JPS58129349A - Removing device for choking of fine particle counting device - Google Patents

Removing device for choking of fine particle counting device

Info

Publication number
JPS58129349A
JPS58129349A JP57014206A JP1420682A JPS58129349A JP S58129349 A JPS58129349 A JP S58129349A JP 57014206 A JP57014206 A JP 57014206A JP 1420682 A JP1420682 A JP 1420682A JP S58129349 A JPS58129349 A JP S58129349A
Authority
JP
Japan
Prior art keywords
counting
detector
pore
pores
sample liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57014206A
Other languages
Japanese (ja)
Inventor
Sachiko Tachikawa
立川 幸子
Tokio Kano
時男 嘉納
Masahiro Aoki
雅弘 青木
Haruhiko Takemura
竹村 治彦
Hideo Adachi
日出夫 安達
Satsuki Kanbara
神原 さつき
Michio Nawa
名和 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP57014206A priority Critical patent/JPS58129349A/en
Publication of JPS58129349A publication Critical patent/JPS58129349A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/13Details pertaining to apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N2015/137Cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To remove dusts through the operation of a pump in case a choking occurs in a pore, by a method wherein, in a Coulter counter, a nozzle of a pipe for removing a choking is located in the proximity of a pore. CONSTITUTION:With a pressure reducing pump 7 started, silver surfaces 9a and 9b of a manometer 8 are deflected, and a sample liquid 3 in a receptacle 1 is fed in a fine particle detector 24 and a pressure reducing pipe 5. A cock 6 is then closed, and the specified volume of the sample liquid 3 is sucked in a detector 24 as a result of the movement of the silver surfaces. The sample liquid 3 passes through pores 25, and blood cells 2 are detected as a pulse at a detecting circuit 13 by electrodes 26a and 26b. In case a choking occurs in the pores 25, the detecting circuit 13 is prevented from generating a pulse, and thereby a counting operation is brought to a stop to actuate a removing pump. This causes a pipe 27 to start sucking the sample liquid 3 by means of a nozzle 27a and to suck dusts by which the pores 25 and choked.

Description

【発明の詳細な説明】 本発明は微小粒子計数装置の目詰り除去装置、詳しくは
、赤血球や白血球等の微小粒子を計数する装置において
、微小粒子の通過する細孔に目詰りを生じたとき、この
目詰りを除去するための目詰り除去装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a device for removing clogging of a microparticle counter, specifically, in a device for counting microparticles such as red blood cells and white blood cells, when the pores through which the microparticles pass are clogged. , relates to a clogging removal device for removing this clogging.

赤血球や白血球等の微小粒子を計数する、従来の微小粒
子計数装置は、第1図に示すように構成されている。第
1図において、容器1には計数すべき微小粒子である血
球2を含む試料液3が満たされている。即ち、この試料
液3は7〜8μmの大きさをもつ血球2を1 mm立方
に500万個程度含む血球試料を生理食塩水等によって
500倍に希釈したものである。そして、この試料液3
を満たした容器1内に微小粒子検出器4が配置される。
A conventional microparticle counter that counts microparticles such as red blood cells and white blood cells is configured as shown in FIG. In FIG. 1, a container 1 is filled with a sample liquid 3 containing blood cells 2, which are microparticles to be counted. That is, this sample liquid 3 is a blood cell sample containing about 5 million blood cells 2 having a size of 7 to 8 μm per 1 mm cube, diluted 500 times with physiological saline or the like. Then, this sample solution 3
A microparticle detector 4 is placed in a container 1 filled with .

この微小粒子検出器4の上端には減圧管5が接続され、
同減圧管5の上端にコツクロを介して減圧ポンプ7が接
続されている。減圧管5の分岐した管部5aの先端には
、略U字形状に形成されたマノメータ8が一体に設けら
れている。マノメータ8の管内には水銀9が注入されて
いる。また、マノメータ8の大気に開放したがわの管内
の所定の高さ位置には、上記減圧管5内の圧力変化によ
ってマノメータ8の水銀面9a 、 9bが移動すると
き、水銀面9aと接触する時点を検出するための計数開
始電極10と計数停止電極11とが配設されている。
A pressure reducing tube 5 is connected to the upper end of this microparticle detector 4,
A pressure reduction pump 7 is connected to the upper end of the pressure reduction pipe 5 via a screw. A manometer 8 formed in a substantially U-shape is integrally provided at the tip of the branched pipe portion 5a of the pressure reducing pipe 5. Mercury 9 is injected into the tube of the manometer 8. Further, at a predetermined height position in the side tube of the manometer 8 that is open to the atmosphere, when the mercury surfaces 9a and 9b of the manometer 8 move due to pressure changes in the pressure reducing tube 5, they come into contact with the mercury surface 9a. A counting start electrode 10 and a counting stop electrode 11 are provided for detecting a time point.

この計数開始電極10および計数停止電極11は計数指
令発生回路12に接続されている。
The counting start electrode 10 and counting stop electrode 11 are connected to a counting command generation circuit 12.

上記微小粒子検出器4の底壁には、血球2等の微小粒子
が通過できる程度の細孔20が設けられていて、第2図
に拡大して示すように、この細孔20の近傍には微小粒
子検出素子としての1対の検出用電極21a、211)
が、微小粒子検出器4の底壁を形成しているガラス等の
絶縁体に被覆された状態で配設されている。
The bottom wall of the microparticle detector 4 is provided with a pore 20 large enough to allow microparticles such as blood cells 2 to pass through, and as shown in an enlarged view in FIG. is a pair of detection electrodes 21a, 211) as a microparticle detection element.
is disposed in a state covered with an insulator such as glass forming the bottom wall of the microparticle detector 4.

ところで、試料液3中の血球2とその希釈液との間には
誘電率に差が生ずるように希釈液が選ばれており、この
ため、上記1対の検出用電極21a。
By the way, the diluent is selected so that there is a difference in dielectric constant between the blood cells 2 in the sample liquid 3 and the diluent, and therefore the pair of detection electrodes 21a.

21b間の静電容量は、上記細孔2oに血球2が存在し
ているときと、存在していないときとで、僅かに変化す
る。従って、血球2が上記細孔2oを通過するときの、
上記電極21 a 、 21 b間に検出される静電容
量の変化を利用して血球2が計数されることになる。
The capacitance between the capacitances 21b and 21b changes slightly depending on whether blood cells 2 are present in the pores 2o or not. Therefore, when the blood cells 2 pass through the pore 2o,
Blood cells 2 are counted using the change in capacitance detected between the electrodes 21a and 21b.

上記検出用電極21a、21bのリード線は検出器4の
上端の連結部4aから引き出されて、上記静電容量の変
化を電気信号に変換するための検出回路13に接続され
ている。検出回路13の出力端子は増幅回路14を介し
て、弁別整形回路15に接続されている。弁別整形回路
15は計数すべき目的の微小粒子以外の微小粒子や塵埃
等を弁別して除くものである。この弁別整形回路15は
オシロスコープ等の監視装置16に接続されているので
上記検出信号の弁別の様子が監視できるようになってい
る。弁別整形回路15の出力端子および上記計数指令発
生回路12の出力端子は計数回路17に接続されていて
The lead wires of the detection electrodes 21a, 21b are drawn out from the connecting portion 4a at the upper end of the detector 4 and connected to a detection circuit 13 for converting the change in capacitance into an electrical signal. An output terminal of the detection circuit 13 is connected to a discrimination shaping circuit 15 via an amplifier circuit 14. The discrimination shaping circuit 15 discriminates and removes microparticles, dust, etc. other than the target microparticles to be counted. This discrimination shaping circuit 15 is connected to a monitoring device 16 such as an oscilloscope, so that the state of discrimination of the detection signal can be monitored. The output terminal of the discrimination shaping circuit 15 and the output terminal of the counting command generating circuit 12 are connected to a counting circuit 17.

同計数回路17は上記弁別整形回路15からの検出信号
を、計数指令発生回路12から送出されるスタートパル
スによって計数開始し、ストップパルスによって計数終
了するととKなる。計数回路17は計数値を表示するた
めの表示回路18に接続されている。
The counting circuit 17 starts counting the detection signal from the discrimination shaping circuit 15 in response to a start pulse sent from the counting command generation circuit 12, and reaches K when the counting ends in response to a stop pulse. The counting circuit 17 is connected to a display circuit 18 for displaying the counted value.

上記のように構成された微小粒子計数装置を作動させる
に際しては、まず上記コツクロを開(・て減圧ポンプ7
を作動開始させ、上記減圧管5および上記微小粒子検出
器4内の空気を吸引して減圧管5および検出器4内を減
圧する。すると、容器1内の試料液3が上記細孔20を
通じて検出器4内に浸入し、同検出器4から減圧管5内
に上記試料液3が満たされていく。このとき、同時にマ
ノメータ8の上記減圧管5に通じている側の水銀面9b
が上昇し開放管側の水銀面9aが下降する。そして、上
記試料液3が減圧管5内にその上端にまで全て満たされ
たとき、減圧ポンプ7を停止させコツクロを閉じる。こ
のときの状態が第1図に示される状態であり、マノメー
タ8の水銀面9aは計数開始電極lOより低い位置にあ
る。
When operating the microparticle counter configured as described above, first open the above-mentioned counter (by opening the vacuum pump 7).
is started to operate, and the air inside the pressure reducing tube 5 and the fine particle detector 4 is sucked to reduce the pressure inside the pressure reducing tube 5 and the detector 4. Then, the sample liquid 3 in the container 1 enters the detector 4 through the pore 20, and the pressure reducing tube 5 is filled with the sample liquid 3 from the detector 4. At this time, at the same time, the mercury surface 9b of the manometer 8 on the side communicating with the pressure reducing tube 5 is
rises and the mercury surface 9a on the open tube side falls. When the sample liquid 3 is completely filled in the vacuum tube 5 to its upper end, the vacuum pump 7 is stopped and the lid is closed. The state at this time is the state shown in FIG. 1, where the mercury surface 9a of the manometer 8 is located at a lower position than the counting start electrode IO.

上記コツクロを閉じたのちは、マノメータ802つの偏
位した水銀面9a、9bは雨水銀面ga 、 9bにお
ける圧力が均等になる方向に移動していく。即ち、コツ
クロを閉じた時点から水銀面9aが上昇し、水銀面9b
が下降していく。そして、マノメータ8の水銀面ga、
9bがこのように移動することにより、検出器4におい
ては、その底壁の細孔20を通じて試料液3が容器1内
から検出器4に浸入する。このとき、試料液3中の血球
2が上記細孔20を通過する毎に、上記したように、検
出用電極21 a e 21 b間の静電容量が変化す
るので、検出回路13からは血球2の、上記細孔20を
通過した数の検出)くルスが発生される。この検出ノく
ルスは増幅回路14で適当に増幅されたのち、弁別整形
回路15で、例えば赤血球又は白血球のみが確実に計数
できるような信号に波形整形されて計数回路17に導か
れる。
After the lid is closed, the two deviated mercury surfaces 9a and 9b of the manometer 80 move in a direction in which the pressures on the rain mercury surfaces ga and 9b become equal. That is, the mercury surface 9a rises from the time when the kotsukuro is closed, and the mercury surface 9b rises.
is going down. Then, the mercury surface ga of manometer 8,
As 9b moves in this manner, the sample liquid 3 enters the detector 4 from inside the container 1 through the pore 20 in the bottom wall of the detector 4. At this time, each time the blood cells 2 in the sample liquid 3 pass through the pores 20, the capacitance between the detection electrodes 21 a and 21 b changes as described above, so the detection circuit 13 detects blood cells. 2) Detection of the number of particles passing through the pores 20) Curses are generated. This detection noculus is appropriately amplified by an amplifier circuit 14, and then waveform-shaped by a discrimination shaping circuit 15 into a signal that can reliably count, for example, only red blood cells or white blood cells, and then guided to a counting circuit 17.

計数回路17は弁別整形回路15からの検出ノ々ルスが
導かれても、上記マノメータ8の水銀面9aが計数開始
電極10に達しないうちは計数を開始しないが、上記水
銀面9aが上昇して計数開始電極10に接触すると、こ
のとき計数指令発生回路12よりスタートパルスが計数
回路17に導かれて、同回路17をリセットしたのち、
上記検出ノ(ルスの計数を開始スル。このあと、マノメ
ータ8の水銀面9aが上昇しつづける間、上記計数回路
17は上記血球2に対応した検出パルスを計数しつづけ
る。検出パルスの計数値は表示回路18により例えばデ
ィジタル値で表示される。マノメータ8の水銀面9aが
上昇して計数停止電極11に接触すると、このとき計数
指令発生回路12よりストップパルスが発生して計数回
路17の計数動作が停止する。従って、表示回路18に
は上記マノメータ8の水銀面9aが計数開始電極10か
ら計数停止電極11に至るまでの間に計数した検出パル
スの数が血球数として表示される。つまり、この血球数
はマノメータ8の水銀面9aが上記計数開始電極1oか
ら計数停止電極11に至るまで移動する一定容積の試料
液3中に含まれる血球数である。
The counting circuit 17 does not start counting until the mercury surface 9a of the manometer 8 reaches the counting start electrode 10 even if the detection norm is guided from the discrimination shaping circuit 15, but when the mercury surface 9a rises. When the counter contacts the counting start electrode 10, a start pulse is guided from the counting command generation circuit 12 to the counting circuit 17, and after resetting the circuit 17,
Start counting the detection pulses. After that, while the mercury level 9a of the manometer 8 continues to rise, the counting circuit 17 continues to count the detection pulses corresponding to the blood cells 2.The count value of the detection pulses is For example, it is displayed as a digital value by the display circuit 18. When the mercury surface 9a of the manometer 8 rises and contacts the counting stop electrode 11, a stop pulse is generated from the counting command generating circuit 12 and the counting operation of the counting circuit 17 is started. Therefore, the number of detection pulses counted while the mercury surface 9a of the manometer 8 reaches the counting start electrode 10 to the counting stop electrode 11 is displayed on the display circuit 18 as the number of blood cells.In other words, This blood cell count is the number of blood cells contained in a constant volume of sample liquid 3 in which the mercury surface 9a of the manometer 8 moves from the counting start electrode 1o to the counting stop electrode 11.

このように、上記微小計数装置は作動し、一定量の試料
液3中に含まれる血球数が計数されるようになっている
。しかしながら、上記の微小粒子計数装置において、微
小粒子検出器4の底壁に設けた細孔20はその径が例え
ば、1oo11m程度と非常に微細な孔であるために、
血球2のかたまりゃ塵埃等が試料液3に含まれていると
、これらにょって細孔20が閉塞されてしまうことがし
ばしばある。細孔20が塵埃等によって目詰りをおこし
た場合には血球2の計数が行なわれなくなるので、直ち
に計数装置の作動を停止させなくてはならない。
In this manner, the micro-counting device operates and the number of blood cells contained in a certain amount of sample liquid 3 is counted. However, in the above-mentioned microparticle counter, the pore 20 provided in the bottom wall of the microparticle detector 4 is a very fine hole with a diameter of, for example, about 10.1m.
If the sample liquid 3 contains lumps of blood cells 2, dust, etc., the pores 20 are often blocked by these particles. If the pores 20 become clogged with dust or the like, blood cells 2 will no longer be counted, so the operation of the counting device must be stopped immediately.

そして、上記細孔20に詰った塵埃等を取り除かない限
りは上記血球の計数が再開できないため、上記従来の微
小粒子計数装置は非常に不便で能率の悪いものとなって
いた。上記細孔2oの径をもっと大きくすれば目詰りに
関する限りは良好な結果を得られることになるが、逆に
検出精度が低下してしまうので好ましくない。従って、
微小粒子計数装置においては、検出器の細孔の目詰りを
防止することが、安定した計数動作を行なわせる上で重
要になっている。
Since the counting of blood cells cannot be restarted unless the dust or the like that has clogged the pores 20 is removed, the conventional microparticle counter described above is extremely inconvenient and inefficient. If the diameter of the pores 2o is made larger, good results can be obtained as far as clogging is concerned, but this is not preferable because the detection accuracy will be reduced. Therefore,
In microparticle counting devices, it is important to prevent the pores of the detector from clogging in order to perform stable counting operations.

本発明の目的は、上記の点に鑑み、微小粒子検出器の細
孔に向けて目詰り除去用のパイプのノズルを配設置7、
このノズルに、目詰り除去のための吸引力や排出力をポ
ンプによって送出するようにした微小粒子計数装置の目
詰り除去装置を提供するにある。
In view of the above points, an object of the present invention is to arrange a nozzle of a pipe for removing clogging toward the pore of a microparticle detector;
It is an object of the present invention to provide a clogging removal device for a microparticle counting device in which a suction force and a discharge force for removing clogging are sent to the nozzle by a pump.

以下、本発明を図示の実施例に基いて説明する。Hereinafter, the present invention will be explained based on illustrated embodiments.

第3図は本発明の一実施例を示す微小粒子計数装置の概
略構成図である。この微小粒子計数装置においては、微
小粒子検出器24の側壁に細孔25が設けられ、この細
孔25の近傍に、第4図に拡大して示すように、細孔2
5を挾んで対向することにより微小粒子検出素子を形成
する1対の検出用電極z6a、z6bが、この検出器2
4の側壁を形成しているガラス等の絶縁体に被覆された
状態で配設されている。この1対の検出用電極z6a、
z6bは上記細孔25における静電容量の変化を検出す
るためのものである。検出用電極26a、26bのリー
ド線は微小粒子検出器24の上端の、減圧管5との連結
部24aから引き出されて、静電容量の変化を電気信号
に変換するための検出回路13iC接続されている。
FIG. 3 is a schematic diagram of a microparticle counting device showing an embodiment of the present invention. In this microparticle counter, a pore 25 is provided in the side wall of the microparticle detector 24, and a pore 25 is provided in the vicinity of the pore 25, as shown in an enlarged view in FIG.
A pair of detection electrodes z6a and z6b, which form a microparticle detection element by facing each other with 5 in between, are connected to this detector 2.
It is disposed in a state covered with an insulator such as glass forming the side wall of 4. This pair of detection electrodes z6a,
z6b is for detecting a change in capacitance in the pore 25. The lead wires of the detection electrodes 26a and 26b are pulled out from the connection part 24a with the pressure reducing tube 5 at the upper end of the microparticle detector 24, and connected to the detection circuit 13iC for converting changes in capacitance into electrical signals. ing.

また、上記検出器24の連結部24aには目詰り除去用
のパイプ27が支持されていて、同パイプ27の一端は
検出器24の外がわで同検出器24の側壁に沿って下方
に延び、その先端に形成されたノズル27aは上記細孔
25の高さ位置で同細孔25に向って開口している。パ
イプ27の径は計数すべき微小粒子、即ち血球2より十
分に太きい。このパイプ27の他端は目詰り除去ポンプ
28に配管されてその吸気口に連結されている。この目
詰り除去ポンプ28は上記細孔25に目詰りを生じて検
出回路13が血球2の検出動作を行なわなくなったとき
の検出回路13の状態により吸引作動するようになって
いる。その他の構成は前記第1図の装置と同様であり、
第3図において、第1図に示す部分と同一の部分につい
ては同一符号を付してその説明を省略する。
Further, a pipe 27 for removing clogging is supported on the connecting portion 24a of the detector 24, and one end of the pipe 27 extends downward along the side wall of the detector 24 outside the detector 24. A nozzle 27a formed at the tip of the nozzle 27a opens toward the fine hole 25 at the height of the fine hole 25. The diameter of the pipe 27 is sufficiently larger than the microparticles to be counted, that is, the blood cells 2. The other end of the pipe 27 is connected to a declogging pump 28 and its intake port. This clogging removal pump 28 is adapted to perform a suction operation depending on the state of the detection circuit 13 when the pore 25 is clogged and the detection circuit 13 no longer performs the operation of detecting blood cells 2. The rest of the configuration is the same as the device shown in FIG. 1,
In FIG. 3, parts that are the same as those shown in FIG. 1 are given the same reference numerals and their explanations will be omitted.

上記のように構成された微小粒子計数装置を作動させる
手順につぃ【は、前記第1図に示した従来の計数装置と
全く同様である。減圧ポンプ7を始動させると、その吸
引作用によりマノメータ8の水銀面9a、gbが偏位さ
れると共に1容器l内の試料液3が微小粒子検出器24
および減圧管5内に導かれる。試料液3が上記検出器2
4および減圧管5内に一杯に満たされた状態でコツクロ
が閉じられる。コツクロが閉じられたあとは、マノメー
タ8の水銀面9aが上昇するので、容器1内の試料液3
がさらに上記検出器24内に吸い込まれる。試料液3は
検出器24内に上記細孔25を通じて導かれる。そして
、試料液3中に含まれる血球2が上記細孔25を通過す
るとき、同細孔251c設けられている1対の検出用電
極26aと26bの間で静電容量が変化し、この静電容
量の変化が電気的なパルスとして検出回路13によって
検出される。検出回路13で検出されたパルスは増幅回
路14で増幅されたのち、弁別整形回路15に導かれて
血球以外の小さな塵埃に相当するパルスや雑音などが弁
別して除かれると共に、計数しやすいパルス波形に整形
されて計数回路17に導かれる。弁別整形回路15にお
けるパルス波形は監視装置16によりモニターすること
ができる。
The procedure for operating the microparticle counting device constructed as described above is exactly the same as that of the conventional counting device shown in FIG. When the vacuum pump 7 is started, its suction action causes the mercury surfaces 9a and gb of the manometer 8 to be deflected, and the sample liquid 3 in one container 1 is transferred to the microparticle detector 24.
and guided into the pressure reducing pipe 5. The sample liquid 3 is connected to the detector 2.
4 and the pressure reducing pipe 5 are completely filled, and the container is closed. After the lid is closed, the mercury level 9a of the manometer 8 rises, so the sample liquid 3 in the container 1
is further sucked into the detector 24. The sample liquid 3 is introduced into the detector 24 through the pore 25 mentioned above. When the blood cells 2 contained in the sample liquid 3 pass through the pore 25, the capacitance changes between the pair of detection electrodes 26a and 26b provided in the pore 251c, and this static The change in capacitance is detected by the detection circuit 13 as an electrical pulse. The pulses detected by the detection circuit 13 are amplified by the amplifier circuit 14, and then guided to the discrimination shaping circuit 15, where pulses and noise corresponding to small dust other than blood cells are discriminated and removed, and a pulse waveform that is easy to count is created. The signal is formatted into a shape and guided to the counting circuit 17. The pulse waveform in the discrimination shaping circuit 15 can be monitored by a monitoring device 16.

計数回路17には、マノメータ8の水銀面9aが上昇し
て計数開始電極1oに接触した時点で計数指令発生回路
12からスタートパルスが導かれるので、この時点で計
数回路17は上記弁別整形回路15から導かれる検出パ
ルスの計数を開始する。そして、上記マノメータ8の水
銀面9aが上記計数開始電極10の高さ位置から計数停
止電極11の高さ位置に達するまでの間、上記計数回路
17が作動し、同計数回路17は、上記細孔25を血球
2が通過することにより上記検出器24から順次送られ
て(る検出パルスをそれぞれ計数する。
The counting circuit 17 receives a start pulse from the counting command generation circuit 12 when the mercury surface 9a of the manometer 8 rises and contacts the counting start electrode 1o. Start counting the detection pulses derived from . The counting circuit 17 operates until the mercury surface 9a of the manometer 8 reaches the height position of the counting start electrode 10 and the counting stop electrode 11. As the blood cells 2 pass through the hole 25, the detection pulses sequentially sent from the detector 24 are counted.

ここで、上記検出器24の細孔25が、血球のかたまり
や塵埃等により閉塞してしまった場合には、この細孔2
5を通じて試料液3が流れなくなるめで、検出用電極z
6a、26b間には、静電容量の変化が生じなくなるの
で、検出回路13は検出パルスを発生しなくなり、この
ため計数回路17の計数動作が中止される。検出回路1
3が検出動作をしなくなると、検出回路13から目詰り
除去ポンプ28へ、同ポンプ28を作動開始させるため
の信号が送られる。すると、目詰り除去ポンプ28は、
このとき、直ちK。
Here, if the pore 25 of the detector 24 is blocked by a mass of blood cells, dust, etc., this pore 25
5 so that the sample liquid 3 no longer flows through the detection electrode z
Since no change in capacitance occurs between 6a and 26b, the detection circuit 13 no longer generates a detection pulse, and therefore the counting operation of the counting circuit 17 is stopped. Detection circuit 1
3 no longer performs the detection operation, a signal is sent from the detection circuit 13 to the clogging removal pump 28 to start the operation of the pump 28. Then, the clogging removal pump 28
At this time, K.

吸引作動を開始するので、パイプ27は第5図(A)に
示すようにノズル27aで試料液3の吸い込みを開始し
、細孔25に詰っていた血球2のかたまり等が第5図(
B) K示すようにパイプ27内へ吸い込まれる。これ
により、細孔25の目詰りが除去されると、再び容器1
内の試料液3が細孔25を通じて検出器24内へ流れる
ので、このとき細孔25を血球2が通過することによっ
て検出用電極26a、26b間の静電容量が変化し、検
出回路13が血球2の検出作動を再開する。検出回路1
3が検出作動を再開し始める状態になると、上記目詰り
除去ポンプ28は上記の吸引動作を停止する。そして、
検出回路13から発生する検出パルスは増幅回路14お
よび弁別整形回路15を経て計数回路17に導かれるの
で、同計数回路17によって血球2の計数が再開される
Since the suction operation is started, the pipe 27 starts sucking the sample liquid 3 through the nozzle 27a as shown in FIG.
B) It is sucked into the pipe 27 as shown in K. As a result, when the clogging of the pores 25 is removed, the container 1
Since the sample liquid 3 inside flows into the detector 24 through the pore 25, the capacitance between the detection electrodes 26a and 26b changes as the blood cells 2 pass through the pore 25 at this time, and the detection circuit 13 Restart blood cell 2 detection operation. Detection circuit 1
3 starts to resume the detection operation, the clogging removal pump 28 stops the suction operation. and,
The detection pulse generated from the detection circuit 13 is guided to the counting circuit 17 via the amplifier circuit 14 and the discrimination shaping circuit 15, so that the counting circuit 17 restarts the counting of the blood cells 2.

計数動作が再開されると、これにより、上記マ 、ノメ
ータ8の水銀面9aが上昇していき、計数停止電極11
に達すると、計数指令発生回路12より計数回路17に
ストップパルスが送出され、同計数回路17の計数動作
が停止する。このとき、表示回路18には、マノメータ
8の水銀面9aが上記計数開始電極10から計数停止電
極11に至るまでに上記細孔25を通じて容器1から微
小粒子検出器24内に浸入した一定量の試料液3中に含
まれる血球数が表示される。このように、上記微小粒子
計数装置は計数開始時から計数終了時までの計数動作の
途中で、検出器24の細孔25に目詰りを生じても、直
ちに、目詰り除去ポンプ28が作動して、上記細孔25
を閉塞した物質をパイプ27によって吸引して目詰り状
態を解消し、計数状態に復帰させるので、安定した計数
動作が行なわれる。
When the counting operation is restarted, the mercury surface 9a of the meter 8 rises, and the counting stop electrode 11 rises.
When the count reaches 1, a stop pulse is sent from the counting command generating circuit 12 to the counting circuit 17, and the counting operation of the counting circuit 17 is stopped. At this time, the display circuit 18 shows a certain amount of mercury that has entered the microparticle detector 24 from the container 1 through the pores 25 while the mercury surface 9a of the manometer 8 reaches from the counting start electrode 10 to the counting stop electrode 11. The number of blood cells contained in the sample liquid 3 is displayed. In this manner, even if the pores 25 of the detector 24 become clogged during the counting operation from the start of counting to the end of counting, the microparticle counter immediately operates the clogging removal pump 28. The above pore 25
A stable counting operation is performed because the substance that has blocked the cell is sucked out by the pipe 27 to eliminate the clogging state and return to the counting state.

なお、上記実施例の微小粒子計数装置は、目詰り除去ポ
ンプ28によってパイプ27に吸引力を与えて上記細孔
25(C生じた目詰りを除去するものであるが、本発明
は、これに限ることなく、排出力によって目詰りを除去
するようにしてもよい。、この場合、例えば、第6図に
示すように、目詰り除去用のパイプ37のノズル37a
を検出器24の細孔25の外側開口部に対して斜め上方
から臨むように配置させ、同パイプ37の他端を、上記
ポンプZSの排出口に連結させる。これにより、細孔2
5に目詰りを生じたとき、上記目詰り除去ポンプ28の
作動により、パイプ37のノズル37aから空気或いは
循環試料液等が排出されるので、その排出力にょり細孔
25を閉塞している血球のかたまり等の物質が吹き飛ば
されて目詰りが解消されることになる。
The microparticle counting device of the above embodiment applies suction force to the pipe 27 by the clogging removal pump 28 to remove the clogging that has occurred in the pore 25 (C). The clogging is not limited to this, and the clogging may be removed by a discharge force. In this case, for example, as shown in FIG.
is arranged so as to face the outer opening of the pore 25 of the detector 24 from diagonally above, and the other end of the pipe 37 is connected to the outlet of the pump ZS. As a result, pore 2
When the tube 5 becomes clogged, air or circulating sample liquid is discharged from the nozzle 37a of the pipe 37 by the operation of the clog removal pump 28, and the discharge force closes the pore 25. Substances such as clumps of blood cells are blown away and the clogging is cleared.

また、この他、第7図に示すように、検出器24におい
て、その細孔25の開口部を外側に突出させると共に、
この突出開口部25aの端面を斜面に形成し、一方、こ
の突出開口部25Hの上方に、同開口部25aの傾斜端
面に沿うように排出パイプ47のノズル47aを配置さ
せ、突出開口部25aの下方に吸引バイブ57のノズル
57aを配置させる構成にすることができる。この場合
、上記細孔25の突出開口部25aに目詰りを生じたと
き、同細孔25を閉塞している血球2のかたまり等は排
出パイプ47によって吸引パイプ57の方向へ吹き飛ば
されるので、吸引バイブ57は直ちにこれを吸い込んで
試料液中から除去することになる。上記排出パイプ47
0ノ少なくなる。
In addition, as shown in FIG. 7, in the detector 24, the opening of the pore 25 is made to protrude outward, and
The end surface of the protruding opening 25a is formed into a slope, and the nozzle 47a of the discharge pipe 47 is arranged above the protruding opening 25H along the inclined end surface of the opening 25a. The nozzle 57a of the suction vibrator 57 can be arranged below. In this case, when the protruding opening 25a of the pore 25 becomes clogged, the masses of blood cells 2, etc. that are blocking the pore 25 are blown away by the discharge pipe 47 in the direction of the suction pipe 57. The vibrator 57 immediately sucks this in and removes it from the sample liquid. The above discharge pipe 47
There will be 0 less.

なお、上述した微小粒子計数装置は、微小粒子検出器4
,24の細孔を血球等の微小粒子が通過するときの静電
容量の変化を検出して微小粒子を計数するものであるが
、本発明は、微小粒子とその“希釈液との電気的抵抗の
差を利用し、微小粒子が細孔を通過するときの抵抗値の
変化を検出して微小粒子を計数する装置にも適用するこ
とができる。
Note that the above-mentioned microparticle counting device includes a microparticle detector 4.
, 24, the microparticles are counted by detecting the change in capacitance when microparticles such as blood cells pass through the pores of the microparticles. It can also be applied to a device that counts microparticles by detecting changes in resistance when microparticles pass through pores using the difference in resistance.

この場合、細孔の近傍忙配設される微小粒子検出素子と
しての1対の検出用電極は両電極間の抵抗値を検出でき
る構成とされる。
In this case, a pair of detection electrodes as a microparticle detection element disposed near the pore are configured to be able to detect the resistance value between the two electrodes.

以上述べたように、本発明によれば、微小粒子検出器の
細孔に目詰りを生じても、このとき直ちに目詰り除去ポ
ンプが作動して細孔の目詰りが除去されるので、計数開
始時から計数終了時まで能率良く安定した計数動作が行
なわれる。
As described above, according to the present invention, even if the pores of a microparticle detector become clogged, the clogging pump immediately operates to remove the pores, so that the pores can be counted. Efficient and stable counting operation is performed from the start to the end of counting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の微小粒子計数装置の一例を示す概略構
成図、 第2図は、上記第】図中の検出器の要部拡大断面図、 第3図は、本発明の一実施例を示す微小粒子計数装置の
概略構成図、 第4図は、上記第3図中の検出器の要部拡大断面図、 第5図(A)、(B)は、上記第4図に示す検出器の細
孔に目詰りを生じたときの目詰り除去動作をそれぞれ示
す要部拡大図、 第6図は、本発明の他の実施例を示す微小粒子計数装置
の目詰り除去装置の要部拡大断面図、第7図は、本発明
の更に他の実施例を示す微小粒子計数装置の目詰り除去
装置の要部拡大断面図である。 2・・・・・・・血球(微小粒子) 3・・・・・・・試料液 4.24・・・微小粒子検出器 20.25・・・細 孔 21a、21b、26a、26b −・・検出用電極〔
微小粒子検出素子〕27.37,4L57・・・・・・
・目詰9除去用のパイプ28・・・・・・目詰り除去ポ
ンプ 特許出願人    オリンパス光学工業株式会社−2・ 第1頁の続き 0発 明 者 安達日出夫 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 0発 明 者 神原さつき 東京都渋谷区幡ケ谷2丁目4罎 2号才リンパス光学工業株式会 社内 0発 明 者 名和道夫 東京都渋谷区幡ケ谷2丁目4旙 2号才リンパス光学工業株式会 社内
FIG. 1 is a schematic configuration diagram showing an example of a conventional microparticle counting device; FIG. 2 is an enlarged cross-sectional view of the main part of the detector shown in FIG. 3; and FIG. 3 is an embodiment of the present invention. 4 is an enlarged sectional view of the main part of the detector shown in FIG. 3, and FIGS. 5 (A) and (B) are the detection shown in FIG. 4. FIG. 6 is an enlarged view of the main parts showing the clogging removal operation when the pores of the container are clogged. FIG. FIG. 7 is an enlarged sectional view of a main part of a clogging removal device for a microparticle counter showing still another embodiment of the present invention. 2... Blood cells (microparticles) 3... Sample liquid 4.24... Microparticle detector 20.25... Pores 21a, 21b, 26a, 26b ---・Detection electrode [
Microparticle detection element] 27.37, 4L57...
・Pipe 28 for removing clogging 9... Clogging removal pump Patent applicant Olympus Optical Industry Co., Ltd. - 2 ・Continued from page 1 0 Inventor Hideo Adachi 2-43 Hatagaya, Shibuya-ku, Tokyo Author: Satsuki Kanbara, 2-4 Hatagaya, Shibuya-ku, Tokyo Author: Michio Nawa, 2-4 Hatagaya, Shibuya-ku, Tokyo Author: Michio Nawa Inside Sairinpus Optical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 微小粒子検出素子が配設された細孔を有する検出器を、
微小粒子を含む試料液に入れ、同試料液を上記検出器の
細孔を通過させることにより、上記細孔を通過する試料
液中の微小粒子を検出して、一定量の試料液中に含まれ
る微小粒子の数を計数するようにした微小粒子計数装置
において、上記検出器の細孔の近傍にノズルを臨ませて
配設された目詰り除去用のパイプと、 このパイプに接続されていて、上記細孔に目詰りを生じ
たとき上記ノズルに吸引力、若しくは排出力を送出する
ように作動する目詰り除去ポンプと、 を具備してなる微小粒子計数装置の目詰り除去装置。
[Claims] A detector having a pore in which a microparticle detection element is arranged,
By placing the sample solution containing microparticles in it and passing the sample solution through the pores of the detector, the microparticles in the sample solution passing through the pores are detected, and the microparticles contained in a certain amount of the sample solution are detected. A microparticle counting device configured to count the number of microparticles that are detected includes a pipe for removing clogging arranged with a nozzle facing near the pore of the detector, and a pipe connected to the pipe. A clogging removal device for a microparticle counting device, comprising: a clogging removal pump that operates to send a suction force or a discharge force to the nozzle when the pore is clogged.
JP57014206A 1982-01-29 1982-01-29 Removing device for choking of fine particle counting device Pending JPS58129349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014206A JPS58129349A (en) 1982-01-29 1982-01-29 Removing device for choking of fine particle counting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014206A JPS58129349A (en) 1982-01-29 1982-01-29 Removing device for choking of fine particle counting device

Publications (1)

Publication Number Publication Date
JPS58129349A true JPS58129349A (en) 1983-08-02

Family

ID=11854627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014206A Pending JPS58129349A (en) 1982-01-29 1982-01-29 Removing device for choking of fine particle counting device

Country Status (1)

Country Link
JP (1) JPS58129349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271252U (en) * 1988-11-18 1990-05-30
EP1316792A2 (en) * 2001-11-30 2003-06-04 Sysmex Corporation Particle detector and particle analyzer employing the same
JP2009509148A (en) * 2005-09-22 2009-03-05 ケムパック エイ/エス Detection and subsequent removal of opening obstruction
JP2022516682A (en) * 2018-10-18 2022-03-01 セルファクツ アナリティックス リミテッド Methods and equipment for monitoring microbial contaminants in industrial treatments

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271252U (en) * 1988-11-18 1990-05-30
JPH0622204Y2 (en) * 1988-11-18 1994-06-08 東亜医用電子株式会社 Particle detector
EP1316792A2 (en) * 2001-11-30 2003-06-04 Sysmex Corporation Particle detector and particle analyzer employing the same
EP1316792A3 (en) * 2001-11-30 2004-02-04 Sysmex Corporation Particle detector and particle analyzer employing the same
US6909269B2 (en) 2001-11-30 2005-06-21 Sysmex Corporation Particle detector and particle analyzer employing the same
JP2009509148A (en) * 2005-09-22 2009-03-05 ケムパック エイ/エス Detection and subsequent removal of opening obstruction
JP2022516682A (en) * 2018-10-18 2022-03-01 セルファクツ アナリティックス リミテッド Methods and equipment for monitoring microbial contaminants in industrial treatments

Similar Documents

Publication Publication Date Title
JPS58160844A (en) Counter for grain
US3939822A (en) Disposable blood collection and filtering device
CA2381285A1 (en) Particle characterisation apparatus
US7097623B2 (en) Biological sampling method
JPS61501170A (en) particle analyzer
US7968052B2 (en) Detection and subsequent removal of an aperture blockage
JPS58129349A (en) Removing device for choking of fine particle counting device
US3958177A (en) Particle analyzing device with changeable aperture means
US3515884A (en) Detecting and counting apparatus for particles suspended in a liquid
JPH0627120A (en) Dispenser with closure detection
US4180091A (en) Purging means for aperture of blood cell counter
JPS58129348A (en) Counting device for fine particle
EP0480881A1 (en) A separating and discharging device for liquids and solid particles, in particular for fluid suction equipment such as is used in dentistry
US3340471A (en) Flow-through sample apparatus for use with electrical particle study device
CN114062228A (en) Bacteria counting device with sheath flow impedance sensor and method thereof
JP3664456B2 (en) Analyzer with liquid level detection function
JPH05281106A (en) Method and apparatus for detecting clogging of sample distributing syringe
JP2020128988A (en) Liquid collection mechanism comprising array mesh collection region and smart toilet comprising the liquid collection mechanism
JPS58129347A (en) Counting device for fine particle
US3340470A (en) Flow-through sample apparatus for use with electrical particle study device
JP2754941B2 (en) Dust sampler
JPH0215011B2 (en)
JPS62259065A (en) Sampling device
GB1216752A (en) Particle counting device
JPH05232125A (en) Sample-sucking detecting method