JPS58129605A - Controlling method for number of running units - Google Patents

Controlling method for number of running units

Info

Publication number
JPS58129605A
JPS58129605A JP1282382A JP1282382A JPS58129605A JP S58129605 A JPS58129605 A JP S58129605A JP 1282382 A JP1282382 A JP 1282382A JP 1282382 A JP1282382 A JP 1282382A JP S58129605 A JPS58129605 A JP S58129605A
Authority
JP
Japan
Prior art keywords
load factor
objective
value
control
air volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1282382A
Other languages
Japanese (ja)
Other versions
JPH0319561B2 (en
Inventor
Akira Inoue
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1282382A priority Critical patent/JPS58129605A/en
Publication of JPS58129605A publication Critical patent/JPS58129605A/en
Publication of JPH0319561B2 publication Critical patent/JPH0319561B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain highly efficient control by selecting a step making the deviation between a load factor and its objective value in each step minimum at the time of transfer to another step in each control range regulated by the upper and lower limits calculated from the objective value of the load factor. CONSTITUTION:The discharge pressure P0 of five blowers B1-B5 e.g. is detected by a pressure detector 1 and inputted to a total airflow operating circuit 2 to calculate a total airflow requiring value so that the discharge pressure P0 is fixed. An objective load setting circuit 7 determines an objective load factor alphadm by manual or automatic decision setter and sends the objective load factor alphadm to an operation circuit 8 controlling the number of blowers to select the optimum running pattern from all combination of the blowers and apply a blower starting/stopping command. The upper and lower limit values are obtained by adding/subtracting the normal value of the load factor to/from the objective load factor alphadm. At the transfer to a new step, a step to minimize the deviation between the load factor and the objective load factor is selected.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複数の異種あるいは同種の単機容量を持つ、例
えばフロアや4ンプ等の制御対象機に対して外部より与
えられた総容1*求値を満足させるべく並列運転機の全
ての組み合わせの中から最適な組み合わせを決定し、各
制御対象機に起動・停止指令を与える運転台数制御方法
に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a total capacity 1 The present invention relates to a method for controlling the number of operating machines in which an optimal combination is determined from among all combinations of parallel operating machines to satisfy the specified value, and a start/stop command is given to each machine to be controlled.

〔発明の技術的背景〕[Technical background of the invention]

プロア等の制御対象機を例えば吐出圧カ一定制御する場
合には、一般グロセスにおいては、要求風量に従って各
号機吸込弁一度制御を行ない、その時の運転台数では要
求風量を満足で自ないときにプロアの台数制御を行なう
といつたように、所定の方法によって求められた要求値
すなわち総容量要求値に対し、それを満足させるよう制
御対象機の運転台数制御と、−転数制御、吐出弁開度制
御等を組み合わせて制御を行なうことが多い。
For example, when controlling target equipment such as a pro-air with a constant discharge pressure, the suction valves of each unit are controlled once according to the required air volume in general gross processing, and when the required air volume cannot be satisfied with the number of units in operation at that time, the pro As mentioned above, in order to satisfy the required value, that is, the total capacity required value, determined by a predetermined method, the number of operating machines to be controlled is controlled, the number of rotations is controlled, and the discharge valve opening is performed. Control is often performed in combination with degree control, etc.

そしてその場合の運転台数制御方法としては、その時の
運転台数で祉総容量費求fIkt満足できない場合、予
め制御対象機の組み合せによって得られる出力すなわち
総容量を複数のステ、グすなわち段階に分け、且つその
ステ、グ毎に出力を得るための制御対象機による組み合
わせノ9ターンを用意しておき、その中から最適な組み
合わせ・ンターンを決定する方法がとられることが多い
In this case, the method for controlling the number of machines in operation is that if the total capacity cost required fIkt cannot be satisfied with the number of machines in operation at that time, the output, that is, the total capacity obtained by the combination of the machines to be controlled, is divided into a plurality of stages, or stages. In addition, a method is often used in which nine combinations of machines to be controlled are prepared to obtain an output for each step, and the optimal combination/turn is determined from among them.

仁こで例として小容量2台、中容量1台、大容量2台、
計5台のプロアの台数制御について説明する。
For example, 2 small capacity units, 1 medium capacity unit, 2 large capacity units,
The number control of a total of five proers will be explained.

第1表はこの例における上記各プロアの送風容量(最小
容量を1として相対値で示す、)である。
Table 1 shows the air blowing capacity of each of the proars in this example (expressed as a relative value with the minimum capacity being 1).

従来、上述のような台数制御を行なう制御装置は第1図
のように構成されてい友。
Conventionally, a control device for controlling the number of devices as described above has been configured as shown in FIG.

[1図において111〜B6は制御対象機としてのfa
アである。制御内容としては圧力検出装置1にて検出さ
れ九吐出圧力P・が総風量演算(ロ)路2に入力される
。総風量演算回路2は吐出圧力P@が一定となるように
総風量要求値Q、Yを例えばPI演算等により演算する
0台数制御演算回路Jには入出力インターフェイス回路
4を通してプロア運転状態信号が入力される。
[In Figure 1, 111 to B6 are fa as controlled target machines.
It is a. As for the control content, the discharge pressure P. detected by the pressure detection device 1 is inputted to the total air volume calculation (b) path 2. The total air volume calculation circuit 2 calculates the total air volume required values Q and Y by, for example, PI calculation, so that the discharge pressure P@ is constant.The zero unit control calculation circuit J receives the Proa operation status signal through the input/output interface circuit 4. is input.

また台数制御演算回路3には第2表で示されるような複
数号機(O印が稼動号機)の組み合わせによって得られ
る出力すなわち総風量を複数ステ、グに分け、その各ス
テ、!毎に対応し九全ての運転ノ譬ターンが用意されて
いる。
In addition, the unit number control arithmetic circuit 3 divides the output, that is, the total air volume obtained by the combination of multiple units (operating units are marked O) as shown in Table 2, into multiple stages, and each stage, ! All nine driving parables are prepared for each case.

そして第2図に示すフローチャートのような手順に19
全ての組み合わせの中から最適な運転ツタターンを選択
しく第2図における処理81〜S4)、その運転ノlタ
ーンに従い、入出力インタ−78イス回路4を介して5
台のfaアB1〜BJに対して起動・停止指令を与える
(第2図における処理81)@ (イ)総風量ステ、fの決定 その時点での運転I#ターンの総風量ステ、グの最大送
風量QMに対する総風量要求値qavの割合(以下、こ
の割合t「負荷率」と祢する)が負荷率上下限値設定回
路5により設定され九負荷率上限値α1、負荷率下@錬
α、に対して次のような関係になった場合にステップの
変更を行なう(処fMsJ)@ ま九は (但しDQは不感帯の幅) 新しいステ、グの決定は全ステ、グの中からα、 < 
、11 <α、を満九すステップを選択する(処理82
)。
Then follow the steps shown in the flowchart shown in Figure 2.
The optimum operation turn is selected from all the combinations (processes 81 to S4 in FIG.
Give start/stop commands to faA B1 to BJ of the machine (process 81 in Figure 2) @ (a) Determination of total air volume status, f The ratio of the total air volume request value qav to the maximum air volume QM (hereinafter referred to as the "load ratio") is set by the load ratio upper and lower limit value setting circuit 5. Steps are changed when the following relationship is established for α. α, <
, 11 <α, is selected (processing 82
).

(ロ) 起動・停止頻度最小ノーターン決定(イ)で選
択され九ステ、fに対応する全運転ノ4ターンにおいて
現在の運転パターンからの起動・停止頻度が最小となる
ような、すなわち状態変化が最小となるような運転/臂
ターンを複数選択する(処理81)。
(b) Minimum start/stop frequency No-turn determination (a) Selected in step 9, the state change is such that the start/stop frequency from the current driving pattern becomes the minimum in the 4 turns of the entire operation corresponding to f. A plurality of driving/arm turns are selected to minimize the number of turns (processing 81).

fう 優先順序の決定 (ロ)で選択され九複数の運転ノ譬ターンにおいて、優
先順序決定回路6にて決定された優先順序に従って優先
度が最も高い運転ノ臂ターンを選択する(処理S4)、
優先順序決定回路6は運転時間積算値による自動設定、
まえは操作員が直接設定した手動設定等によりfaアB
1〜B、の優先順序を決定するものである。
f) Among the nine plurality of driving turns selected in the priority order determination (b), the driving turn with the highest priority is selected according to the priority order determined by the priority order determination circuit 6 (processing S4). ,
The priority order determining circuit 6 performs automatic setting based on the cumulative operating time value.
Before, faA B is set by manual settings directly set by the operator.
1 to B, the priority order is determined.

〔背景技術の問題点〕[Problems with background technology]

この従来の方法では(イ)の総風量ステ、グの決複数選
択されてしまい、それに対応する全ての運転ノ臂ターン
が対象となる0例えば第2表においてα、=100S、
α、=5011でQ、vが総風量演算回路2により3.
31と演算されたとすると、総風量ステ、グ44 、5
 、6が選択される。
In this conventional method, the total air volume step (a) in (a) is selected, and all the corresponding driving arm turns are subject to 0. For example, in Table 2, α, = 100S,
When α,=5011, Q and v are determined by the total air volume calculation circuit 2 as 3.
If it is calculated as 31, then the total air volume step is 44,5
, 6 are selected.

したがって新しいステップを選択する際に総風量の大き
いステ、fを選択するか、小さいステ、グを選択するか
を指定することはできない。
Therefore, when selecting a new step, it is not possible to specify whether to select a step f with a large total air volume or a step f with a small total air volume.

また、負荷率上限値α、、負荷率下限値α、は固定であ
るため、その時点でのステップから新しいステ、ff1
c移行する基準は常に一定であり、例えばできるだけ早
めに総風量の大きいステ。
Also, since the load factor upper limit value α, load factor lower limit value α, are fixed, from the step at that point to the new step, ff1
The criteria for transitioning to c is always constant, for example, as soon as possible, the transition is made to a step with a large total air volume.

lまたは小さいステy 7” K移行するなどといりた
複雑な判断処理はできない。
It is not possible to perform complex judgment processing such as moving from 1 to 7"K to a small stay.

ところで、プロア、ポンプ等のような重要機器の台数制
御においては、台数制御による起動・停止頻度が多くな
っても消費電力を少なくしたいという考え方と、消費電
力が少々多くなっても台数制御による起動・停止頻度を
少なくし、機器の劣化を防ぎたいという考え方がある。
By the way, when controlling the number of important devices such as pumps, pumps, etc., the idea is to reduce power consumption even if the frequency of starting and stopping increases by controlling the number of devices, and the idea of reducing power consumption by controlling the number of devices even if the power consumption increases slightly. - There is a concept of reducing the frequency of stoppages and preventing equipment deterioration.

これら2t*の考え方を今回対米としている台数制御方
法にあてはめると、前者の場合はできるだけ総風量の小
さいステツブで運転すればよいし、後者の場合はできる
だけ総風量の大きいステツブで運転すればよいことにな
る。
Applying these 2t* concepts to the method of controlling the number of units that we are using this time for the US, in the former case, you should operate with a step that has the smallest possible total air volume, and in the latter case, you should operate with a step that has as large a total air volume as possible. It turns out.

従来の方法では前述のように全体の考え方として総風量
の大きいステ、ゾで運転するか、小さいステ、!で運転
するかという判断は組み込まれておらず、総風量要求値
を満たす全てのステ、fの中で現在ツタターンからの起
動・停止強度が少なく、優先順序の高いパターンを選択
するようにしている。そのため消費電力を少なくし丸い
、あるいは台数制御による起動・停止類制御を行なうこ
とができなかつ走。
In the conventional method, as mentioned above, the overall idea is to operate with a station with a large total air volume, or with a small station! There is no built-in judgment as to whether or not to operate the engine, and among all the steps and f that satisfy the total air volume requirement, the pattern that currently has the least starting/stopping strength from the tatari turn and has a high priority is selected. . Therefore, it is possible to reduce power consumption and run without being able to perform start/stop control by controlling the number of units or by controlling the number of units.

〔発明の目的〕[Purpose of the invention]

本発明は全体として、総風量の大きいステ。 The present invention as a whole provides a station with a large total air volume.

!で運転するか、小さいステ、グで運転するかを予め設
定でき、高度な制御が可能で制御性がよい台数制御方法
を提供することを目的としている。
! The purpose of the present invention is to provide a method for controlling the number of vehicles that allows advanced control and good controllability by setting in advance whether the vehicle is to be operated with a small step or with a small step.

〔発明の概要〕[Summary of the invention]

本発明の4I倣とするところは僚数台の制御対象機を台
数制御するにあたり予めこれら制御対象機の組み合わせ
によって得られる出力を複数の段階に分けておき要求さ
れる出力量を満たす段階に属する全ての組み合わせ/譬
ターンの中から最適な組み合わせノナターンを選択する
運転台数制御方法において、前記各段階の制御範囲を規
定する上限値および下限値を、最大答量値に対する要求
出力量の割合である負荷率の目標値から算出し、他の段
階に移行する際には前記各段階の負荷率と前記目標値と
の偏差が最小となる段階を選択するようにすることにあ
る。
The 4I imitation of the present invention belongs to the stage in which, when controlling the number of control target machines of several consorts, the output obtained by the combination of these control target machines is divided into a plurality of stages in advance to satisfy the required output amount. In a method of controlling the number of operating units that selects the optimal combination/nonaturn from among all combinations/paraturns, the upper and lower limits that define the control range of each stage are the ratio of the required output amount to the maximum answer amount value. It is calculated from the target value of the load factor, and when moving to another stage, the stage where the deviation between the load factor of each stage and the target value is the minimum is selected.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例の構成を示すものであり、第
1図と閾様の機能を有する部分には同符号を付して示す
FIG. 3 shows the configuration of an embodiment of the present invention, and parts having threshold-like functions as those in FIG. 1 are designated by the same reference numerals.

目標負荷率設定回路7はCRT (陰極線管)表示装置
等による手動設定、または、他の判断処理による自動設
定により目標負荷率admを決め台数制御演算回路8へ
その情報を与える機能を持っている0台数制御演算回路
8は144図に示す70−チャートのような手順により
、全ての組み合わせの中から最適な運転/9ターンを選
択しく第4図における処理T1〜T6)、その運転ノ豐
ターンに従って入出力インターフェイス回路4を通して
5台のプロアBJ−B4に対して起動・停止指令を与え
る(第4図における処理TF)@ (1)  負荷率上下限値の計算 負荷率上限値α、、負荷率下限値αLt−1fi癲負荷
率設定回路7により決められた目標負荷率αdmより以
下のように計算する(処理TJ)。
The target load factor setting circuit 7 has the function of determining the target load factor adm by manual setting using a CRT (cathode ray tube) display device, etc., or automatically setting by other judgment processing, and providing that information to the number control calculation circuit 8. The zero number control calculation circuit 8 selects the optimum operation/nine turns from all the combinations according to the procedure shown in the 70-chart shown in Fig. 144. Processes T1 to T6 in Fig. 4) and the turn of the operation. Give start/stop commands to the five Proa BJ-B4s through the input/output interface circuit 4 according to the input/output interface circuit 4 (processing TF in Figure 4) @ (1) Calculation of load factor upper and lower limit values Load factor upper limit value α, Load The rate lower limit value αLt-1fi is calculated as follows from the target load rate αdm determined by the load rate setting circuit 7 (processing TJ).

αg=adm十に αL″αdm −X 但し、xld負荷率規定値でろって、目標負荷率α紬と
負荷率上下限値α翼、αLとの差でToす、この麺によ
り各ステ、グの制−可畔範囲が規定される。
αg=adm+αL″αdm −X However, since the xld load factor is the specified value, To is the difference between the target load factor α Tsumugi and the load factor upper and lower limits α Tsumugi and αL. The control range is defined.

(2)総風量ステ、グの決定 現在運転ノ4ターンの最大送凰蓋QMに対する総風量要
求値Qsvである負荷率が(1)で計算され九負荷率上
限値α、、負荷率下限値α、に対して下記の関係になっ
た場合ステ、!のfj!を行なう(処sr! L Qav )α、十四 ii ま丸線 Qav □〈α、 −DQ 9M (但し、DQは不感帯) 新しいステ、プの決定に際しては、全ステラすべて選択
しく処理TJ)、その結果該当ステ択する(処理T4 
)。
(2) Determining the total air volume step and g The load factor, which is the total air volume required value Qsv for the maximum open lid QM of the 4th turn of the current operation, is calculated in (1).9 Load factor upper limit value α, Load factor lower limit value If the following relationship exists for α, Ste,! fj! (Process sr! L Qav) α, 14 ii Maru line Qav □〈α, -DQ 9M (However, DQ is a dead zone) When determining a new stage, all Stellas are selected and processed TJ), As a result, select the corresponding step (process T4
).

(3)起動・停止S度最小ノやターンの決足従米方法(
ロ)項と11は同様の方法により、(2)で選択され九
ステ、ノに対応する全運転・苛ターンから起動・停止頻
度最小ツタターンを選択する(処理TJ )41 (4)優先順序の決定 従来方法(ハ)項とほぼ同様の方法により、(3)で選
択され′IP、、11I数のパターンから優先Nl4P
Fの最も高いパターンを選択する(処]aiT# )。
(3) Start/stop S degree minimum and decisive method for turning (
(b) Items 11 and 11 use the same method to select the lowest starting/stopping frequency turn from all operation/hard turns selected in (2) and corresponding to the nine steps (processing TJ) 41 (4) Priority order Determination conventional method By almost the same method as in section (c), prioritized Nl4P is selected from the patterns of the number 'IP, , 11I selected in (3).
Select the pattern with the highest F (where) aiT#.

すなわち、本実施例に示した台数側御方法と従来方法と
の相違点は次の2点である。
That is, the following two points are different between the method for controlling the number of units shown in this embodiment and the conventional method.

(a)  負荷率上限値α菖、負荷率下@値αLf:固
定とせず、目標負荷率αdB1 g負荷″4規定ttj
i xより次式で計算される形とし良。
(a) Load factor upper limit value α, load factor lower @ value αLf: Not fixed, target load factor αdB1 g load''4 regulation ttj
It is good to have the form calculated from i x using the following formula.

αヨ=αdm+x α□=αdrrl−x となる便数のステ、グの中で Iビー・6o1 が最小となるステ、グtS択するようにした。αyo=αdm+x α□=αdrrl−x In the number of flights, I Bee 6o1 It is now possible to select the step that minimizes the value.

次にこのような運転台数制御力法による制御動作九つい
て絆細に説明する。
Next, nine control operations based on the control force method for the number of operating vehicles will be explained in detail.

その時点での運転パターンの総織蓋ステ、グにおける負
荷率上限値αHAIL荷本下限値αLは−負衝率αd、
の値の大小により変化する。αdn+が大の場合祉α1
がαdaに従って大きくなるため、αLが固定の場合に
比べて、早めに総風量の小さいステ、fに切9換わるこ
とになる。また、α4mが小の場合はα厘がαd1に従
って小さくなるため、αIが固定の場合に比べて早めに
総風量の大きいステ、グに切り換わることになる。
The load factor upper limit value αHAIL and cargo load lower limit value αL in the overall weaving lid stage and the operation pattern at that time are −load factor αd,
It changes depending on the size of the value. When αdn+ is large, welfare α1
increases as αda increases, so the switch to step f, which has a smaller total air volume, occurs earlier than when αL is fixed. In addition, when α4m is small, α厘 decreases according to αd1, so the switch to the stage with a large total air volume occurs earlier than when αI is fixed.

次に新しいステ、ノをS択する際は、α、〈が最小とな
るステ、グを選択するからα4mが大の場合は総風量の
小さいステ、グをα4mが小の場合は総風量の大きいス
テ、fをそれぞれ選択することになる。
Next, when selecting a new step, S, select the step or g where α,〈 is the minimum, so if α4m is large, the step or g with the small total air volume is selected, and if α4m is small, the step or The larger step and f will be selected.

従ってα4mが大きいほど総風量の小さいステツノで、
また、α4mが小さいほど祷風蓋の大きいステ、!で運
転することになり、設ボするadmo値を変えることに
より、#、Kjiの大きいステ、!で運転するか、小さ
いステ、ノで運転するかを指定することがモきる。
Therefore, the larger α4m, the smaller the total air volume,
Also, the smaller the α4m, the bigger the wind cover! By changing the admo value to be set, #, Kji is large, ! It is possible to specify whether to drive with a small steering wheel or a small steering wheel.

この様にすれば設定可能な目標負荷率αdmの値により
、台数制御の基本的な考え方として大容量ステッグで運
転するか、小容量ステ、グで運転するかを指定すること
ができ、消費電力を重視し九運転にするか、台数制御に
よる起動・停止頻度を少なくする運転にするかを容易に
指定することが可能となり、高度でし力・も制御性およ
び操作性のよい台数制御が実現できる。
In this way, depending on the value of the target load factor αdm that can be set, it is possible to specify whether to operate with a large-capacity steg or a small-capacity steg as a basic concept of number control, and the power consumption It is now possible to easily specify whether to perform 9-speed operation with an emphasis on power, or to reduce the frequency of starting and stopping by controlling the number of units, realizing highly efficient control of the number of units with good controllability and operability. can.

なお、本発明は上述し且つ図面に示す実施例にのみ腿定
されることなくその要旨をf更しない範囲内で種々変形
して実施することができる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with various modifications within the scope of the gist thereof.

例えば、対象機の容量、台数が異なるグミセスにおいて
も第2表の各データを変更するだけで上記実施例で用い
た回路および制御方法をそのまま適用することが可能で
tbす、総合信頼性の面において賜良好である。
For example, even if the capacity and number of target machines are different, the circuit and control method used in the above example can be applied as is by simply changing each data in Table 2, which improves overall reliability. It is a good gift.

また、同実施例においてjI3図に示し九各回路はハー
ドウェア要素として説明し九が、もちろん同一の機能を
コンピュータのソフトウェア要素で実現することも可能
である。
Further, in the same embodiment, each of the nine circuits shown in FIG. 13 will be described as a hardware element, but it is of course possible to realize the same functions with software elements of a computer.

さらに、負荷率規定値Xは、負荷率上限値α、、負荷率
下限値αLどちらに対しても同じと考えたが、それぞれ
異なる負荷率規定値とすることも可能である。
Furthermore, although the load factor specified value X was considered to be the same for both the load factor upper limit value α and the load factor lower limit value αL, it is also possible to set different load factor specified values for each.

〔発明の効果〕〔Effect of the invention〕

本発明によれば全体として総風量の大きいステ、fで運
転するか、小さいステ、!で運転するかを予め設定でき
、高度な制御が可能で制御
According to the present invention, a station with a large total air volume can be operated at f, or a station with a small total air volume can be operated! You can set in advance how to operate the machine, allowing advanced control and control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の台数制御システムの構成の一例を示す構
成図、第2図は同側における制御方法を示すフローチャ
ート、第3図は本発明の一実施例による台数制御を行な
うシステムの構成図、第4図は一実施例における制御方
法を示すフローチャートである。 1・・・圧力検出装置、2・・・総風量演算回路、4・
・・入出力インターフェイス回路、6・・・優先順序決
定回路、1・・・目標負荷率設定回路、1・・・台数制
御演算回路、BJ〜Bj・・・プロア。 出願人代理人  弁理士 鈴 江 武 門弟1図 照請′1′” r−−1 1Qsv     1 .11 ゛1悌コ 3    肋ン預艷;Jト” 2 中th1さ− 竿巨’I        : P□ 硬(生         I 6 4j fit      I ト 、、  ol              1言」 ” 1 1  1        1 11          1 1 1
FIG. 1 is a block diagram showing an example of the configuration of a conventional number control system, FIG. 2 is a flowchart showing a control method on the same side, and FIG. 3 is a block diagram of a system controlling the number of machines according to an embodiment of the present invention. , FIG. 4 is a flowchart showing a control method in one embodiment. 1...Pressure detection device, 2...Total air volume calculation circuit, 4.
... Input/output interface circuit, 6... Priority order determining circuit, 1... Target load factor setting circuit, 1... Number control calculation circuit, BJ to Bj... Proa. Applicant's agent Patent attorney Takeshi Suzue Disciple 1 drawing '1'" r--1 1Qsv 1 .11 □ Hard (raw I 6 4j fit I,,ol 1 word" 1 1 1 1 11 1 1 1

Claims (1)

【特許請求の範囲】[Claims] 複数台の制御対象機を台数制御するにあ九り予めこれら
の制御対象機の組合わせによって得られる出力を複数の
段階に分けておき要求される出力量を満たす段階に属す
る全ての組み合わせ・ダターンの中から最適な組み合わ
せノfターンを選択する運転台数制御方法において、前
記各段階の制御範囲を規定する上限値および下限値を謹
大容量値に対する要求出力量の割合である負荷率の目標
値から算出し、他の段階に移行する際には前記各段階の
負荷率と前記目標値との偏差が最小となる段階を選択す
るようにしたことを特徴とする運転台数制御方法。
In order to control the number of multiple control target machines, the output obtained by the combination of these control target machines is divided into multiple stages in advance, and all combinations and data turns belonging to the stage that satisfy the required output amount are created. In a method for controlling the number of operating units in which an optimal combination of f-turns is selected from among the above, the upper and lower limits that define the control range of each stage are set as the target value of the load factor, which is the ratio of the required output amount to the extremely large capacity value. A method for controlling the number of operating vehicles, characterized in that when moving to another stage, a stage is selected in which the deviation between the load factor of each stage and the target value is minimum.
JP1282382A 1982-01-29 1982-01-29 Controlling method for number of running units Granted JPS58129605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282382A JPS58129605A (en) 1982-01-29 1982-01-29 Controlling method for number of running units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282382A JPS58129605A (en) 1982-01-29 1982-01-29 Controlling method for number of running units

Publications (2)

Publication Number Publication Date
JPS58129605A true JPS58129605A (en) 1983-08-02
JPH0319561B2 JPH0319561B2 (en) 1991-03-15

Family

ID=11816099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282382A Granted JPS58129605A (en) 1982-01-29 1982-01-29 Controlling method for number of running units

Country Status (1)

Country Link
JP (1) JPS58129605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114905A (en) * 1983-11-28 1985-06-21 Toshiba Corp Operating schedule deciding means of plural machines and apparatuses
JPS6273012A (en) * 1985-09-26 1987-04-03 Rozai Kogyo Kaisha Ltd Operation control system for plurality of combustion furnaces
JPH0284186A (en) * 1980-04-03 1990-03-26 Abbott Lab Polydeoxyribonucleotide encoding plasminogen activator protein, vector containing the same and transformant containing said vector
JPH0371182U (en) * 1989-11-14 1991-07-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202358A (en) * 2011-03-28 2012-10-22 Ihi Compressor & Machinery Co Ltd Automatic control system of multiple loop of compressor group
JP5884154B2 (en) * 2011-09-29 2016-03-15 Jfeスチール株式会社 Operation control method for controlled equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284186A (en) * 1980-04-03 1990-03-26 Abbott Lab Polydeoxyribonucleotide encoding plasminogen activator protein, vector containing the same and transformant containing said vector
JPS60114905A (en) * 1983-11-28 1985-06-21 Toshiba Corp Operating schedule deciding means of plural machines and apparatuses
JPS6273012A (en) * 1985-09-26 1987-04-03 Rozai Kogyo Kaisha Ltd Operation control system for plurality of combustion furnaces
JPH0371182U (en) * 1989-11-14 1991-07-18

Also Published As

Publication number Publication date
JPH0319561B2 (en) 1991-03-15

Similar Documents

Publication Publication Date Title
JPS58129605A (en) Controlling method for number of running units
US5706193A (en) Control system, especially for a non-linear process varying in time
JPS633158B2 (en)
JPH03143721A (en) Air conditioning device for vehicle
US5270621A (en) Procedure controlling the motor of a crane
JP2634229B2 (en) Control method of air conditioner
JPH0791765A (en) Heat source controller
DE69721710T2 (en) Method of controlling the heating of an oven using fuzzy logic
JPS6093197A (en) Surging control system of compressor
JP2651247B2 (en) Gas laser oscillator
US5373438A (en) Sequence controlling method
JPH0678868B2 (en) Control method for high voltage capacitors
US4438499A (en) Fractional distillation process control
JP2549905Y2 (en) Multi-pump speed balancing device in crane
JP2670042B2 (en) Water supply system controller
JPH0442555B2 (en)
JP2000337772A (en) Controller for circulating type grain dryer
JPH02118807A (en) Positioning control device
JPH03262770A (en) Temperature control method of air conditioner for vehicle
JPH01130077A (en) Capacity controller of compressor
JPS59105102A (en) Control device of process
JPS6050033A (en) Controlling device for speed of vehicle
JPS63219469A (en) Controller for air conditioner for car
JPH07239708A (en) Numerical controller
JPH051695A (en) Control method for air conditioner