JPS58129358A - Ultrsonic flaw detector - Google Patents

Ultrsonic flaw detector

Info

Publication number
JPS58129358A
JPS58129358A JP57012939A JP1293982A JPS58129358A JP S58129358 A JPS58129358 A JP S58129358A JP 57012939 A JP57012939 A JP 57012939A JP 1293982 A JP1293982 A JP 1293982A JP S58129358 A JPS58129358 A JP S58129358A
Authority
JP
Japan
Prior art keywords
circuit
frequency
sampling
pulse
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57012939A
Other languages
Japanese (ja)
Inventor
Takamasa Harada
隆正 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57012939A priority Critical patent/JPS58129358A/en
Publication of JPS58129358A publication Critical patent/JPS58129358A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • G01N29/0627Cathode-ray tube displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To detect the position of flaw at a high accuracy by statistic processing of a reflected echo train with a computer after it is sampled being shifted by unit time with a sampling circuit. CONSTITUTION:A high frequency sine wave outputted from a frequency totalizer 6 is divided down to a desired frequency with a frequency divider circuit 7, an output of which drives a pulse generation circuit 9 as gate signal to apply a high voltage pulse to a transducer 10. Echos reflected from flaw in an object to be inspected are converted into electrical signal again with the transducer 10 and inputted into a sampling circuit 13 passing through an amplifier 12. A sampling trigger pulse is applied to the sampling circuit from a delay circuit 8 being shifted by a unit time starting from the pulse delayed by a delay time set with a computer 15 with the rising of a transmission pulse as reference. A sampling output is inputted into the computer 15 after an A/D conversion for statistic processing and the position of flaw is displayed as image on a CRT.

Description

【発明の詳細な説明】 本発明は、超音波探傷装置に関する。[Detailed description of the invention] The present invention relates to an ultrasonic flaw detection device.

超音波探傷装置は、超音波による非破壊検査機器として
最近急速に実用化されつつある。
Ultrasonic flaw detection equipment has recently been rapidly put into practical use as a non-destructive testing device using ultrasonic waves.

その原理上の違いKよ〕、透過法、インパルス反射法、
共振法の3種類に分類−grする。
The difference in principle is the transmission method, impulse reflection method,
Classification into three types of resonance methods - gr.

透過法は、被検査体の一面から超音波を入射し、同かい
合った他端面に散層する音波の強さで中間の傷の有無を
推定する方法であシ、比較的拠いやすいが傷の位置等の
情報を得るKは精度不足である。
The transmission method is a method in which ultrasonic waves are applied from one side of the object to be inspected, and the presence or absence of flaws in the middle is estimated based on the intensity of the sound waves scattered on the other end of the object, and is relatively easy to use. K, which obtains information such as the location of scratches, lacks accuracy.

次に共振法は、俗に超音波厚み計と称さnている測定法
であプ、被検査体中の傷の探査には同いていない。
Next, the resonance method is a measurement method commonly referred to as an ultrasonic thickness meter, and is not suitable for detecting flaws in an object to be inspected.

最後のインパルス反射法は、本超音波探傷装置が用いて
いる基本原理と同一である。
The last impulse reflection method is the same basic principle used in this ultrasonic flaw detection device.

すなわち、超音波インパルスを普検査体の一面から入射
させ、他趨面および中間の傷からの反射波を観測する事
により傷の有無0位置を測定する従来のインパルス反射
法は、反射波の観測を1オシ田スコープ等のブラウン管
上で行なわなければならず、反射時間の測定はブラウン
管上の時間軸のメモリから読み取っていた。
In other words, the conventional impulse reflection method, in which the presence or absence of scratches at the 0 position is measured by injecting an ultrasonic impulse from one surface of the object to be inspected and observing the reflected waves from other surfaces and intermediate scratches, does not require the observation of reflected waves. This had to be carried out on a cathode ray tube such as an Oshida scope, and the reflection time was read from the time axis memory on the cathode ray tube.

この方法では、高精度の距IIl測定や先鋭な偏形状の
Ii!欄は不可能であった。
This method allows for highly accurate distance IIl measurement and sharply deformed Ii! column was impossible.

最近超音波探傷atに対して、被検査体内部の傷の位置
中形状を高精度に正確に知〕たいという費求が強く、自
動化さnた新しい超音波探傷装置の出現が待ち望trし
ていた。
Recently, there has been a strong demand for ultrasonic flaw detection to accurately determine the location and shape of flaws inside objects to be inspected, and we are eagerly awaiting the emergence of new automated ultrasonic flaw detection equipment. was.

本発明は、上記のような従来の超音波探傷装置に付随し
た低精度、不鮮明画儂等の欠点會除去するために考案1
5irtたものであり、反射エコーのピーク位置及びビ
ータ電圧管正確に測定する事により高精度に傷の位置測
定や形状側定食可能にする超音波探傷装置を提供する事
にある。
The present invention was devised in order to eliminate the drawbacks such as low precision and unclear images associated with the conventional ultrasonic flaw detection equipment as described above.
The object of the present invention is to provide an ultrasonic flaw detection device that can accurately measure the position of flaws and fix the shape side by accurately measuring the peak position of the reflected echo and the beater voltage tube.

以下図面に示す実施例により本発明1詳IIAK記述す
る。
The present invention will be described in detail below with reference to embodiments shown in the drawings.

第1図は、従来のインパルス反射法による超音波探傷装
置のブロック図である。
FIG. 1 is a block diagram of a conventional ultrasonic flaw detection device using the impulse reflection method.

このブロック図は、インパルス反射法の中でも単純なム
スコープ法と呼ばnる方法であり、オシロスコープ上で
送信パルス−6、傷パルス−k。
This block diagram shows a method called the Muscope method, which is a simple method among impulse reflection methods, and transmits a pulse of -6 and a scratch pulse -k on an oscilloscope.

底面パルス−Cが[l1111測さnる。The bottom pulse-C is measured at [l1111].

第[1は、本超音波探傷装置のブロック図である。[1] is a block diagram of the present ultrasonic flaw detection device.

本装置の大きな特徴は、第1図で示したパルス観測用の
オシロスコープ−5の代わCK、遅延−路−8、すンプ
リンダ回路−13、ム/D変換am−14及びコンピュ
ーター15とモニター用オシロスコープ−16を用いて
いる事である。
The main features of this device are a CK instead of the oscilloscope 5 for pulse observation shown in Figure 1, a delay path 8, a throttle circuit 13, a MU/D converter am-14, a computer 15, and a monitor oscilloscope. -16 is used.

すなわち、本装置と第1図に示したムス;−プ法とは、
次に示すように基本的な部分は同一である。
In other words, this device and the Mus;-pu method shown in Fig. 1 are as follows:
The basic parts are the same as shown below.

まず、周波数総合器−6は、第1図の同期部−1に対応
し、分m1iii路−7と高電圧パルス発生回路−9が
送信部−2に対応する。
First, the frequency synthesizer 6 corresponds to the synchronizing section 1 in FIG. 1, and the minute m1iii path 7 and the high voltage pulse generating circuit 9 correspond to the transmitting section 2.

同様に、l1llilの受信部−3は、本装置の広帯域
増幅−路−12に対応し1いる。
Similarly, the receiving section 3 of l1llil corresponds to the wideband amplification path 12 of this device.

基本的に本装置もインパルス反射法と同一の原理、すな
わちパルス上被検査体に入射し、傷からの反射エコーを
11定して被検査体の内部構造に@する情報1得るとい
う事に従っているので、基本的な反射エコーを得りため
の同期部、送1部、受信Sは同一の構成から底p立って
いる。
Basically, this device follows the same principle as the impulse reflection method, that is, a pulse is made incident on the object to be inspected, and the echoes reflected from the scratches are determined to obtain information 1 on the internal structure of the object to be inspected. Therefore, the synchronization section, transmission section 1, and reception section S for obtaining a basic reflected echo all have the same configuration.

この基本的な部分から得らnる反射ニブ−を加工して内
部構造に調する有益な情報1得るための効果的なシステ
ムが本装置である。
This device is an effective system for processing the reflective nib and obtaining useful information on its internal structure obtained from this basic part.

初めに本装置での反射エコーを得るための基本的′&部
分の説明を行う。
First, we will explain the basic steps for obtaining reflected echoes using this device.

周波数総合器−6から出力された高周波数正弦波は、分
周回路−71り所望の周波数まで分局堪れ、分局信号の
所望のタイ瑠ンダの立ち上が)で任意に設定さnた時間
幅のパルスが出力される。
The high-frequency sine wave output from the frequency synthesizer 6 is divided into the desired frequency by the frequency divider circuit 71, and then the desired frequency of the division signal is reached (rise of the desired tie) for an arbitrarily set time. A pulse of width is output.

この出力をゲージ信号として、前記局波総金−−6から
出力される正弦波管ゲートし、さらに歇百〜数千ボルト
まで増幅して、いわゆるR1パルスtしし、こrtをト
ランスジニー?−10に−1せしめる。
This output is used as a gauge signal and gated to the sine wave tube output from the local wave total circuit 6, and further amplified to hundreds to thousands of volts to form the so-called R1 pulse t, and this rt to the transgenie? Add -1 to -10.

トランスジユーサ−10は、印miiれた高電圧パルス
により、機械的振動をし被検査体に超音波1入射する。
The transducer 10 mechanically vibrates in response to the imprinted high-voltage pulses and injects an ultrasonic wave into the object to be inspected.

超音波は、被検査体中食進行しながら傷等の銀音波反射
体で反射され、再びトランスジエーナーLot振動せし
める。
The ultrasonic waves are reflected by a silver sound wave reflector such as a scratch while the object to be inspected undergoes internal erosion, causing the transgener Lot to vibrate again.

トランスジユーサは、機械→電気変換によ)振動を電気
信七として広帯域増幅器−12へ出力する広帯域増幅a
mでは、適正な増幅率によjoltエゴー列會減衰せし
め、かつ修正し究後、反射工1−列の正電位側の包結線
のみを検出し出力する上記基本的部分から得らrL九反
射エコー列を次のXテップで、よ)効率的に処理せしめ
、もって高精度に傷に対する情報七得る本装置の主要部
分の説明【次に行う。
The transducer is a wideband amplifier a that outputs the vibration (by mechanical → electrical conversion) as an electric signal to the wideband amplifier 12.
In m, the jolt ego train is attenuated by an appropriate amplification factor, and after correction, only the envelope line on the positive potential side of the reflector 1-row is detected and output.The rL nine reflections obtained from the above basic part are Explanation of the main parts of this device, which processes the echo train efficiently in the next X step and thereby obtains information about scratches with high precision, will be explained next.

広帯域増幅器から出力さnた反射エコー列の処理は、ま
ずサンプリング−路から始まる。
Processing of the train of reflected echoes output from the broadband amplifier begins with a sampling path.

サンプリングのタイミングは、第3図、第4図に示す、
第3図において、17は送信パルスであり伝播時間τs
 *に、傷からの反射エコー18が出現する* t f
t) 19 @はil1回目の底面からの反射エコーで
あや、同様に、t96も上記傷からのII2回Iの反射
エコーである。
The sampling timing is shown in Figures 3 and 4.
In FIG. 3, 17 is a transmission pulse and has a propagation time τs
*A reflected echo 18 from the wound appears* t f
t) 19 @ is the il1th reflected echo from the bottom surface, and similarly, t96 is the II2nd I reflected echo from the scratch.

第4図は、第3図の送信パルス−17と傷からの反射エ
コー18の部分を拡大した図であゐ。
FIG. 4 is an enlarged view of the transmitted pulse 17 and the reflected echo 18 from the wound in FIG. 3.

r a #ix遅延回路−8により送信パルスの立ち上
が9を基準としたコノピユータで設定名n究遅延時間で
あり、遷延回路はτGだけ、送信パルスよp遅砥名せた
パルスtすンプリング回路に出力する。
r a #ix Delay circuit-8 is a controller with the rising edge 9 of the transmission pulse as a reference, and the setting name is the ultimate delay time, and the delay circuit is a pulse t sampling that is delayed by τG and p delayed than the transmission pulse. Output to the circuit.

コンピュータは、所望の遅延時間τat出穐点として、
τ、単位時づつずらしながらサンプリング用のトリガー
パルス【遅延回路から出力させるように動作する。
The computer determines the desired delay time τat as the output point,
τ, the trigger pulse for sampling is shifted by unit time [operates to be output from the delay circuit].

すンプリンタfs回終った所で遅延時の掃引は停止する
Sweeping at the time of delay stops when the printer fs times have been completed.

この間、−回毎のサンプリングの出力扛、ム/D変換回
@1% −14によりデジメに@号に変換し、コンビエ
ータに入力される。
During this period, the output of the sampling every - time is converted into a digital signal by the M/D conversion time @1% -14, and is input to the combiator.

コンビエータでは、gkwAのデーI會記憶し、その後
、最大値の検出、最大値1取つ究時の遅延時間の算出、
データのノイズ除去のための統計的地理など會施す。
The combiator stores the data of gkwA, then detects the maximum value, calculates the delay time when reaching the maximum value of 1,
Perform statistical geography to remove data noise.

処m會終見た情報は、オシ−スコープ又は、OR丁等に
出力し、内部構造を人間に数値、im會等でただちに知
らしめる。
The information obtained at the end of the meeting is output to an oscilloscope or OR desk, etc., and the internal structure is immediately made known to humans through numerical values, IM meetings, etc.

コンピュータのデー!収集及び最大値検出、最大値での
遅延時間を求める7El−チャー)t@i6に示す。
Computer day! Collection and maximum value detection, determining the delay time at the maximum value 7El-Char) t@i6.

以上のように1本超量波探傷装置は、従来の龜音波探傷
fctに見られ九精度不足やノイズによる自費のほやけ
t、すンプリン回路によりエコー列會サンプリングし、
ム/D変換し統計的処理を施す事により、高精度の位置
検出0自侭再生能力を持てるようKなった。
As mentioned above, the single ultra-wave flaw detection device uses an echo train sampling method using a sample circuit to avoid the lack of accuracy and noise caused by conventional FCT flaw detection.
By performing M/D conversion and statistical processing, it has become possible to have high-precision position detection 0 self-reproduction ability.

本装置社、データ會有効かつ、1llyINfK利用で
きる極めて経済的で有益な装置であると考えらnる
The company considers this device to be an extremely economical and useful device that is effective for data communication and can be used 1ly INfK.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のインパルス反射法のブーツタ図を示し
、第2図は、本発明のブロック図であ為、ga図、第4
図は、反射エコー列とその一部の拡大図である。 第5図は、被検査体の断面図である。 纂6図は、コンピュータ処理の7−−チヤート上水して
いる。 11.同期部 29.送信部 31.受信部 40.被検査体 51.オシ曹スコープ 6、、Ii波数総合・ 700分w4回路 80.遅延回路 90.高電圧パルス発生回路 1G 、 、 )ランスジエーサ 116.被検査体 120.広帯域増S* 13、#すンブリンダia* 141.ム/p質換國路 150.コンピユー1 160.オシロスコープ又はOR丁 17〜211.エコー列 no、被検査体 no、傷 以上 第1図 3 第2図 第3[21 第5図 第6図
FIG. 1 shows a boot diagram of the conventional impulse reflection method, and FIG. 2 is a block diagram of the present invention.
The figure is an enlarged view of the reflected echo array and a portion thereof. FIG. 5 is a sectional view of the object to be inspected. Figure 6 shows a 7-chart diagram of computer processing. 11. Synchronization section 29. Transmission unit 31. Receiving section 40. Inspected object 51. Oscilloscope 6,, Ii wave number synthesis, 700 minutes w4 circuit 80. Delay circuit 90. High voltage pulse generation circuit 1G, , ) Lancer 116. Inspected object 120. Broadband increase S* 13, #Sumbrinda ia* 141. Mu/p quality exchange country road 150. Computer 1 160. Oscilloscope or OR 17-211. Echo train no., object to be inspected no., scratch etc. Fig. 1 3 Fig. 2 Fig. 3 [21 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】 1%周周波値波會発生する周波数総合回路、及び高周波
正弦波を分周する分周回路、及び該分局回路の出力信号
を所望の範囲にわたって遅at−施す遷延−路、及び上
記周波総合回路から発生する高周波正弦波上入力し、上
記分周回路の出力信号によりゲートしながら高電圧信号
に増幅する高電圧パルス発生回路、及び電気信号を超音
波に変換する)ランスジエーサ、及び被測定試料及び反
射エコーを増幅しかつその包絡−線を検出する広帯域増
@回路、及び上記遅延回路によシ出力されるトIJ 、
flパルスにより、エコーをサンプリングし記憶するサ
ンプリング囲路、及びサンプリング電圧をデジタルIN
K叢換するム/D変換回路、及びオシロスコープ、及び
七〇ら管制御するコンピュータから放る超音波探傷装置
において、コンピュータにより上記遷延回路の遅延時間
を所望の會aからτOの間隔でτ&fiでずらし、その
遅延信号によりエコー【サンプリング囲路においてサン
プリングし、ム/D変換した螢記憶し、その後全デーI
t比較の上置大電圧[をさがし、皺電圧値に対応した遅
延時間を出力する事によシ、試料中の傷への超音波伝播
峙関を高精度に測定し、かつエコーのビークの高さも合
わせて測定する事t%黴とする超音波探傷装置。
[Claims] A frequency integrated circuit that generates a 1% frequency value wave, a frequency divider circuit that divides a high frequency sine wave, and a delay path that delays the output signal of the divider circuit over a desired range. , and a high-voltage pulse generation circuit that inputs the high-frequency sine wave generated from the frequency integrated circuit and amplifies it to a high-voltage signal while gated by the output signal of the frequency dividing circuit, and a lance generator that converts the electric signal into an ultrasonic wave. , and a broadband amplification circuit that amplifies the sample to be measured and the reflected echo and detects its envelope, and the IJ output by the delay circuit,
The fl pulse causes a sampling circuit to sample and store the echo, and a sampling voltage to the digital IN.
In an ultrasonic flaw detection device emitted from a computer that controls a MU/D conversion circuit, an oscilloscope, and 70 tubes, the computer sets the delay time of the delay circuit to τ & fi at intervals of τO from a desired value a. The delayed signal is then sampled in the sampling circuit, converted to MU/D, and stored, and then the entire data is
By searching for the large voltage above the t comparison and outputting the delay time corresponding to the wrinkle voltage value, it is possible to measure the ultrasonic propagation relationship to the flaw in the sample with high precision, and also to detect the peak of the echo. Ultrasonic flaw detection equipment that measures t% mold along with the height.
JP57012939A 1982-01-29 1982-01-29 Ultrsonic flaw detector Pending JPS58129358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012939A JPS58129358A (en) 1982-01-29 1982-01-29 Ultrsonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012939A JPS58129358A (en) 1982-01-29 1982-01-29 Ultrsonic flaw detector

Publications (1)

Publication Number Publication Date
JPS58129358A true JPS58129358A (en) 1983-08-02

Family

ID=11819249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012939A Pending JPS58129358A (en) 1982-01-29 1982-01-29 Ultrsonic flaw detector

Country Status (1)

Country Link
JP (1) JPS58129358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201154A (en) * 1988-02-05 1989-08-14 Hitachi Constr Mach Co Ltd Ultrasonic flaw detecting device
JPH01224660A (en) * 1988-03-04 1989-09-07 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201154A (en) * 1988-02-05 1989-08-14 Hitachi Constr Mach Co Ltd Ultrasonic flaw detecting device
JPH01224660A (en) * 1988-03-04 1989-09-07 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector

Similar Documents

Publication Publication Date Title
US4056970A (en) Ultrasonic velocity and thickness gage
JPS627856B2 (en)
IL103637A (en) Method and apparatus for internal inspection of pieces by ultrasound
US3334622A (en) Method and apparatus for electroacoustic exploration
CA2152102C (en) High resolution measurement of thickness using ultrasound
US4064742A (en) Ultrasonic inspection device
JPH08510832A (en) Method and apparatus for nondestructive inspection of object using ultrasonic wave
JPS58129358A (en) Ultrsonic flaw detector
US3624712A (en) Ultrasonic pulse echo thickness-measuring device
JP2818615B2 (en) Ultrasonic measuring device
JP2840656B2 (en) Peak detection type ultrasonic thickness gauge
JPS6014166A (en) Method and device for ultrasonic flaw detection
JP2812688B2 (en) Measuring method of thickness of coated object
US3166931A (en) Ultrasonic inspection apparatus using short elastic pulses
JP2728265B2 (en) Equipment for measuring the thickness of objects with coatings
JPS62170830A (en) Stress distribution measuring instrument
SU1004757A1 (en) Ultrasonic device for measuring mechanical stresses
GB1264424A (en)
SU1619030A1 (en) Ultrasonic thickness gauge
RU2328706C2 (en) Device measuring speed of sound in heterogeneous media
JPS6159460B2 (en)
SU1179208A1 (en) Ultrasound pulse apparatus for material inspection
RU2034236C1 (en) Ultrasound echo thickness gage
JPS627979B2 (en)
SU945787A1 (en) Device for measuring ultrasound propagation time