽層でありこれら遮蔽層としてはカーボン紙、金
属化紙等が用いられ,Sは金属シースである。
Hereinafter, the present invention will be explained with reference to FIG. 2. In the drawing, M is a hollow conductor having an oil passage in the center, N is a conductor shielding layer, and L is an insulator shielding layer. These shielding layers include carbon paper and metallized paper. etc. are used, and S is a metal sheath.

上記両遮蔽層の間に絶縁体A及びBは位置し,Aは内層
部に相当し、第1図のa,b,cの三点で囲まれた組成
比にある混抄比率を有する70〜125μの単一または
複数種の紙テープからなり、全絶縁厚中の10〜50%
厚さを占める部分であり、一方Bは第1図のb,cd,
eを結ぶ直線で囲まれた範囲内の混抄比率を有する12
5〜250μの単一または複数種の紙テープ又はポリプ
ロピレンのみからなる125〜250μの紙テープから
なり、全絶縁厚中50〜90%厚さを占める部分である
Insulators A and B are located between the two shielding layers, A corresponds to the inner layer, and has a mixing ratio of 70 to 70, which is the composition ratio surrounded by the three points a, b, and c in Figure 1. Consisting of 125μ single or multiple types of paper tape, 10-50% of the total insulation thickness
B is the part that occupies the thickness, while B is the part b, cd, and
12 with a mixed paper ratio within the range surrounded by the straight line connecting e.
It consists of a single or multiple paper tape of 5 to 250 microns or a paper tape of 125 to 250 microns made of polypropylene only, and accounts for 50 to 90% of the total insulation thickness.

金属シース内の全ての系は電気絶縁油で真空含浸され,
油で充満しているが,ここに用いる油の例としては、富
士興産製フツコールOFケーブル油( 1 1 cst
) ( 1 0 0゜Fにおける動粘度以下同じ)、
日本石油製OFケーブル油( 1 0 cst )、日
本鉱業製ソニックOFケーブル油( 8 cst )等
の鉱油系絶縁油、三菱油化製ハード型アルキルベンゼン
SI−102(7cst ).同社製ソフト型アルキル
ベンゼン≠246 (4.5cst ). 日本石油製
EHVケーブル油( 8.6 cst )等のアルキル
ベンゼン類,日本石油化学製ポリブテンLVー10E(
23cst)、i, V−5 0 E ( 1 20
cst )HV−15g(780cst)等のポリブテ
ン類とそれらの混合物(以上炭化水素系絶縁油と呼ぶ)
の他、信越化学製KF96(25cst)等のシリコン
油、大日本インキ製メガファツクF220( 2 cs
t )等の弗素油、ジフエニルーテルのフエニル基に結
合する水素のうち少くとも1個の水素がアルキル基で置
換されたジフエニルエーテル誘導体(2〜100cst
)等のエーテル油がある。
All systems inside the metal sheath are vacuum impregnated with electrical insulating oil,
An example of the oil used here is Futukol OF Cable Oil (11 cst) manufactured by Fuji Kosan.
) (same below kinematic viscosity at 100°F),
Mineral oil-based insulating oils such as OF cable oil (10 cst) manufactured by Nippon Oil Co., Ltd. and Sonic OF cable oil (8 cst) manufactured by Nippon Mining Co., Ltd., hard type alkylbenzene SI-102 (7 cst) manufactured by Mitsubishi Yuka Co., Ltd. Soft type alkylbenzene≠246 (4.5 cst) manufactured by the company. Alkylbenzenes such as EHV cable oil (8.6 cst) manufactured by Nippon Oil, polybutene LV-10E manufactured by Nippon Petrochemical (
23cst), i, V-5 0 E (1 20
cst) Polybutenes such as HV-15g (780cst) and mixtures thereof (hereinafter referred to as hydrocarbon insulating oil)
In addition, silicone oil such as Shin-Etsu Chemical KF96 (25cst), Dainippon Ink Megafac F220 (2cs)
Diphenyl ether derivatives (2 to 100 cst) in which at least one hydrogen bonded to the phenyl group of diphenyl ether is substituted with an alkyl group
) and other ether oils.

上記のうち、炭化水素系絶縁油およびエーテル油は特性
的に特に本発明に適用するに好ましいものである。
Among the above, hydrocarbon insulating oils and ether oils are particularly preferred for application to the present invention due to their characteristics.

次に実施例により本発明の有効性を説明する。Next, the effectiveness of the present invention will be explained with reference to Examples.

全実施例,比較例は導体サイズ1200mm’で絶縁厚
30mmに統一し、含浸油はアルキルベンゼン(注5参
照)である。
In all Examples and Comparative Examples, the conductor size was 1200 mm' and the insulation thickness was 30 mm, and the impregnating oil was alkylbenzene (see Note 5).

これらの例に用いた三成分量ポリプロピレン混抄紙の組
成と主特性は第1表に示す通りである。
The composition and main properties of the ternary polypropylene mixed paper used in these examples are shown in Table 1.

実施例 1 上記(第2図参照)において、ケーブル絶縁体の内層部
Aを第1表に示す紙種SX−1とSX一2でそれぞれ全
絶縁厚の15%と15%巻回し、次に外層部Bを第1表
に示す紙種SY−1とSY−2でそれぞれ全絶縁厚の3
5%と35%巻回して形成した。
Example 1 In the above (see Figure 2), the inner layer A of the cable insulator was wound with paper types SX-1 and SX-2 shown in Table 1 by 15% and 15% of the total insulation thickness, respectively, and then The outer layer B is 3 of the total insulation thickness for the paper types SY-1 and SY-2 shown in Table 1, respectively.
It was formed by winding 5% and 35%.

実施例 2 上記(第2図参照)において、絶縁体の内層部Aを第1
表に示す紙種SX−3で全絶縁厚の12%迄巻回,外層
部Bを第1表に示す紙種SY−3とSY−4でそれぞれ
全絶縁厚の30%と58%巻回して形成した。
Example 2 In the above (see Figure 2), the inner layer part A of the insulator is
The paper type SX-3 shown in the table is wound to 12% of the total insulation thickness, and the outer layer B is wound to 30% and 58% of the total insulation thickness with the paper types SY-3 and SY-4 shown in Table 1, respectively. It was formed by

実施例 3 上記(第2図参照)において絶縁体の内層部Aを第1表
にする紙種SX−4 ,SX−5でそれぞれ全絶縁厚の
8%と22%巻回し、外層部Bを第1表に示す紙種SY
−5で全絶縁厚の70%巻回して形成した。
Example 3 In the above (see Figure 2), the inner layer part A of the insulator was wound with the paper types SX-4 and SX-5, which are shown in Table 1, by 8% and 22% of the total insulation thickness, respectively, and the outer layer part B was Paper type SY shown in Table 1
-5 and was formed by winding 70% of the total insulation thickness.

比較例 1 絶縁体を順次SY−6 , SY−7 , SY−4で
それぞれ全絶縁厚の15%,30%,55%ずつ巻回し
て形成した。
Comparative Example 1 Insulators were formed by sequentially winding SY-6, SY-7, and SY-4 at 15%, 30%, and 55% of the total insulation thickness, respectively.

比較例 2 絶縁体を順次SX−4 ,SX−6 ,S,X−7でそ
れぞれ全絶縁厚の8%,22%,70%ずつ巻回して形
成した。
Comparative Example 2 Insulators were formed by sequentially winding SX-4, SX-6, S, and X-7 to 8%, 22%, and 70% of the total insulation thickness, respectively.

比較例 3 絶縁体を順次SX−4 ,SX−5 ,SY−5でそれ
ぞれ全絶縁厚の22%,44%,34%ずつ巻回して形
成した。
Comparative Example 3 Insulators were formed by sequentially winding SX-4, SX-5, and SY-5 to a thickness of 22%, 44%, and 34% of the total insulation thickness, respectively.

比較例 4 絶縁体を順次SX−3 ,SY−3 ,SY−4でそれ
ぞれ全絶縁厚の6%,30%,64%ずつ巻回して形成
した。
Comparative Example 4 Insulators were formed by sequentially winding SX-3, SY-3, and SY-4 to 6%, 30%, and 64% of the total insulation thickness, respectively.

第2表は上記ケーブルについて行なった80℃における
誘電損失の測定(注8)結果とケーブルの加熱屈曲試験
(注9)前後の耐衝撃破壊電圧試験(注10)の結果で
ある。
Table 2 shows the results of the dielectric loss measurement (Note 8) conducted on the above cable at 80°C and the results of the impact breakdown voltage test (Note 10) before and after the heating bending test (Note 9) of the cable.

上記試験結果から明らかな通り本発明のケーブルは比較
例のケーブルに比べケーブルの誘電損失が低いとともに
、ケーブルの加熱屈曲後においても耐衝撃電圧値の低下
はほとんど認められず、秀れた特性を保有している。
As is clear from the above test results, the cable of the present invention has lower dielectric loss than the cable of the comparative example, and almost no drop in shock resistance value was observed even after the cable was heated and bent, demonstrating excellent characteristics. I own it.

これに対し比較例2及び3は誘電損失が高いことに加え
、比較例1,3及び4においては加熱屈曲後の耐圧値の
低下が著しいが、これらのケーブルを解体調査した結果
、部分的に紙しわの発生が認められたことから、絶縁構
成が適切でなかったことがわかる。
On the other hand, Comparative Examples 2 and 3 have high dielectric loss, and in Comparative Examples 1, 3, and 4, the withstand voltage value decreases significantly after heating and bending, but as a result of disassembling and investigating these cables, it was found that Paper wrinkles were observed, indicating that the insulation configuration was not appropriate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる三成分系ポリプロピレン混抄紙
の混抄比率の範囲を示すものである。 第2図は本発明に係る油含浸ケーブルの実施例を説明す
るためのケーブル断面図であり、Mは導体、Aは内部絶
縁層、Bは外部絶縁層である。
FIG. 1 shows the range of mixing ratios of the three-component polypropylene mixed paper used in the present invention. FIG. 2 is a cable sectional view for explaining an embodiment of the oil-impregnated cable according to the present invention, where M is a conductor, A is an internal insulating layer, and B is an external insulating layer.

Claims (1)

【特許請求の範囲】[Claims] 1(i)クラフトパルプ、(1i)ポリプロピレンバル
プ及び(1[Dポリプロピレン繊維からなり、上記(i
)〜(iI1)成分の混合比率が三角座標のa点( 1
0 , 0 ,O)b点(5.5 , 4 , 0.
5 )及びC点( 5.5 , 0.5 ,4)を直線
で結んだ領域内にある繊維状材料で構成された厚さ70
〜125μ電気絶縁紙のテープを導体遮蔽層上に全絶縁
厚の10〜50%厚さで捲回し、その上に全絶縁厚の残
り部分を上記(i)〜(11D成分からなり、かつそれ
らの混合比率が三角座標のb点、C点、d点(1、l、
8)及びe点(1,8,1)を直線で結んだ領域内(但
し、b点とC点の線上の成分を除く)にある繊維状材料
で構成された厚さ125〜250μの電気絶縁紙テープ
もしくはポリプロピレンのみからなる厚さ125〜25
0μの電気絶縁紙テープを捲回してなることを特徴とす
る油含浸ケーブル。
1(i) kraft pulp, (1i) polypropylene bulk and (1[D) polypropylene fibers,
) to (iI1) The mixing ratio of the components is at point a on the triangular coordinates ( 1
0, 0, O) point b (5.5, 4, 0.
5) and C point (5.5, 0.5, 4) with a straight line.
A tape of ~125 μ electrical insulating paper is wound on the conductor shielding layer to a thickness of 10 to 50% of the total insulation thickness, and the remaining portion of the total insulation thickness is wrapped on top of the tape consisting of the components (i) to (11D) above, and The mixing ratio of points B, C, and d (1, l,
8) and e point (1, 8, 1) with a straight line (excluding components on the line between point b and point C) with a thickness of 125 to 250 μ. Thickness 125-25 made of insulating paper tape or polypropylene only
An oil-impregnated cable characterized by being wound with 0μ electrical insulating paper tape.
JP5893575A 1975-05-16 1975-05-16 Aburaganshin cable Expired JPS5812962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5893575A JPS5812962B2 (en) 1975-05-16 1975-05-16 Aburaganshin cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5893575A JPS5812962B2 (en) 1975-05-16 1975-05-16 Aburaganshin cable

Publications (2)

Publication Number Publication Date
JPS51134887A JPS51134887A (en) 1976-11-22
JPS5812962B2 true JPS5812962B2 (en) 1983-03-11

Family

ID=13098680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5893575A Expired JPS5812962B2 (en) 1975-05-16 1975-05-16 Aburaganshin cable

Country Status (1)

Country Link
JP (1) JPS5812962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131063A (en) * 1993-11-01 1995-05-19 Nec Corp Multichip module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131063A (en) * 1993-11-01 1995-05-19 Nec Corp Multichip module

Also Published As

Publication number Publication date
JPS51134887A (en) 1976-11-22

Similar Documents

Publication Publication Date Title
JP4685744B2 (en) High-speed differential transmission cable
CN106098189A (en) The shielded cable of twin shaft configuration
US3749812A (en) High voltage cable
US6201191B1 (en) Solid DC cable
US6207261B1 (en) Electrical insulating laminated paper, process for producing the same oil-impregnated power cable containing the same
US3427394A (en) High voltage cable
EP3544029B1 (en) Gel impregnated bushing
JPS5812962B2 (en) Aburaganshin cable
US7084348B2 (en) Plenum communication cables comprising polyolefin insulation
EP0001494A1 (en) Electric cables
JP2000090750A (en) Impregnated compound
US2698353A (en) Electric cable
WO1997004466A1 (en) Power cable, manufacturing method and impregnating compound
KR100465363B1 (en) Electrically insulated laminates, methods of making them and oil impregnated power cables
US2379756A (en) Insulating sheath on electrical conductor strands
US4774382A (en) Direct current cable insulation with insulating composition including electronegative gas
CN215007696U (en) Automobile coaxial wire with excellent high-temperature performance
JP4265044B2 (en) AC OF power cable
US3358071A (en) High voltage cables insulated with polysulfone tapes
CN211529675U (en) Corona-resistant enameled wire
SU912807A1 (en) High-voltage cable paper
JP2571412B2 (en) OF cable
JP3824724B2 (en) Plastic laminated paper for oil immersion insulation and power cable using the same
JP3764237B2 (en) DC oil-immersed paper solid cable
JPH09161582A (en) Craft paper for oil impregnated insulation and power cable using the same