JPS5812920A - Combustion apparatus for liquid fuel - Google Patents

Combustion apparatus for liquid fuel

Info

Publication number
JPS5812920A
JPS5812920A JP11148281A JP11148281A JPS5812920A JP S5812920 A JPS5812920 A JP S5812920A JP 11148281 A JP11148281 A JP 11148281A JP 11148281 A JP11148281 A JP 11148281A JP S5812920 A JPS5812920 A JP S5812920A
Authority
JP
Japan
Prior art keywords
nozzle
fuel
oil
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148281A
Other languages
Japanese (ja)
Inventor
Jiro Suzuki
次郎 鈴木
Hisashi Kodama
久 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11148281A priority Critical patent/JPS5812920A/en
Publication of JPS5812920A publication Critical patent/JPS5812920A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • F23D11/30Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed with return feed of uncombusted sprayed fuel to reservoir

Abstract

PURPOSE:To properly control the rate of air for combustion in accordance with the actual spraying rate of fuel, by converting the internal pressure of a return circuit into the difference in an oil level in a fuel feeder, and by variably controlling the rate of feed air for combustion in relation to the change of difference in the oil level. CONSTITUTION:The return oil dropped down to the bottom of a return chamber 6 is returned to an oil tank or a constant oil-level regulator 15, passing through a return pipe 14, and is circulated again to a nozzle 1 by a pressure pump 16, passing through an oil feed pipe 10. An air-pressure conduit 17 is interconnected to an oil tank or a constant oil-level regulator 15 in the upper part of a return chamber 6, and the oil level in the conduit 17 is fluctuated by receiving the pressure from the return chamber 6. A part of the air-pressure conduit 17 is made up of a transparent body. Combustion can always be taken place at a constant air-fuel ratio, by automatically or manually operating a damper 19 to control the rate of air for a fan 18 for combustion, in accordance with the difference in an oil level H which is shown in the transparent part of a conduit 17.

Description

【発明の詳細な説明】 本発明は燃料油を加圧してノズルより高速噴出させるガ
ンタイプバーナ等の液体燃料燃焼装置に関するもので、
ノズルの前方にオリフィス孔を設け、ノズルとオリフィ
ス孔の相対距離を変化させることにより実噴霧量(オリ
フィス孔を通過し燃焼に供せられる量)を可変する方式
に於て、実噴霧量に応じて燃焼用空気量を適正に制御す
るとと3 ニー: を目的とする。従来のオリフィスリターン方式のガンバ
ーナは燃焼量の可変が困難であった為に、給湯、暖房等
の器具では燃焼量のON −OFF制御が一般的に行こ
なわれていた。この為に、湯温等の不快な温度変化を生
じせしむるのみならず、頻繁な着火音、等の支障を有す
るものであったこの従来やオリフィスリターン方式のガ
ンバーナは以下に詳述する理由で、実噴霧量がばらつく
為、実噴霧量に応じた空気量を設定することができず、
燃焼量の変化、すなわち火力を変化させることがてきな
かった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid fuel combustion device such as a gun type burner that pressurizes fuel oil and jets it out at high speed from a nozzle.
In this method, an orifice hole is provided in front of the nozzle, and the actual spray amount (the amount that passes through the orifice hole and is used for combustion) is varied by changing the relative distance between the nozzle and the orifice hole. The purpose is to properly control the amount of combustion air. Since it was difficult to vary the combustion amount of conventional orifice return type gun burners, ON-OFF control of the combustion amount was generally performed in appliances for hot water supply, space heating, and the like. For this reason, this conventional or orifice return type gun burner not only causes unpleasant temperature changes such as hot water temperature, but also has problems such as frequent ignition noise.The reason for this conventional orifice return type gun burner is detailed below. Since the actual spray amount varies, it is not possible to set the air amount according to the actual spray amount.
It has not been possible to change the amount of combustion, or in other words, the thermal power.

即ち、ノズルとオリフィス間の間隔(第1図に示すl)
と、実噴霧量の関係は単一のシズルを見れば比例関係を
もつがノズル毎の比例関係は必ずしも一定ではない。こ
れは同一仕様のノズルテアっても、加工精度の限界上噴
霧角が100前後ばらつく為である。これが故に、量産
時及び、メンテナンスでのノズル交換時には、空燃比の
設定に狂いが生じやすいものである。即ち、6第1図に
示す間隔lがノズル毎で異なる範囲を示す以上、この間
隔lを基準として燃焼用空気量を調節するならばノズル
毎に空燃比が変わり、空気不足によるスモーク、空気過
剰によるCO1火炎のリフト等を発生する場合がある。
That is, the distance between the nozzle and the orifice (l shown in Figure 1)
The actual spray amount has a proportional relationship when looking at a single sizzle, but the proportional relationship for each nozzle is not necessarily constant. This is because even if the nozzle tare has the same specifications, the spray angle will vary by about 100 degrees due to the limit of processing accuracy. For this reason, during mass production and when nozzles are replaced during maintenance, errors in air-fuel ratio settings are likely to occur. In other words, since the interval l shown in Figure 6 shows a different range for each nozzle, if the amount of combustion air is adjusted based on this interval l, the air-fuel ratio will change for each nozzle, resulting in smoke due to insufficient air and excess air. This may cause CO1 flame lift, etc.

従って、間隔l以外の指標で実噴霧量をとらえその指標
によって燃焼用空気量を調節する必要があるものであっ
た。
Therefore, it is necessary to determine the actual spray amount using an index other than the interval l, and to adjust the amount of combustion air using that index.

第1図に於て、1jはノズルで、2はこのノズルに穿っ
たノズル孔である、3は旋′回溝4を有する旋回部で、
この旋回部3と噴霧孔2の間が′旋回室5である。ノズ
ル1の外周はリターン室6を形成するオリフィス間7が
設けられ、前記リターン室6は外部に対して、オリフィ
ス孔7′でのみ外気と連通した気密構成となっている。
In FIG. 1, 1j is a nozzle, 2 is a nozzle hole bored in this nozzle, 3 is a turning part having a turning groove 4,
The space between the swirling part 3 and the spray hole 2 is a swirling chamber 5. The outer periphery of the nozzle 1 is provided with an orifice gap 7 forming a return chamber 6, and the return chamber 6 has an airtight structure communicating with the outside air only through an orifice hole 7'.

前記オリフィス孔7′とノズル孔2は同心軸上に両者の
間隔lを可変とするべく設けられるもので、第1図に於
ては油圧によってノズル1が移動するノズル1の一端に
は送油孔8を有するピストン9が設けられ、前    
i/記ピストン9は、一端に送油管1oを有するシリン
ダ11に挿入されている。又ノズル1と前記オリフィス
体7の間に付勢されたスプリング12は常にノズル1及
び、ピストン9をピストン9の断面が受ける送油圧にバ
ランスさせ所定の位置にスライドさせる。このように加
圧された燃料油は間隔lを所定のものとするとともに、
前記ピストン9の送油孔8を通過し、旋回部3に達し、
旋回部3とノズル1内面とで形成する複数個の旋回溝4
に入る。前記旋回溝4によって燃料油は旋回運動を旋回
室5で行ない、次第に下流に向いつつ噴霧孔2よシ所定
の噴霧角を有する噴霧を形成するものである。
The orifice hole 7' and the nozzle hole 2 are provided on a concentric axis so that the distance l between them can be made variable, and in FIG. A piston 9 having a hole 8 is provided and
The piston 9 is inserted into a cylinder 11 having an oil feed pipe 1o at one end. Further, the spring 12 biased between the nozzle 1 and the orifice body 7 always balances the nozzle 1 and the piston 9 with the sending pressure applied to the cross section of the piston 9, and slides them into a predetermined position. The fuel oil pressurized in this way has a predetermined interval l, and
It passes through the oil feed hole 8 of the piston 9 and reaches the rotating part 3,
A plurality of swirl grooves 4 formed by the swirl portion 3 and the inner surface of the nozzle 1
to go into. The fuel oil undergoes a swirling movement in the swirling chamber 5 due to the swirling groove 4, and forms a spray having a predetermined spray angle from the spray hole 2 while gradually heading downstream.

しかるに、前述のノズル1がオリフィス孔7′と所定の
距離となっても、ノズル孔よりの噴霧角が異なれば実噴
霧量(オリフィス孔7′を通過する燃料油の量)が異な
った値となるのは当然である。
However, even if the aforementioned nozzle 1 is at a predetermined distance from the orifice hole 7', if the spray angle from the nozzle hole is different, the actual spray amount (the amount of fuel oil passing through the orifice hole 7') will be a different value. It is natural that this will happen.

一般にノズルの噴霧角は厳重に管理しても100前後の
幅でバラツクものである為に、ノズルの噴霧角に合せて
、ノズル毎に間隔lを定めなければならなくなる。この
ようなことは、本方式を量産する上で、又、メンテナン
ス時に別のノズルと交換した時に、事実上間隔lをノズ
ル毎に定めることは不可能である。
Generally, the spray angle of a nozzle varies within a width of about 100 even if it is strictly controlled, so it is necessary to determine the interval 1 for each nozzle according to the spray angle of the nozzle. This makes it virtually impossible to determine the interval l for each nozzle when mass producing the present system or when replacing the nozzle with another nozzle during maintenance.

本発明では、リターン室6の内圧が、実噴霧量と比例関
係を有するという発見に基づき、実噴霧量を容易に検知
しかかる検知手段を用いる。ことにより、燃焼量の可変
及び空燃比の適正化が可能な液体燃料燃焼装置を提供す
るものである。
In the present invention, based on the discovery that the internal pressure of the return chamber 6 has a proportional relationship with the actual spray amount, a detection means that can easily detect the actual spray amount is used. This provides a liquid fuel combustion device that can vary the amount of combustion and optimize the air-fuel ratio.

その具体的実施例を′特1□11とともに以下に詳述す
る。
A specific example thereof will be described in detail below along with 'Feature 1□11.

第2図は、第1図の構成に於ける、間隔゛lと実噴霧率
(ノズル1の噴霧量に対するオリフィス孔7′の通過量
)及びリター室6の内圧(負圧)、オリフィス孔7′よ
り噴霧する噴霧角との相関関係を示す。間隔eが0〜1
.3111111の範囲では噴霧はほぼ全量オリフィス
孔7′を通過している。この間の実噴霧率はほぼ100
%である。またリターン室6の負圧は序々に増加してい
るこの負圧は、噴霧の運動方向にリターン室6内の空気
が誘引されて生じている。
FIG. 2 shows the distance l, the actual spray rate (the amount of spray that passes through the orifice hole 7' relative to the amount of spray from the nozzle 1), the internal pressure (negative pressure) of the litter chamber 6, and the orifice hole 7 in the configuration shown in FIG. ' shows the correlation with the spray angle. Interval e is 0 to 1
.. In the range of 3111111, almost all of the spray passes through the orifice hole 7'. The actual spray rate during this period was approximately 100.
%. Further, the negative pressure in the return chamber 6 is gradually increasing. This negative pressure is caused by the air in the return chamber 6 being attracted in the direction of movement of the spray.

間隔lが0〜1.311mの範囲では噴霧とオリフィス
孔7′の間にドーナツ状の空気流路13が形成されてお
り、前記空気流路13を通じて負圧を緩和するべく外気
が導入されている。従って前記空気流路13が間隔lの
増加に併なって減少する範囲(1−0〜1.3mm )
 fはリターン室6の負圧ハ増加傾向をもうものである
When the interval l is in the range of 0 to 1.311 m, a donut-shaped air flow path 13 is formed between the spray and the orifice hole 7', and outside air is introduced through the air flow path 13 to relieve negative pressure. There is. Therefore, the range in which the air flow path 13 decreases as the distance l increases (1-0 to 1.3 mm)
f represents the tendency of the negative pressure in the return chamber 6 to increase.

間隔lが約1.3胴の時に、急減に噴霧角は増大し、ノ
ズル1本来の噴霧角より犬となっている。
When the distance 1 is approximately 1.3 mm, the spray angle rapidly decreases and increases to a value that is smaller than the original spray angle of the nozzle 1.

これは、間隔lが1.3mmの直前でリターン室らの負
圧がかなり増加している為に、リターン室6の負圧がノ
ズル1自体の噴霧角を拡げ、さらにそれが空気流路13
を狭めてリターン室6の負圧を増加させ自励的に噴霧角
とリターン室eの負圧を増加せしめ、噴霧外縁をオリフ
ィス孔7′に接触する空気流路13が0となった位置で
安定する。この時も実噴霧率は略100%である。
This is because the negative pressure in the return chambers increases considerably just before the interval 1 reaches 1.3 mm, so the negative pressure in the return chamber 6 expands the spray angle of the nozzle 1 itself, which in turn spreads to the air flow path 13.
is narrowed to increase the negative pressure in the return chamber 6, thereby increasing the spray angle and the negative pressure in the return chamber e in a self-exciting manner. Stabilize. At this time as well, the actual spray rate is approximately 100%.

更に間隔lを1.3〜2.1−の間ではオリフィス孔デ
によってさえ切られる噴□霧が増加するにつれ、噴霧が
リターン室e内の空気を誘引する運動量も減少して、リ
ターン室6の負圧は未噴霧量と連動して減少している。
Further, when the distance l is between 1.3 and 2.1-, as the spray □ mist cut off by the orifice hole D increases, the momentum with which the spray attracts the air in the return chamber e also decreases, and the return chamber 6 The negative pressure decreases in conjunction with the amount of unsprayed water.

更に間隔lが2InIn以上ではリターン室6の内圧は
正圧となる。これは燃料油の加圧力がリターン室6に加
わる為即る、リターン用の燃料油の増加が犬となる為に
リターン室6の圧力が上昇、されるからである。
Further, when the interval l is 2 InIn or more, the internal pressure of the return chamber 6 becomes positive pressure. This is because the pressurizing force of the fuel oil is applied to the return chamber 6, and the increase in the return fuel oil increases, causing the pressure in the return chamber 6 to rise.

上述の説明で明らかなように、間隔でか、1.3〜2.
1Mの間では実噴霧率の減少と負圧の減少が一定の関係
をもち、かつ実噴霧角も減少して行くことが分る。従っ
てこの間隔e=1.3rrm以上゛の実噴霧率と負圧と
が比例関係にある範囲において、空燃比制御を適確に行
なえば、従来この種の燃焼装置において困−とされてい
た燃焼量の比例制御が可能となる。
As is clear from the above explanation, at intervals of 1.3 to 2.
It can be seen that between 1M, there is a constant relationship between the decrease in the actual spray rate and the decrease in the negative pressure, and the actual spray angle also decreases. Therefore, if the air-fuel ratio is properly controlled in the range where the actual spray rate and the negative pressure are in a proportional relationship at this interval e = 1.3 rrm or more, the combustion Proportional control of quantity becomes possible.

以下に、上記の比例制御を可能とした一実施例を具体的
に説明する。
An embodiment that enables the above proportional control will be specifically described below.

第1図に於て、尚記リターン室6下方に滴下したリター
ン油はリターンパイプ14を通って油りJ ンクまたは定油面装置16へ戻り、再び送油管10加圧
ポンプ16によって前記ノズル1に循環して行くもので
ある。またリターン室6上方には空気圧導管17が前記
油タンクまたは定油面装置16へ連通している。前記リ
ターンパイプ14及び空気圧導管17は油タンクまたは
定油面装置16の油面下に必ず挿入され、リターン室6
の気密性を阻害するものであってはならない。このよう
な構成で間隔lが1.3〜2.0111111の範囲内
では空気圧導管17はリターン室6の圧力を受けて管内
の液面を昇降させている。
In FIG. 1, the return oil dropped below the return chamber 6 passes through the return pipe 14 and returns to the oil tank or constant oil level device 16, and is again transferred to the nozzle 1 by the oil feed pipe 10 and the pressure pump 16. It is something that circulates. Further, above the return chamber 6, a pneumatic conduit 17 communicates with the oil tank or oil level device 16. The return pipe 14 and the pneumatic conduit 17 are necessarily inserted under the oil level of the oil tank or the constant oil level device 16, and the return chamber 6
It must not impede the airtightness of the With this configuration, when the interval l is within the range of 1.3 to 2.0111111, the pneumatic conduit 17 receives the pressure of the return chamber 6 to raise and lower the liquid level within the pipe.

この空気圧導管17の液面高差Hが実噴霧量を示す指標
として用い−られる。前述の如く、間隔lは容易に外部
より確認しうるものの、ノズル1のバラツキにより、正
しく実噴霧量を示すものではない。これに対して前記空
気圧管の液面高差Hは、オリフィス孔7′を通過する実
噴霧の運動エネルギーによって生じている為に、ノズル
のバラツキがあってもほぼ実噴霧量を示すものである。
This liquid level height difference H in the pneumatic conduit 17 is used as an index indicating the actual spray amount. As described above, although the interval 1 can be easily confirmed from the outside, it does not accurately indicate the actual spray amount due to variations in the nozzles 1. On the other hand, the liquid level height difference H in the pneumatic tube is caused by the kinetic energy of the actual spray passing through the orifice hole 7', so it almost indicates the actual spray amount even if there are variations in the nozzle. .

前記加圧ポンプ16の圧力を適宜増減すれば、ノズル1
は軸心上を移動する、この時、前記液面高め最高点が実
噴霧量が最大であり、それ尖りポンプ16の加圧を増加
させても実噴霧率には影響はほとんどなく、減少させれ
ば液面の低下とともに実噴霧率も低下していく。この状
況を外部より確認できるべく、前記空気圧管17の一部
を透明体で形成している。又、燃焼用送風機18の空気
量調節用ダンパー19を、前述の液面高と連動させ自動
的(フォトセンサ等)、手動的手段で操作す、れば常に
一定の空燃比で燃焼を行なえるものである。又前記オリ
フィス体7の前方には空気旋回羽根20が設けられ、燃
焼用空気と噴霧の混合拡散を促進し良好な乱流拡散火炎
を形成させている。
By appropriately increasing or decreasing the pressure of the pressure pump 16, the nozzle 1
moves on the axis, and at this time, the actual spray rate is at its maximum at the highest point where the liquid level is high, and even if the pressure of the pointed pump 16 is increased, the actual spray rate is hardly affected and can be decreased. If so, the actual spray rate will decrease as the liquid level decreases. A portion of the pneumatic tube 17 is made of a transparent material so that this situation can be checked from the outside. In addition, if the air volume adjustment damper 19 of the combustion blower 18 is operated automatically (photo sensor, etc.) or manually in conjunction with the liquid level described above, combustion can be performed at a constant air-fuel ratio at all times. It is something. Further, an air swirling vane 20 is provided in front of the orifice body 7 to promote mixing and diffusion of combustion air and spray to form a good turbulent diffusion flame.

次に前記リターン室6の内圧は、間隔lが所定の範囲(
実施例ではN=1.3〜2.1 mm )の間で実噴霧
量との相関を示すものである。この範囲は空気圧導管1
7の液面の最高値よりもノズル1とオリフィス孔7′の
間隔を広くした方向である。この比例範囲内のみノズル
が可動となるように設けた規制装置を以下に説明する。
Next, the internal pressure of the return chamber 6 is controlled so that the interval l is within a predetermined range (
In the example, a correlation with the actual spray amount is shown between N=1.3 and 2.1 mm. This range is pneumatic conduit 1
This is the direction in which the distance between the nozzle 1 and the orifice hole 7' is made wider than the maximum value of the liquid level in No. 7. A regulating device provided so that the nozzle is movable only within this proportional range will be described below.

第1図に示す如く、リターン室6の一部に規制ねじ21
を設け、ノズル1の前進を規制する、空気圧導管17の
液面高が最高の時に、規制ねじ2111、−ユ をノズル1の一部に係当させて間隔lが/=1.3〜2
.1 mm即ち、実噴霧量とリターン室負圧が相関関係
を有する範囲内でのみノズル1が移動するようにしたも
のである。この規制装置を設けることにより、リターン
室負圧は一義的に実噴霧量を示すことになり、従って同
一負圧で2つの実噴霧率を示す範囲がある場合に比べて
容易に外部より実噴霧率が検知しうるものである。即ち
この規制装置を設けない場合には間隔4を全範囲に渡っ
て変化させ空気圧導管17の液面高差Hの変化を見て比
例範囲であることを確認しなければならなかったが、こ
の規制装置を付加することにより、ノズル取付時に一度
規制装置をセットすれば、比例範囲であるか否かの確認
は以降不要となり、空気圧導管17Ω液面高差Hが即実
噴霧率として理解されるものである。また液面高差Hの
検知手段においてもきわめて簡単な構成で検知できるこ
とになる0 更に前述のノズル1を油圧で駆動する機構は他の方法に
よっても間隔lを任意に変化させる手段を用いてもむろ
ん良いものである。又、前述の規制装置もねじ等の機械
的手段の他に電気的手段、例えば電気的に加圧ポンプ油
圧の上限規制を行う等の方法をとっても同様の効果は得
られる慢のである。
As shown in FIG. 1, a regulating screw 21 is attached to a part of the return chamber 6.
When the liquid level in the pneumatic conduit 17 is at its highest, the regulating screws 2111 and -2 are engaged with a part of the nozzle 1 so that the interval l is /=1.3 to 2.
.. 1 mm, that is, the nozzle 1 is configured to move only within a range where there is a correlation between the actual spray amount and the negative pressure in the return chamber. By providing this regulating device, the negative pressure in the return chamber uniquely indicates the actual spray amount, and therefore it is easier to spray from the outside than when there are two ranges that indicate the actual spray rate with the same negative pressure. rate is detectable. That is, if this regulating device was not provided, it would be necessary to vary the interval 4 over the entire range and check the change in the liquid level height difference H in the pneumatic conduit 17 to confirm that it was within the proportional range. By adding a regulating device, once the regulating device is set when installing the nozzle, there is no need to check whether it is within the proportional range, and the 17Ω liquid level height difference H in the pneumatic conduit can be understood as the immediate actual spray rate. It is something. In addition, the liquid level height difference H can be detected with an extremely simple configuration.Furthermore, the mechanism for hydraulically driving the nozzle 1 described above can also be performed using other methods or means for arbitrarily changing the interval l. Of course it's a good thing. Furthermore, the above-mentioned regulating device can also be achieved by using electrical means, such as electrically regulating the upper limit of the pressurizing pump oil pressure, in addition to mechanical means such as screws, to achieve the same effect.

以上のように本発明によれば目視で実噴桿量が正確に分
かる為、それに応じた燃焼用空気を与えることかでき完
全燃焼が可能となり過少空気によるスス、過大空気によ
るCo1炎のリフト、効率の悪化が防止できるものであ
る。又使用者には燃焼量のインジケータとして常に現在
の燃焼量を表示できる為使用上便利性の高いものでもあ
る。更に、前記液面高差Hを電気的手段で検知し、燃焼
用空気と連動させれば自動的な空燃比制御を複雑なセン
サー機構を用いずとも可能とするもので、この種の燃焼
装置の一般器具への利用をさらに拡・1 犬するものである。
As described above, according to the present invention, since the actual amount of the injection rod can be accurately determined by visual inspection, it is possible to provide appropriate combustion air and achieve complete combustion. This can prevent deterioration in efficiency. Furthermore, it is highly convenient to use because the current amount of combustion can always be displayed to the user as an indicator of the amount of combustion. Furthermore, by detecting the liquid level height difference H by electrical means and linking it with combustion air, automatic air-fuel ratio control is possible without using a complicated sensor mechanism, and this type of combustion device The purpose is to further expand the use of this technology in general equipment.

ζ 4、図面の簡単な説明               
   ニア第1図は本発明の一実施例の側面断面図、第
2図は同突噴霧率1量隔1 、 IJターン室内圧およ
び噴霧角との相関関係を示す特性図である。
ζ 4. Brief explanation of the drawings
FIG. 1 is a side sectional view of an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the correlation between the burst spray rate 1 amount interval 1, the IJ turn chamber pressure, and the spray angle.

1・・・・・・ノズル、6・・・・・・リターン室(リ
ターン回路) 、−r/・・・・・・オリフィス孔、1
4・・・・・・リターンパイプ(リターン回路)、15
・・・・・・油タンク又は定油面装置、16・・・・・
・加圧ポンプ、17・・・・・・空気圧導管、18・・
・・・・燃焼用送風機、19・・・・・・空気調節タン
パ−1L・・・・・・ノズルとオリフィス孔との間隔、
H・・・・・・液面高差。
1... Nozzle, 6... Return chamber (return circuit), -r/... Orifice hole, 1
4...Return pipe (return circuit), 15
...Oil tank or constant oil level device, 16...
・Pressure pump, 17...Pneumatic conduit, 18...
...Blower for combustion, 19... Air conditioning tamper 1L... Distance between nozzle and orifice hole,
H...Liquid level height difference.

Claims (1)

【特許請求の範囲】 (1)摺動しかつ燃料を噴出するノズルと、前記ノズル
へ前記燃料を供給する燃料供給装置と、前記ノズルの下
流にあって前記ノズルより噴出される燃料の通過量を規
制するオリフィス孔と、前記オリフィス孔を介して外気
と連通し前記噴出される燃料の剰余分を燃料供給装置へ
回収するリターン回路と、燃焼用空気供給装置とを備え
、前記ノズルとオリフィス孔との相対距離の変化によっ
て前記オリフィス孔より通過する燃料の量を可変する液
体燃料燃焼装置において、前記リターン回路の内圧を前
記燃料供給装置に貯蔵された燃料の液面高差Hに変換し
、前記液面高差Hの変化に関連して燃焼用空気の供給量
を可変したことを特徴とする液体燃料燃焼装置。 @) リターン回路と油タンクとを空気圧導管で連通し
、前記空気圧導管の全部あるいは一部を透明体に形成し
、前記空気圧導管によって液面高差Hを目視できるよう
にしたことを特徴とする特許請求の範囲第1項記載の液
体燃料燃焼装置。 (3)油面高差Hを電気的信号に変換し、前記電気的信
号によって燃焼用空気調節装置を駆動して装置。 (4)  ノズルとオリフィス孔との間隔lが一定距離
委記載の液体燃料燃焼装置。
[Scope of Claims] (1) A sliding nozzle that ejects fuel, a fuel supply device that supplies the fuel to the nozzle, and a passage amount of the fuel that is downstream of the nozzle and is ejected from the nozzle. a return circuit that communicates with the outside air through the orifice hole and recovers a surplus of the ejected fuel to a fuel supply device; and a combustion air supply device, the nozzle and the orifice hole In a liquid fuel combustion device that varies the amount of fuel passing through the orifice hole by changing the relative distance from the orifice, the internal pressure of the return circuit is converted to a liquid level height difference H of the fuel stored in the fuel supply device, A liquid fuel combustion device characterized in that the amount of combustion air supplied is varied in relation to changes in the liquid level difference H. @) The return circuit and the oil tank are connected through a pneumatic conduit, and all or part of the pneumatic conduit is formed into a transparent body, so that the liquid level difference H can be visually observed through the pneumatic conduit. A liquid fuel combustion device according to claim 1. (3) A device that converts the oil level height difference H into an electrical signal and drives a combustion air conditioning device using the electrical signal. (4) A liquid fuel combustion device in which the distance l between the nozzle and the orifice hole is a constant distance.
JP11148281A 1981-07-15 1981-07-15 Combustion apparatus for liquid fuel Pending JPS5812920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148281A JPS5812920A (en) 1981-07-15 1981-07-15 Combustion apparatus for liquid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148281A JPS5812920A (en) 1981-07-15 1981-07-15 Combustion apparatus for liquid fuel

Publications (1)

Publication Number Publication Date
JPS5812920A true JPS5812920A (en) 1983-01-25

Family

ID=14562369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148281A Pending JPS5812920A (en) 1981-07-15 1981-07-15 Combustion apparatus for liquid fuel

Country Status (1)

Country Link
JP (1) JPS5812920A (en)

Similar Documents

Publication Publication Date Title
US7241135B2 (en) Feedback control for modulating gas burner
US6939127B2 (en) Method and device for adjusting air ratio
EP2284443B1 (en) Oxy-fuel combustion system with closed loop flame temperature control
US1923614A (en) Burner control system
US4482313A (en) Gasburner system
CA2464993C (en) Apparatus for regulating the gas/air ratio for a pre-mixing combustion device
US6206687B1 (en) High turndown modulating gas burner
FR2680416A1 (en) FLUIDIZED POWDER FLOW RATE MEASUREMENT METHOD AND FLOW MEASURING DEVICE IMPLEMENTING SUCH A METHOD.
KR102357244B1 (en) Device for controlling the combustion of a burner
US3615053A (en) Gas pressure regulated atomizer tip for gas/oil burner
US20040170937A1 (en) Combustion apparatus
GB2075718A (en) Method and apparatus for combustion control
US3315726A (en) Industrial burner
CN101691930A (en) Output power control method of combustion apparatus
US4276857A (en) Boiler control systems
JPS5812920A (en) Combustion apparatus for liquid fuel
JPS5885016A (en) Combustion control device
JPS5812918A (en) Combustion apparatus for liquid fuel
KR970011653A (en) Pre-mixed fuel supply device and fuel control method for gas boiler
JPS5812919A (en) Combustion apparatus for liquid fuel
JPS6242280Y2 (en)
JPH02256856A (en) Heating device for external combustion engine
JPS58175717A (en) Fuel oil quantity controlling device for combustion device
JPS5812922A (en) Combustion apparatus for liquid fuel
RU2083921C1 (en) Rotary burner for liquid fuel