JPS58128438A - Air-fuel ratio controller - Google Patents

Air-fuel ratio controller

Info

Publication number
JPS58128438A
JPS58128438A JP1203382A JP1203382A JPS58128438A JP S58128438 A JPS58128438 A JP S58128438A JP 1203382 A JP1203382 A JP 1203382A JP 1203382 A JP1203382 A JP 1203382A JP S58128438 A JPS58128438 A JP S58128438A
Authority
JP
Japan
Prior art keywords
fuel
air
passage
fuel ratio
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1203382A
Other languages
Japanese (ja)
Other versions
JPH0438907B2 (en
Inventor
Toshimitsu Fujishima
藤島 利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP1203382A priority Critical patent/JPS58128438A/en
Publication of JPS58128438A publication Critical patent/JPS58128438A/en
Publication of JPH0438907B2 publication Critical patent/JPH0438907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Abstract

PURPOSE:To always keep the ratio of fuel to air appropriate, by providing a control valve in an evaporator passage upstream to a canister and by opening the valve when the pressure upstream thereto is higher than a prescribed level and by increasing the ratio depending on the duration of the opening of the valve. CONSTITUTION:One end of an evaporator passage (evaporated fuel passage) 8 is connected to the top of a fuel tank 6 so that the passage communicates with the upper opening 6a in the tank. the other end of the passage 8 is connected to an intake passage 1 downstream to a throttle valve 3. A canister 9 is provided in the halfway part of the passage 8. An atmosphere introducing passage 10 is connected to the bottom of the canister 9. The intake passage 1 is provided with an air passage 12 detouring a venturi part 4 and the throttle valve 3. An air fuel ratio control valve 13 is installed in the halfway part of the air passage 12. A control valve 14 is provided in the evaporator passage 8 upstream to the canister 9. The valves 13, 14 are opened by a calculator circuit 16 when the output of a pressure sensor 15 which detects the pressure of the passage 8 has exceeded a prescribed level.

Description

【発明の詳細な説明】 この発明は、燃料タンク内の蒸発燃料を吸気系に供給す
るようにしたエンジンにおいて、その蒸発燃料によって
混合気の空燃比が受動するのを防止するようにした空燃
比調整装置に関するものであ、る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an air-fuel ratio system that prevents the air-fuel ratio of a mixture from being passively affected by the evaporated fuel in an engine in which evaporated fuel in a fuel tank is supplied to an intake system. It relates to an adjustment device.

一般に自動車の燃料タンクはエンジンに供給すべき燃料
を貯賦するためのものであるが、該燃料タンクのタンク
内上部空間には揮発性を有する燃料が蒸発して充満して
おり、その圧力が高くなると、タンクが破裂するおそれ
があるため、蒸発燃料をタンク外に放出する必要がある
。この場合、蒸発燃料をそのまま大気に放出する方法が
考えられるが、この方法では燃料損失を生じ、また大気
汚染が発生するという不具合がある。
Car fuel tanks are generally used to store fuel to be supplied to the engine, but the upper space of the fuel tank is filled with evaporated volatile fuel, and its pressure increases. If the temperature rises too high, the tank may explode, so it is necessary to release the evaporated fuel outside the tank. In this case, a method may be considered in which the evaporated fuel is directly released into the atmosphere, but this method has the drawbacks of causing fuel loss and air pollution.

そこで従来の燃料タンクの1つとして、タンク内の蒸発
燃料をタンク外に設けたキャニスタに一時蓄積した後、
それをエンジンの吸気負圧によってエハホレータ通路委
介してエンジンの吸気系に供給し、蒸発燃料をタンク外
に放出してタンクの破損を防止するとともに、燃料損失
及び大気汚染の問題を生じないようにしたものがある(
特公昭47−21842号公報参照)。
Therefore, as one of the conventional fuel tanks, after temporarily accumulating the evaporated fuel in the tank in a canister installed outside the tank,
It is supplied to the engine's intake system through the engine's intake negative pressure through the evaporator passage, and the evaporated fuel is released outside the tank to prevent damage to the tank and to prevent fuel loss and air pollution. There is something that has been done (
(See Japanese Patent Publication No. 47-21842).

ところで自動車の燃料タンク内における燃料の島発量は
、自動車の運転状態や外気温度によって変わるものであ
る。例えば、走行中には、燃料タンクに過当に風が当っ
て該タンクはあまり高温になることはなく、夕/り内の
燃料もそれほど多量に蒸発することがないのに対し、夏
期の炎天下に長時間駐車したような場合には、−料タン
クは高温になって燃料が多量に蒸発する。このように多
電の燃料が蒸発した場合、従来のf料タンクでは、その
蒸発燃料はほとんどキャニスタに蓄積され、このような
状態からエンジンを始動すると、エンジンの吸気系に多
量の蒸発燃料が供給されることとなる。その結果混合気
の空燃比が小さく、即ちリッチになって、失火が発生し
、排気ガス中にHC。
Incidentally, the amount of fuel released in the fuel tank of a car changes depending on the driving conditions of the car and the outside temperature. For example, while driving, the tank does not become very hot due to excessive wind hitting the fuel tank, and a large amount of fuel does not evaporate in the evening, but under the scorching sun in the summer. If the car is parked for a long time, the fuel tank becomes hot and a large amount of fuel evaporates. In the case of evaporation of high-voltage fuel, most of the evaporated fuel is accumulated in the canister in conventional f-fuel tanks, and when the engine is started in such a state, a large amount of evaporated fuel is supplied to the engine's intake system. It will be done. As a result, the air-fuel ratio of the mixture becomes small, that is, rich, causing a misfire and producing HC in the exhaust gas.

GO等の未燃焼ガスが多電に含まれるという問題があっ
た。
There was a problem that unburned gas such as GO was included in the electricity.

この発明は以上のような従来の問題点に鑑みてなされた
もので、キャニスタ上流のエバポレータ値以上なったと
含量閉弁を開くとともに、その開弁時間、即ち吸気系に
供給される蒸発燃料の量に応じて空燃比調整装置により
空燃比を大傘くする方向に調整することにより、常に空
燃比を適正値に保持して、排気ガス中の未懲焼ガスの含
有量を低減で會るようにした空燃比制御装置を提供する
ことを目的としている。
This invention was made in view of the above-mentioned conventional problems.When the content exceeds the evaporator value upstream of the canister, the content closing valve is opened, and the valve opening time, that is, the amount of evaporated fuel supplied to the intake system. By adjusting the air-fuel ratio to a larger value using the air-fuel ratio adjustment device, the air-fuel ratio is always maintained at an appropriate value and the content of unburned gas in the exhaust gas is reduced. The purpose of the present invention is to provide an air-fuel ratio control device that achieves the following.

以下本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による空燃比制御装置を示す
。図において、1はエンジンの吸気通路であり、該吸気
通路1の上流端はエアクリーナ2に接続され、又吸気通
路1の途中にはアクセルペダル(図示せず)に連動して
開作動するスロットル弁3が配設され、その上流にはペ
ンチエリ一部4が形成されている。このベンチュリ一部
4には燃料供給通路5の一端が開口して設けられ、該通
路5の他端は図示していないが気化器のフロート呈に接
続され、該フロート室には燃料タンク6の燃料7が送給
されるようになっている。
FIG. 1 shows an air-fuel ratio control device according to an embodiment of the present invention. In the figure, 1 is an intake passage of the engine, the upstream end of the intake passage 1 is connected to an air cleaner 2, and in the middle of the intake passage 1 is a throttle valve that opens in conjunction with an accelerator pedal (not shown). 3 is arranged, and a pentier part 4 is formed upstream thereof. This venturi part 4 is provided with one end of a fuel supply passage 5 open, and the other end of the passage 5 is connected to a float chamber of the carburetor (not shown), and a fuel tank 6 is provided in the float chamber. Fuel 7 is adapted to be supplied.

また燃料タンク6の上面にはエバポレータ通路(蒸発燃
料通路)8の一端がタンク内上部空間6λと連通して接
続され、該通路8の他端は吸気通路1のスロットル弁3
下流側に接続されており、該エバポレータ通路8は燃料
タンク6、内の蒸発燃料を吸気通路lに案内するように
なっている。このエバポレータ通路8の途中には蒸発燃
料を一時蓄積するキャニスタ(IFm部材)9が介設さ
れ、咳キャニスタ9の底面には一端が大気に開放された
大気導入通路10が接続されている。
Further, one end of an evaporator passage (vaporized fuel passage) 8 is connected to the upper surface of the fuel tank 6 in communication with an upper space 6λ inside the tank, and the other end of the passage 8 is connected to a throttle valve 3 of the intake passage 1.
The evaporator passage 8 is connected to the downstream side, and the evaporator passage 8 guides the evaporated fuel in the fuel tank 6 to the intake passage 1. A canister (IFm member) 9 for temporarily storing evaporated fuel is interposed in the middle of the evaporator passage 8, and an atmosphere introduction passage 10 with one end open to the atmosphere is connected to the bottom of the cough canister 9.

そして上記吸気通路1には隔壁11によってエア通路1
2がベンチエリ一部4及びスロットル弁3をバイパスし
て形成され、核エア通路12の途中にはそれを開閉する
空燃比調整パルプ(空燃比調整装置)13が配設されて
いる。一方上記エバボレータ通路8のキャニスタ9上流
にはそれを開閉するソレノイド弁(開閉弁)14が配設
され、さらにその上流にはソレノイド弁14上流のエバ
ポレータ通路8内圧力を検出する圧力センサ15が設け
られ、該圧力センサ15の検出信号2は演算回路16に
加えられている。この演算回路16は上記ソレノイド弁
14上流の圧力が所定噸以上になったと鎗ソレノイド弁
14に開弁信号すを加えるとともに、イグニッションス
イッチ又はスタータスイッチがオンしたと色に加えられ
る信号dによって上記空燃比調整パルプ13に制御信号
Cを加えるようになっている。
The air passage 1 is connected to the intake passage 1 by a partition wall 11.
2 is formed by bypassing the bench area part 4 and the throttle valve 3, and an air-fuel ratio adjusting pulp (air-fuel ratio adjusting device) 13 is disposed in the middle of the core air passage 12 to open and close it. On the other hand, upstream of the canister 9 of the evaporator passage 8, a solenoid valve (opening/closing valve) 14 is provided to open and close the canister 9, and further upstream thereof, a pressure sensor 15 is provided to detect the internal pressure of the evaporator passage 8 upstream of the solenoid valve 14. The detection signal 2 of the pressure sensor 15 is applied to an arithmetic circuit 16. This arithmetic circuit 16 applies a valve opening signal to the solenoid valve 14 when the pressure upstream of the solenoid valve 14 exceeds a predetermined value, and also applies a signal d to the valve when the ignition switch or starter switch is turned on. A control signal C is applied to the fuel ratio adjusting pulp 13.

第2図は上記圧力センサ15&び演算回路16の具体的
な構成を示し、圧力センサ15において、17はダイヤ
フラム装置であり、該装置17の第1室17亀には圧力
導入通路18によってエバポレータ通路8のキャニスタ
9上流側の圧力が導入されている。ダイヤフラム装置1
7の第2室17bにはダイヤフラム17cを図示上方に
付勢するばね部材17dが配設され、又ダイヤフラム1
7Cの第2室17b側表面には接点17eが固着され、
該接点17Cとアース間にはリード線19によってバッ
テリ20が接続されている。また上記第2室1?b内面
には上記接点17eと対向して接点171が固定され、
該接点17fにはリード線21.が接続されている。
FIG. 2 shows a specific configuration of the pressure sensor 15 and the calculation circuit 16. In the pressure sensor 15, 17 is a diaphragm device, and the first chamber 17 of the device 17 is connected to the evaporator passage by a pressure introduction passage 18. The pressure on the upstream side of canister 9 of No. 8 is introduced. Diaphragm device 1
A spring member 17d that urges the diaphragm 17c upward in the figure is disposed in the second chamber 17b of the diaphragm 1.
A contact 17e is fixed to the surface of the second chamber 17b of 7C,
A battery 20 is connected by a lead wire 19 between the contact 17C and the ground. Also, the second room 1 above? b A contact 171 is fixed on the inner surface facing the contact 17e,
A lead wire 21. is connected to the contact point 17f. is connected.

したがって上記ダイヤフラム17Cがエバポレータ通路
8内圧力によってばね部材17dのばね力に抗して下方
に押されて、上記両接点17e、17fが当接し、バッ
テリ20の電流がリード線19.接点In、17f i
びリード#21の経路を流れることによって、圧力セン
サ15は検出信号aを出力するようになっている。
Therefore, the diaphragm 17C is pushed downward by the pressure inside the evaporator passage 8 against the spring force of the spring member 17d, so that both the contacts 17e and 17f come into contact with each other, and the current from the battery 20 is transferred to the lead wire 19. Contact In, 17f i
The pressure sensor 15 outputs a detection signal a by flowing through the path of the lead #21.

また上記演算回路16において、22は一定周波数で発
振する発振器、23は圧力センサ15の検出信号aと発
振器22の出力とを2人力とする第1のAND回路、2
4は発振器22の出力と後述する駆動回路27の出力と
を2人力とする第2のAND回路、25は第1のAND
回路23の出力をアップカウントし、第2のAND回路
24の出力をダウンカウントするアップダウンカウンタ
である。また26はイグニッションスイッチ又はスター
タスイッチからの信号dによって作動するリレーであり
、261はそのリレーコイル、26bはそのリレー接点
である。27は該リレー接点26bを介して上記アップ
ダウンカウンタ25のは圧力センサ15の検出信号亀を
受けるとそれを開弁信号すとしてソレノイド弁14に加
えるとともに、該回路16内の駆動回路27の出力を制
御信号Cとして上記空燃比調整パルプ13に加えるよう
になっている。
Further, in the arithmetic circuit 16, 22 is an oscillator that oscillates at a constant frequency, 23 is a first AND circuit that uses the detection signal a of the pressure sensor 15 and the output of the oscillator 22, and 2
4 is a second AND circuit that uses the output of the oscillator 22 and the output of a drive circuit 27 to be described later, and 25 is the first AND circuit.
This is an up/down counter that counts up the output of the circuit 23 and counts down the output of the second AND circuit 24. Further, 26 is a relay operated by a signal d from an ignition switch or a starter switch, 261 is its relay coil, and 26b is its relay contact. When the up/down counter 25 receives the detection signal from the pressure sensor 15 via the relay contact 26b, it applies it to the solenoid valve 14 as a valve opening signal, and also outputs the output from the drive circuit 27 in the circuit 16. is applied to the air-fuel ratio adjusting pulp 13 as a control signal C.

次に動作について説明する。Next, the operation will be explained.

エンジンの停止時、燃料タンク6内では外気温度等の影
響によって燃料が蒸発充満しており、その圧力が所定値
以上になると、圧力センサ15においてダイヤフラム1
7Cがばね部材17dのばね力に抗して下方に押されて
その接点17 e 、17fが当接するため、該圧力セ
ンサ15は検出信号aを発生する。演算回路16はこの
検出信号魚を受けて開弁信号すを発生し、ソレノイド弁
14はその開弁信号すを受けている間開く。すると燃料
タンク6内の蒸発燃料はエバポレータ通路8を経てキャ
ニスタ9に導かれ、そこに蓄積される。また同時に演算
回路16においては、第1のAND回路23は圧力セン
サ15の検出信号aが加えられている開発振器22の出
力パルスをそのまま出力し、カウンタ25はそのパシス
数をアップカウントして、上記ソレノイド弁14の開弁
時間を計測する。このときリレー26には信号dが加え
られていないことから、そのリレー接点26bは開いて
おり、カウンタ25の出力は駆動回路27には加えられ
ず、又第2のAND回路24の出力は定常的に“01の
ままである。
When the engine is stopped, the fuel tank 6 is evaporated and filled with fuel due to the influence of outside air temperature, etc., and when the pressure exceeds a predetermined value, the pressure sensor 15 detects the diaphragm 1.
7C is pushed downward against the spring force of the spring member 17d, and its contacts 17e and 17f come into contact, so that the pressure sensor 15 generates a detection signal a. The arithmetic circuit 16 receives this detection signal and generates a valve opening signal, and the solenoid valve 14 opens while receiving the valve opening signal. The vaporized fuel in the fuel tank 6 is then led to the canister 9 via the evaporator passage 8 and accumulated there. At the same time, in the arithmetic circuit 16, the first AND circuit 23 directly outputs the output pulse of the development oscillator 22 to which the detection signal a of the pressure sensor 15 is added, and the counter 25 counts up the number of passes. The opening time of the solenoid valve 14 is measured. At this time, since the signal d is not applied to the relay 26, its relay contact 26b is open, the output of the counter 25 is not applied to the drive circuit 27, and the output of the second AND circuit 24 is steady. remains at “01”.

そしてこのようにして蒸発燃料が燃料タンク6外に放出
され、その圧力が所定値以下まで低下すると、圧力セン
ナ15においてダイヤフラム17Cはばね部材17dの
ばね力によって上方に変形移動して接点17e、17t
が離れ、該圧力センサ15は検出信号諷の出力を停止し
、仁れにより演算回路16は開弁信号すの出力を停止し
てソレノイド弁14は閉じ、又該演算回路16において
はwJlのAND回路23の出力けm O+mとなるた
め、カウンタ25はその計数動作を停止する。
When the evaporated fuel is released to the outside of the fuel tank 6 and its pressure drops below a predetermined value, the diaphragm 17C in the pressure sensor 15 is deformed and moved upward by the spring force of the spring member 17d, and the contacts 17e and 17t
is separated, the pressure sensor 15 stops outputting the detection signal, and due to this, the arithmetic circuit 16 stops outputting the valve opening signal and the solenoid valve 14 closes. Since the output of the circuit 23 becomes m O+m, the counter 25 stops its counting operation.

このように、エンジンの停止E時、燃料タンク6内の圧
力が所定値以上になると、その都度ソレノイド弁14が
開いて、蒸発燃料はタンク6から放出されてキャニスタ
9に蓄積され、又演算回路16はソレノイド弁14の開
弁時間を計測する。
In this way, when the engine is stopped E, whenever the pressure inside the fuel tank 6 exceeds a predetermined value, the solenoid valve 14 opens and the evaporated fuel is discharged from the tank 6 and accumulated in the canister 9, and the arithmetic circuit 16 measures the opening time of the solenoid valve 14.

このような状態からエンジンを始動すると、吸気通路1
においては、エアクリーナ2からの空気がエンジンの吸
気負圧の作用によってスロットル弁3の開度に応じた量
だけ該通路1内に吸入され、咳吸入空気はペンチエリ一
部4で燃料供給通路5からの燃料と混合され、エンジン
に吸入される。
If you start the engine in this condition, the intake passage 1
, air from the air cleaner 2 is sucked into the passage 1 in an amount corresponding to the opening degree of the throttle valve 3 by the action of the engine's intake negative pressure, and the cough intake air is drawn from the fuel supply passage 5 in the pentier part 4. fuel and is inhaled into the engine.

その際キャニスタ9に蓄積されていた多着の蒸発燃料は
これも吸気負圧の作用によって吸気通路1内に吸入され
るため、上記混合気の空燃比は適正値より小さく、即ち
リッチになるおそれがある。
At that time, the large amount of evaporated fuel accumulated in the canister 9 is also drawn into the intake passage 1 by the effect of the intake negative pressure, so the air-fuel ratio of the mixture may be lower than the appropriate value, that is, it may become rich. There is.

しかるにこの場合本装置では、演算回路16において、
イグニッションスイッチ又はスタータスイッチからの信
号dによってリレー26が作動してそのリレー接点26
bが閉じ、駆動回路27はカウンタ25の出力を受けて
該出力の大傘さ昏ζ応じた信号を発生し、第2のAND
回路24は駆動回路27の出力がある開発振器22の出
カッ(ルスをそのまま出力し、カウンタ25はそのパル
ス数をダウンカウントするため、演算回路16はカウン
タ25の出力が10゛となるまで該カウンタ25の出力
に応じた制御信号Cを出力する。すると空燃比調整バル
ブ13はこの制御信号Cを受けて該信号Cに応じた開度
に聞咎、吸気通路1のスロットル弁3下流側にはエアク
リーナ2からの空気がソレノイド弁14の開弁時間、即
ちキャニスタ9に蓄積された蒸発燃料の量に応じた流量
だけエア通路12を通って吸入されるため、混合気の空
燃比が小さくなることはなく、適正値に保持される。
However, in this case, in the arithmetic circuit 16 of the present device,
The relay 26 is actuated by the signal d from the ignition switch or starter switch, and the relay contact 26 is activated.
b is closed, the drive circuit 27 receives the output of the counter 25, generates a signal corresponding to the output value, and performs the second AND
Since the circuit 24 directly outputs the output pulse of the development oscillator 22 which has the output of the drive circuit 27, and the counter 25 counts down the number of pulses, the arithmetic circuit 16 continues to count the pulses until the output of the counter 25 reaches 10゛. A control signal C corresponding to the output of the counter 25 is output.Then, the air-fuel ratio adjustment valve 13 receives this control signal C and adjusts the opening degree according to the signal C to the downstream side of the throttle valve 3 in the intake passage 1. Since the air from the air cleaner 2 is sucked in through the air passage 12 by a flow rate corresponding to the opening time of the solenoid valve 14, that is, the amount of evaporated fuel accumulated in the canister 9, the air-fuel ratio of the mixture becomes small. The value is maintained at an appropriate value.

また自動車の走行中には、燃料タンク6には走行風が当
ってタンク6の温度はあまり上昇せず、蒸発燃料もそれ
ほど多電に発生しないものである。
Furthermore, while the vehicle is running, the fuel tank 6 is hit by the wind, so the temperature of the tank 6 does not rise much, and evaporated fuel does not generate much electricity.

この場合、本装置において、燃料タンク6内の圧力が所
定値以下である状態から所定値以上になると、演:惇回
路16は上記と同様に圧力センサ15の検出信号&を受
け、開弁信4b婚出カしてソレノイド弁14を開き、蒸
発燃料は吸気通路l内の負圧の作用によってエバポレー
タ通路8&びキャその際、演算回路16においては、第
1のAND回路23は検出信号1がある間パルスを出力
して、カウンタ25はそれをアッグカクントし、駆動回
路27は該カウンタ25のカウント値に相当する制御信
号Cを出力するが、一方第2のAND回路24はこの駆
動回路27の出力がある間パルスを出力し、上記カウン
タ25はそれをダウンカウントするため、結局カウンタ
25のカウント値はそれほど大金な値にはならず、駆動
回路27の出力もそれほど大金な値にはならない。空燃
比Pilleバルブ13は上記小さい制御信号Cを受け
て少し間色、吸気通路1には少量の空気がエア通路12
を介して吸入され、これにより混合気の空燃比は適正値
に保持される。そして燃料タンク6内の圧力が所定値以
下番ζ下がったと話は、圧力センサ15は信号&の出力
を停止し、演算回路16はソレノイド弁14を閉じ、又
該演算回路16においては、第1のAND回路23の出
力は′0″″となり、カウンタ25も第2のAND回:
路24の出力をダウンカウントして直ちに“O゛となり
、その結果、演算回路16は空燃比調帯パルプ13を直
ちに閉じることとなる。
In this case, in this device, when the pressure in the fuel tank 6 changes from below a predetermined value to above a predetermined value, the control circuit 16 receives the detection signal & of the pressure sensor 15 in the same way as described above, and receives a valve opening signal. 4b, the solenoid valve 14 is opened, and the evaporated fuel is transferred to the evaporator passage 8 by the action of the negative pressure in the intake passage 1. At this time, in the calculation circuit 16, the first AND circuit 23 detects the detection signal 1. A pulse is output for a certain period of time, the counter 25 aggregates it, and the drive circuit 27 outputs a control signal C corresponding to the count value of the counter 25. On the other hand, the second AND circuit 24 Since a pulse is output while there is an output, and the counter 25 counts down, the count value of the counter 25 does not become a large value after all, and the output of the drive circuit 27 also does not reach a large value. No. The air-fuel ratio Pille valve 13 loses its color for a while in response to the small control signal C, and a small amount of air enters the air passage 12 in the intake passage 1.
The air-fuel ratio of the air-fuel mixture is maintained at an appropriate value. When the pressure in the fuel tank 6 drops below a predetermined value, the pressure sensor 15 stops outputting the signal &, the arithmetic circuit 16 closes the solenoid valve 14, and the arithmetic circuit 16 closes the solenoid valve 14. The output of the AND circuit 23 becomes '0'''', and the counter 25 also performs the second AND circuit:
The output of the passage 24 is immediately counted down and becomes "O", and as a result, the arithmetic circuit 16 immediately closes the air-fuel ratio adjustment band pulp 13.

以上のような本実施例装置では、エバポレータ通路に設
けたソレノイド弁の開弁時間を計測し、この開弁時間に
応じて空燃比調整バルブを聞咎、吸気通路への空気の吸
入量を調整して、混合気の空燃比を大暑くする方向にa
#贅するようにしたので、蒸発燃料によって空燃比が変
動するのを防止でき、その結果失火の発生を低減して、
排気ガス中のHC、Co 等の未燃焼ガスの含有量を大
傘く軽減できる。
In the device of this embodiment as described above, the opening time of the solenoid valve provided in the evaporator passage is measured, and the air-fuel ratio adjustment valve is operated according to this opening time to adjust the amount of air taken into the intake passage. a to make the air-fuel ratio of the mixture much hotter.
#Because it is made to be luxurious, it is possible to prevent the air-fuel ratio from fluctuating due to evaporated fuel, and as a result, the occurrence of misfires is reduced.
The content of unburned gases such as HC and Co2 in the exhaust gas can be greatly reduced.

また蒸発燃料の流量を検出する際に、その流量をエアフ
ローセンサを用いて直接検出しようとすると、蒸発燃料
がエアフローセンサに付着するなどして、該センサの検
出種度及び耐久性が低下し、装置の耐久性土酸び信頼性
上間細があるのに対し、本装置ではソレノイド弁の開弁
時間を計測し、それにより蒸発燃料の電を間接的に検出
するようにしているので、装置の耐久性及び信頼性は大
変好ましいものとなっている。
Furthermore, when detecting the flow rate of evaporated fuel, if the flow rate is directly detected using an air flow sensor, the evaporated fuel will adhere to the air flow sensor, reducing the detection level and durability of the sensor. While there are limitations regarding the durability and reliability of the device, this device measures the opening time of the solenoid valve and indirectly detects the electricity of the evaporated fuel. Its durability and reliability are very favorable.

なお上記実施例では空燃比調整装置として吸入空気量を
調整する空燃比調整バルブを用いているが、この空燃比
調整装置はペンチエリ一部に供給される燃料の量を増減
調整するものであってもよい。
In the above embodiment, an air-fuel ratio adjustment valve that adjusts the amount of intake air is used as an air-fuel ratio adjustment device, but this air-fuel ratio adjustment device is intended to increase or decrease the amount of fuel supplied to a portion of the pentier. Good too.

以上のように、本発明に係る空燃比制御装置によれば、
キャニスタ上流のエバポレータ通路に開閉弁を設け、該
開閉弁上流側の圧力が所定値以上になったとき開閉弁を
開くとともに、その開弁時間、即ち吸気系に供給される
蒸発燃料の量に応じて、空燃比調整装置により空燃比を
大無くする方向に調整するようにしたので、常に空燃比
を適正値に保持して、排気ガス中の未燃燐ガスの電を大
らく低減で籾、又装置の耐久性及び信頼性も良好にでき
る効果がある。
As described above, according to the air-fuel ratio control device according to the present invention,
An on-off valve is provided in the evaporator passage upstream of the canister, and when the pressure upstream of the on-off valve reaches a predetermined value or higher, the on-off valve is opened, and the opening time of the on-off valve is determined according to the amount of evaporated fuel supplied to the intake system. Therefore, the air-fuel ratio adjustment device is used to adjust the air-fuel ratio to a large extent, so that the air-fuel ratio is always maintained at an appropriate value and the electricity of unburned phosphorus gas in the exhaust gas is greatly reduced. It also has the effect of improving the durability and reliability of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にょる空燃比制御装置の概略
構成図、第2図は上記装置の圧力センサ及び演算回路の
構成図である。 1・・・吸気通路  6・・・燃料タンク  8・・・
エバポレータ通路(蒸発燃料通路)  9・・・キャニ
スタ  13・・・空燃比調整バルブ(空燃比調整装置
)  14・・・ソレノイド弁(開閉弁)  15・・
・圧力センサ  16・・・演算回路 特許出願人   東洋工業株式会社 代理人 弁理士   早 瀬 憲 −
FIG. 1 is a schematic configuration diagram of an air-fuel ratio control device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a pressure sensor and an arithmetic circuit of the device. 1...Intake passage 6...Fuel tank 8...
Evaporator passage (evaporated fuel passage) 9... Canister 13... Air-fuel ratio adjustment valve (air-fuel ratio adjustment device) 14... Solenoid valve (on/off valve) 15...
・Pressure sensor 16...Arithmetic circuit patent applicant Toyo Kogyo Co., Ltd. agent Patent attorney Ken Hayase −

Claims (1)

【特許請求の範囲】[Claims] +1)  一端が燃料タンクに、他端がエンジンの吸気
通路にそれぞれ開口して設けられ上記燃料タンク内の蒸
発燃料を上記吸気通路に案内する蒸発燃料通路と、該蒸
発燃料通路に介設され上記111J!燃料を一時蓄積す
る蓄積部材と、咳蓄積部材上流の蒸発燃料通路に設けら
れ該通路を開閉する開閉弁と、核間閉弁上流の蒸発燃料
通路内圧力を検出する圧力センサと、エンジンに供給さ
れる混合気の空燃比を調整する空燃比調整装置と、上記
圧力センサの出力を受は上記開閉弁上流の蒸発燃料通路
内が所定圧力以上の時上記開閉弁を開くとともに該開閉
弁が開いても上記空燃比が適正値に保持されるよう上記
空燃比調整装置を空燃比を大きくする方図に制御する演
算回路とを備えたことを特徴とする空燃比制御装置。
+1) A fuel vapor passage, which is provided with one end opening to the fuel tank and the other end opening to the intake passage of the engine, and which guides the evaporated fuel in the fuel tank to the intake passage; 111J! A storage member that temporarily stores fuel, an on-off valve that is provided in the vaporized fuel passage upstream of the cough accumulation member and opens and closes the passage, a pressure sensor that detects the pressure in the vaporized fuel passage upstream of the internuclear closing valve, and a pressure sensor that supplies the fuel to the engine. an air-fuel ratio adjusting device that adjusts the air-fuel ratio of the air-fuel mixture to be mixed; and an air-fuel ratio adjustment device that receives the output of the pressure sensor and opens the on-off valve and opens the on-off valve when the pressure in the vaporized fuel passage upstream of the on-off valve is higher than a predetermined pressure. An air-fuel ratio control device comprising: an arithmetic circuit that controls the air-fuel ratio adjustment device to increase the air-fuel ratio so that the air-fuel ratio is maintained at a proper value even when the air-fuel ratio is increased.
JP1203382A 1982-01-27 1982-01-27 Air-fuel ratio controller Granted JPS58128438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203382A JPS58128438A (en) 1982-01-27 1982-01-27 Air-fuel ratio controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203382A JPS58128438A (en) 1982-01-27 1982-01-27 Air-fuel ratio controller

Publications (2)

Publication Number Publication Date
JPS58128438A true JPS58128438A (en) 1983-08-01
JPH0438907B2 JPH0438907B2 (en) 1992-06-25

Family

ID=11794289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203382A Granted JPS58128438A (en) 1982-01-27 1982-01-27 Air-fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS58128438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635823A1 (en) * 1988-08-29 1990-03-02 Bendix Electronics Sa Device for checking the operating state of a system for recovering vapour coming off a motor vehicle petrol tank
US5111796A (en) * 1989-11-11 1992-05-12 Toyota Jidosha Kabushiki Kaisha Evaporative fuel control system
US5186153A (en) * 1990-03-30 1993-02-16 Robert Bosch Gmbh Tank-venting arrangement for a motor vehicle and method for checking the operability thereof
US5275145A (en) * 1992-12-07 1994-01-04 Walbro Corporation Vapor recovery system for motor vehicles
US5632242A (en) * 1992-05-12 1997-05-27 Ab Volvo Fuel system for motor vehicles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635823A1 (en) * 1988-08-29 1990-03-02 Bendix Electronics Sa Device for checking the operating state of a system for recovering vapour coming off a motor vehicle petrol tank
US5111796A (en) * 1989-11-11 1992-05-12 Toyota Jidosha Kabushiki Kaisha Evaporative fuel control system
US5186153A (en) * 1990-03-30 1993-02-16 Robert Bosch Gmbh Tank-venting arrangement for a motor vehicle and method for checking the operability thereof
US5632242A (en) * 1992-05-12 1997-05-27 Ab Volvo Fuel system for motor vehicles
US5275145A (en) * 1992-12-07 1994-01-04 Walbro Corporation Vapor recovery system for motor vehicles
FR2698915A1 (en) * 1992-12-07 1994-06-10 Walbro Corp Vapor recovery assembly for fuel system.

Also Published As

Publication number Publication date
JPH0438907B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US4809667A (en) Apparatus for controlling amount of fuel-vapor purged from canister to intake air system
US4446838A (en) Evaporative emission control system
US4308842A (en) Evaporative emission control system for an internal combustion engine
JPS5922066B2 (en) Evaporated fuel processing device for internal combustion engine
US5647332A (en) Fuel-vapor emission-control system for controlling the amount of flow through a charcoal canister
JP2615285B2 (en) Evaporative fuel control system for internal combustion engine
US4395991A (en) Emission preventing system of evaporated fuel for internal combustion engine
JPS58128438A (en) Air-fuel ratio controller
JP3267088B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3444125B2 (en) Evaporative fuel control system for internal combustion engine
JPS58185966A (en) Device for preventing evaporated fuel loss
JPH05180095A (en) Vaporized fuel control device for vehicle
JP3147410B2 (en) Purge air control device
JPS6296742A (en) Idling speed controller for engine
JPH065058B2 (en) Evaporative fuel control device for engine
JP2687074B2 (en) Evaporative fuel processing device
JPH073214B2 (en) Fuel evaporation suppression device for internal combustion engine for motorcycles
JP2800055B2 (en) Evaporative fuel control system for vehicles
JP2609677B2 (en) Engine fuel supply
JPH0539754A (en) Evaporation system
JPS6246697B2 (en)
JPH09151813A (en) Evaported fuel discharge control device and canister used therefor
JPS63999Y2 (en)
JPS60147561A (en) Fuel vapor removing device for internal-combustion engine
JPH0666210A (en) Evaporated fuel controller