JPS58129386A - Emergency shutdown device for bwr type reactor - Google Patents

Emergency shutdown device for bwr type reactor

Info

Publication number
JPS58129386A
JPS58129386A JP57011544A JP1154482A JPS58129386A JP S58129386 A JPS58129386 A JP S58129386A JP 57011544 A JP57011544 A JP 57011544A JP 1154482 A JP1154482 A JP 1154482A JP S58129386 A JPS58129386 A JP S58129386A
Authority
JP
Japan
Prior art keywords
loss
feed water
heating
reactor
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011544A
Other languages
Japanese (ja)
Inventor
幸治 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57011544A priority Critical patent/JPS58129386A/en
Publication of JPS58129386A publication Critical patent/JPS58129386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pinball Game Machines (AREA)
  • Polymerisation Methods In General (AREA)
  • Scissors And Nippers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、沸騰水量原子炉OII急停止輌置装係わり、
籍にスクラム機構を^適化し九場合等に適し九沸騰水鳳
厘子−0II急停止装置Kllする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiling water nuclear reactor OII sudden stop device,
The scram mechanism is optimized for use in nine cases, and a sudden stop device is installed.

第1図は、沸騰水源原子炉VステムOS鴫を示すもので
、圧力容l111内には炉心11シエドポンプ3、気水
分離器4、漏気乾燥器Sが駅納され、容器ll内の水は
再循環ポンプ2により循環している。ここで発生され九
履気はタービン6、復水器7、復水ポンプ8を騒て給水
加熱器9に送られて加熱され、給水ポンプIOKよp再
び炉心へ送られる。即ち通常運転時には、復水器7で凝
縮され九冷却水は、給水加熱1)9において、タービン
6から抽気され九蒸気によp加熱された後に、給水ポン
プ10によp圧力容器11内に給水されている。
Figure 1 shows a boiling water source reactor V-stem OS 11, in which a reactor core 11, a seed pump 3, a steam separator 4, and a leakage dryer S are installed in the pressure volume 111, and the water in the vessel 11 is is circulated by a recirculation pump 2. The air generated here is sent to the turbine 6, condenser 7, and condensate pump 8, sent to the feed water heater 9, heated, and sent to the reactor core again by the feed water pump IOK. That is, during normal operation, the cooling water condensed in the condenser 7 is extracted from the turbine 6 and heated by steam in the feed water heating 1) 9, and then pumped into the pressure vessel 11 by the feed water pump 10. Water is provided.

ところが411器の故障等によp給水加熱器90機能が
喪失すると、温度O低い冷却水が圧力容!11ヘ給水さ
れ、炉心部lにおいてボイド皐が低下する丸めに正Oボ
イド反応度が印加され、出力が上昇する。この事象は給
水加熱喪失と呼ばれている。
However, if the function of the P water heater 90 is lost due to a failure of the 411 unit, the cooling water with a low temperature of O becomes a pressure vessel! Water is supplied to reactor 11, and positive O void reactivity is applied to the rounding where the void volume decreases in the reactor core l, increasing the output. This event is called feedwater heating loss.

この給水加熱喪失が発生すると、原子炉出力が異常に高
くなるために、従来の沸騰水盤原子炉においては、原子
炉炉心部の中性子束の計測値から燃料被覆管表面の熱流
束を求め、その値が設定値を越え走時に原子炉をスクラ
ム(緊急停止)するというインターロックが設けられて
いる。
When this loss of feed water heating occurs, the reactor output becomes abnormally high. Therefore, in conventional boiling water basin reactors, the heat flux on the fuel cladding surface is determined from the measured value of the neutron flux in the reactor core. An interlock is provided that scrams the reactor (emergency shutdown) if the value exceeds a set value.

第2図は、給水加熱喪失発生時の燃料被覆管表面に於る
熱流束及び最小限界出力比MCPHの低下幅ΔMCPH
の変化を示したもので、t工0に於て給水加熱喪失が発
生すると熱流束Q(中性子連の計測信号を一次遅れll
!累を通して熱流束相当の信号に変換する熱出子モニタ
TPMの出力)が増加し、これがその設定値をこえると
原子炉はスクラムする。
Figure 2 shows the decrease width ΔMCPH of the heat flux on the surface of the fuel cladding tube and the minimum critical power ratio MCPH when loss of feedwater heating occurs.
It shows the change in the heat flux Q (neutron chain measurement signal with a first-order delay ll
! The output of the thermal output monitor (TPM), which is converted into a signal equivalent to heat flux through the heat flux, increases, and when this exceeds its set value, the reactor scrams.

一方、熱流束の増加により、最小限界出力比の低下幅Δ
MCPRが増加し、スクラムし走時点で厳大となる。こ
のΔMCPRの最大値は、例えば0.15程度である。
On the other hand, due to the increase in heat flux, the minimum output ratio decreases by Δ
MCPR increases and becomes severe when scrumming and running. The maximum value of this ΔMCPR is, for example, about 0.15.

なお、この場合、中性子束は中性子束高スクラムの設定
値以下であシ、中性子束高信号によるスクラムは発生し
ない。
In this case, the neutron flux is below the set value of the neutron flux high scram, and no scram occurs due to the neutron flux high signal.

ζこで、運転時に貯容されるMOPRの許容値、即ち運
転限界MCPRは、原子炉で発生する異常な過渡変化全
事象の内、jMcPRo最大値が蛾も大きい事象につい
てのノMOPR最大値を、安全限界MOPR(LO7)
に加えることによシ決定される。そして従来の原子炉に
於ては、給水加熱喪失発生時のΔMCPRO最大値は、
他の事象、例えば発電機負荷遮断発生時のノMCPR最
大値(例えばα21m度)に比べて小さい、その丸め、
給水加熱喪失発生時に働くスクラム・インター−ツクと
しては、従来の’I’PMスクツムによるもので問題は
生じなかつた。
ζHere, the allowable value of MOPR stored during operation, that is, the operating limit MCPR, is the maximum value of MOPR for events in which the maximum value of jMcPRo is large among all abnormal transient change events that occur in the reactor. Safety limit MOPR (LO7)
determined by adding In a conventional nuclear reactor, the maximum value of ΔMCPRO when loss of feed water heating occurs is:
Other events, such as rounding that is smaller than the maximum MCPR value (for example α21m degrees) when a generator load shedding occurs,
The conventional 'I' PM scram interface was used as the scram interface that operated when a loss of feed water heating occurred, and no problems occurred.

しかし、最近の動向として、原子デスク2五時の制御棒
挿入速度を大きくした高速スクラム機構の採用等によっ
て、異常な過渡変化発生時OjMcPRの最大値の減少
が計られている。しかしながら、給水加熱喪失発生時の
TPM信号によるスクラムは、熱流束が設定値(安全限
界MCPHに対応する熱ILWLの値よ)僅かに低い値
に設定)を越え走時点でスクラムするものである丸め、
高速スクラム機構等を採用し九場合でも、給水加熱喪失
発生時のjMcPHの最大値は減少しない。
However, as a recent trend, the maximum value of OjMcPR when an abnormal transient change occurs is being reduced by adopting a high-speed scram mechanism that increases the control rod insertion speed of the atomic desk. However, the scram caused by the TPM signal when loss of feed water heating occurs is to scram when the heat flux exceeds the set value (set to a slightly lower value than the value of heat ILWL corresponding to the safety limit MCPH). ,
Even if a high-speed scram mechanism or the like is adopted, the maximum value of jMcPH at the time of loss of feed water heating does not decrease.

このため、給水加熱喪失発生時のΔMCPRの最大値が
全事象中で最も大きくなシ、運転限界MOPRが給水加
熱喪失発生時のΔMCPHの最大値によって決定される
可能性があシ、給水加熱喪失発生時の燃料健全性につい
ての安全余裕が少くなり、原子炉の安全性に問題が生じ
る。
Therefore, the maximum value of ΔMCPR at the time of loss of feedwater heating is the largest among all events, and there is a possibility that the operating limit MOPR is determined by the maximum value of ΔMCPH at the time of loss of feedwater heating. The safety margin for fuel integrity in the event of an occurrence is reduced, creating a problem with the safety of the reactor.

本発明の目的は、給水加熱喪失発生時のAfCPHの最
大値を減少し、異常な過渡変化発生時の安全限界MCP
Rに対する余裕を増加することによって燃料健全性をよ
り一層向上できる沸騰水#Ii原子炉の緊急停止装置を
提供することにある。
The purpose of the present invention is to reduce the maximum value of AfCPH when loss of feed water heating occurs, and to reduce the safety limit MCP when abnormal transient changes occur.
An object of the present invention is to provide an emergency shutdown device for a boiling water #Ii nuclear reactor that can further improve fuel integrity by increasing the margin for R.

上記の目的を連成するために、本発明に於ては、給水加
熱喪失では現象が時間的にゆるヤかに進行するという性
質、あるいは給水加熱喪失が給水加熱器出口における冷
却水温度によって検知可能であるという性質に着目し、
給水加熱喪失に対する設定値を従来よシ小さい値とし、
この設定値を熱流束がζえ良状態の継続時間が長い時、
あるいはこの設定値を熱流束がこえ、かつ給水加熱器出
口温度がある設定値以下であるという条件によって原子
炉スクラムを行うようにし九ことを特徴とするものであ
る。
In order to couple the above objectives, in the present invention, the phenomenon of loss of feedwater heating progresses gradually over time, or the loss of feedwater heating is detected by the cooling water temperature at the outlet of the feedwater heater. Focusing on the property that it is possible,
The set value for feed water heating loss is set to a smaller value than before.
When this setting value is used for a long time when the heat flux is in a good condition,
Alternatively, the reactor scram is performed under the conditions that the heat flux exceeds this set value and the feedwater heater outlet temperature is below a certain set value.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は、本発明の一実施例を示すもので、熱出力モニ
タ(TPM)12の出力Qをタイマー13を介してスク
ラム機構14に加え、制御棒15を制御するように構成
されている。そして従来のTPMスク2ムは、TPM1
2の出力信号qが例えば定格の120%を越えるとスク
ラムを開始するものであるが、本実施例では、TPM出
力出力信号対する設定値を従来よりも低くシ、さらに、
TPM12からの信号Qがその設定値を越え、かつその
越えた状態がタイマー13によシある設定時間以上継続
したことが確認された場合に、スクラム機構14によっ
てスクラムを開始する。このように、タイマーを使用す
ることによシ、TPM出力出力信号段定値を下げた丸め
に給水加熱喪失以外の事象発生、あるいはTPM出力出
力信号段1111に起因して発生する誤ったスフ2ム起
動を防止し、確実に事象のゆるやかな給水加熱喪失に対
するスクラムを行える。しかも、TPM出力出力信号段
いての設定値を例えば定格(100%)の110%とし
、タイマーの時間設定値を10秒とすれば、J14図に
示したように、給水加熱喪失発生時のスクラム開始時間
は従来のA・点からA点へと短い経過時間で開始され、
これにともなって最小眼界出力比の低下幅jMcPRも
従来のB・から約半分のBK減少する。
FIG. 3 shows an embodiment of the present invention, in which the output Q of a thermal output monitor (TPM) 12 is applied to a scram mechanism 14 via a timer 13 to control a control rod 15. . And the conventional TPM system is TPM1
When the output signal q of No. 2 exceeds, for example, 120% of the rating, a scram is started, but in this embodiment, the setting value for the TPM output signal is set lower than before, and further,
When the signal Q from the TPM 12 exceeds the set value and the timer 13 confirms that the exceeded state has continued for a certain set time or more, the scram mechanism 14 starts a scram. In this way, by using the timer, it is possible to prevent an event other than loss of feed water heating from occurring when the TPM output signal stage fixed value is lowered, or an erroneous cycle time that occurs due to the TPM output output signal stage 1111. Prevents start-up and reliably scrams against gradual loss of feed water heating. Moreover, if the setting value of the TPM output signal stage is, for example, 110% of the rating (100%) and the time setting value of the timer is 10 seconds, the scram when the feed water heating loss occurs, as shown in Figure J14. The starting time starts from the conventional A point to the A point with a short elapsed time,
Along with this, the reduction width jMcPR of the minimum ocular field output ratio is also reduced by about half BK from the conventional B.

第5図祉、本発明の別の実施例を示したもので、給水加
熱器出口配管に設けられ九温度針16の検出温度がある
設定値以下となplかつTPM12の出力信号がそO設
定計を越えたことをアンド回路17で検出し、このアン
ド条件成立時にスクラムするというインターロックを設
けている。そして、TPM出力信号に対する設定値とし
ては、従来O値よ)小さな値を採用している。
Figure 5 shows another embodiment of the present invention, in which the temperature detected by the temperature needle 16 provided at the outlet pipe of the feed water heater is below a certain set value, and the output signal of the TPM 12 is set to O. An interlock is provided in which an AND circuit 17 detects that the limit has been exceeded, and a scram occurs when this AND condition is satisfied. As the setting value for the TPM output signal, a smaller value (compared to the conventional O value) is adopted.

本実施例なる装置において、TPM信号についてO設定
値を例えば従来t)120%から110%とし、温度針
信号について0設定値を例えば、通常運転時の温度より
も30で低い値とすれば、給水加熱器出口での温度が正
常であれに、例えn。
In the device of this embodiment, if the O set value for the TPM signal is set to 110%, for example, from the conventional 120%, and the 0 set value for the temperature needle signal is set to, for example, a value lower than the temperature during normal operation by 30, then Even if the temperature at the feedwater heater outlet is normal, even if n.

原因によ)丁PM出力償号Q#110%以上になっても
動作することはなく、給水加熱喪失に対してのみ本装置
は動作し、しかもそ01り2ム一階時間は第sgo実施
例よ)も更に早<16%最小限界出力比の低下幅ノMC
PHの最大値は従来0約1/311度にすることがで亀
る。
(Depending on the cause) Even if the PM output compensation code Q#110% or more, it will not operate, and this device will only operate in response to loss of feed water heating. For example) even faster <16% minimum output ratio reduction width MC
Conventionally, the maximum value of PH can be set to about 0 1/311 degrees.

なお以上の本発明の装置では、給水加熱喪失以外の原因
に対するスフ2ムはできないから、これらのスフ2ムに
対しては別系統0従米侠置を設ける必要がh石。
In addition, with the above-mentioned apparatus of the present invention, it is not possible to deal with causes other than loss of heating of the water supply, so it is necessary to provide a separate system for these problems.

以上説明し丸ごとく、本発明によれば、原子−において
給水加熱喪失が発生し九VaOノMOPRの最大値を大
−に低減する仁とができ、給水加熱喪失発生時の燃料健
全性についての安全余裕を大幅に増大させることができ
る。更に高速スクラム機構畳と本発明になる装置を併用
すれば、原子炉に種々の異常が発生し九VaO燃料健全
性についての安全余裕が全般的に向上し、沸騰水盤原子
炉の資金性及び経済性の改譬に大きな効果がある。
As explained above, according to the present invention, it is possible to greatly reduce the maximum value of 9VaO MOPR when feedwater heating loss occurs in the atom, and it is possible to significantly reduce the maximum value of MOPR when feedwater heating loss occurs, and to improve fuel integrity when feedwater heating loss occurs. The safety margin can be significantly increased. Furthermore, if the high-speed scram mechanism mat and the device of the present invention are used together, various abnormalities will occur in the reactor, the safety margin for the nine VaO fuel integrity will be improved overall, and the financial and economic aspects of the boiling water reactor will be improved. It has a great effect on sexual modification.

【図面の簡単な説明】 第1111は沸騰水盤原子炉システムの概略系統図、第
2Illは給水加熱喪失発生時のスクラム動作説明図、
第3図は本発明の一実施例を示す図、第4図は第3図の
実施例の一作説明図、第5図は本発明の別の実施例を示
す図である。 9・・・給水加熱器、12・・・熱出力電工り、13・
・・タイ!、14・・・スクラム機構、15・・・制御
棒、16〜4・
[Brief description of the drawings] No. 1111 is a schematic system diagram of a boiling water basin nuclear reactor system, No. 2 Ill is an explanatory diagram of scram operation when loss of feed water heating occurs,
FIG. 3 is a diagram showing one embodiment of the present invention, FIG. 4 is an explanatory diagram of one embodiment of the embodiment of FIG. 3, and FIG. 5 is a diagram showing another embodiment of the present invention. 9... Water supply heater, 12... Heat output electrician, 13.
··sea bream! , 14... Scram mechanism, 15... Control rod, 16-4.

Claims (1)

【特許請求の範囲】 1、沸騰水11j[子−〇熱出力が予め設定され九域値
を越え友か否かを判定する第1の手段と、上記載値を上
記熱出力が越えた原因が原子炉への給水温度低下による
給水加熱喪失であるか否かを判定するg意の手段とを備
えるとともに、上記第1及び嬉20手段によp給水加熱
喪失によって上記熱出力が上記域値をζええと判定され
た時に原子炉を緊急停止するように構成したととをIv
IIIkとする沸騰水盤原子Pの緊急停止装置。 2、前記第2の手段を、前記熱出力が前記載値を越えた
状態が予め定められた時間以上連続し友場合に給水加熱
喪失であると判定するタイマによって構成したことを特
徴とする特許請求のms篇1項記載の沸騰水盤原子−〇
緊急停止装置。 3、前記第2の手段を、前記給水温度が予め定められ載
値より低下した場合に給水加熱喪失であると判定する温
度検出器により構成したことを特徴とする特許請求OS
m第1a記載の沸騰水腫原子炉o’ii、急停止装置。
[Scope of Claims] 1. First means for determining whether the boiling water 11j [child-〇 heat output exceeds the nine threshold value set in advance and is a friend, and the reason why the heat output exceeds the above-mentioned value and a means for determining whether or not the loss of heating of the feed water is caused by a decrease in the temperature of the feed water to the reactor, and the heat output is determined to be the threshold value due to the loss of heating of the p feed water by the first and second means. The reactor is configured to make an emergency shutdown when it is determined that the
Emergency stop device for boiling water basin atomic P as IIIk. 2. A patent characterized in that the second means is constituted by a timer that determines that there is a loss of heating of the water supply if the state in which the thermal output exceeds the aforementioned value continues for a predetermined period of time or more. Boiling water basin atom-〇 emergency stop device as described in item 1 of the MS section of the claim. 3. The patented OS characterized in that the second means is constituted by a temperature detector that determines that the feed water has lost its heating when the feed water temperature falls below a predetermined value.
Boiling edema reactor o'ii according to No. 1a, sudden shutdown device.
JP57011544A 1982-01-29 1982-01-29 Emergency shutdown device for bwr type reactor Pending JPS58129386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011544A JPS58129386A (en) 1982-01-29 1982-01-29 Emergency shutdown device for bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011544A JPS58129386A (en) 1982-01-29 1982-01-29 Emergency shutdown device for bwr type reactor

Publications (1)

Publication Number Publication Date
JPS58129386A true JPS58129386A (en) 1983-08-02

Family

ID=11780900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011544A Pending JPS58129386A (en) 1982-01-29 1982-01-29 Emergency shutdown device for bwr type reactor

Country Status (1)

Country Link
JP (1) JPS58129386A (en)

Similar Documents

Publication Publication Date Title
JP5642091B2 (en) Reactor transient mitigation system
Ishiwatari et al. Safety of super LWR,(II) safety analysis at supercritical pressure
EP0200999B1 (en) Controlling a nuclear reactor with dropped control rods
US4832898A (en) Variable delay reactor protection system
JPH0241715B2 (en)
JPS58129386A (en) Emergency shutdown device for bwr type reactor
EP0228857B1 (en) Dropped control rod protection insensitive to large load loss
JP3095485B2 (en) Full capacity turbine bypass nuclear power plant
Araya et al. Transient analysis for design of primary coolant pump adopted to JAERI passive safety reactor JPSR
JPS5819606A (en) Controller for liquid level of drain tank of moisture separator for steam generating plant
Papez et al. LOFTRAN/RETRAN Comparison Calculations for a Postulated Loss-of-Feedwater ATWS in the Sizewell ‘B’PWR
JPS6285889A (en) Method of controlling speed of coolant recirculating pump for nuclear reactor
JPS6314001A (en) Steam-generator output controller
JPH0212097A (en) Method for operating recirculation pump
JP3119884B2 (en) Instrument interlock circuit for reactor water level
JPH0511092A (en) Method of protecting nuclear reactor
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPS5896283A (en) Reactor stability control device
JPS62134404A (en) Feedwater controller for nuclear reactor
Fuji-IE Control systems and transient analysis
JPS5928697A (en) Power control device of bwr type reactor
JPS58221190A (en) Reactor power control device
JPS60173495A (en) Protective device for nuclear reactor
JPS62115396A (en) Protective device for nuclear reactor
JP2000065983A (en) Reactor water level instrumentation interlock device