JPS58128150A - Activating and regenerating method of catalyst - Google Patents

Activating and regenerating method of catalyst

Info

Publication number
JPS58128150A
JPS58128150A JP57009001A JP900182A JPS58128150A JP S58128150 A JPS58128150 A JP S58128150A JP 57009001 A JP57009001 A JP 57009001A JP 900182 A JP900182 A JP 900182A JP S58128150 A JPS58128150 A JP S58128150A
Authority
JP
Japan
Prior art keywords
cobalt
catalyst
pyridines
pyridine
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57009001A
Other languages
Japanese (ja)
Inventor
Katsuhiro Ishikawa
石川 克弘
Chozo Okuda
奥田 長蔵
Masatoshi Arakawa
荒川 昌敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP57009001A priority Critical patent/JPS58128150A/en
Publication of JPS58128150A publication Critical patent/JPS58128150A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To activate and regenerative degraded activity by treating catalysts of cobalt-pyridines for hydroester or hydrocarboxylation reaction of unsatd. compds. with an aq. acid soln. in an inert gaseous or CO atmosphere in the presence of liquid hydrocarbon. CONSTITUTION:When the activity of catalysts of cobalt-pyridines to be used in the stage of hydroesterifying or hydrocarboxylating unsatd. compds. contg. carbon double bonds by causing the same to react with CO and alcohol or water degrades, said catalysts are brought into contact with an aq. acid soln. of 0.5g equiv. sulfuric acid, etc. with respect to 1g equiv. total nitrogen compd. (pyridines and changed matter of pyridines) in the catalyst wherein hydrocarbon solvents sufficient for dissolution of cobalt carbonyl, as well as an inert gases and CO atmosphere. Cobalt carbonyl is separated into the hydrocarbon phase and pyridines contg. changed matter of pyridines are separated into the water phase. The catalysts of cobalt-pyridines having high activity is obtained by adding pyridines to the hydrocarbon phase.

Description

【発明の詳細な説明】 本発明はコバルトと一酸化炭素の配位化合物を主′とし
たコバルト化合物とピリジン類とから構成される錯体触
媒(以下コバルト−ピリジン類触媒と称す)を用い炭素
・炭素二重結合を有する不飽和化合物に一酸化炭素とア
ルコールおよび/または水を反応させてヒドロエステル
化および/またはヒドロカルボキシル化する方法におい
て、循環使用中に活性低下したコバルト−ピリジン類触
媒を賦活再生する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a complex catalyst (hereinafter referred to as a cobalt-pyridine catalyst) composed of a cobalt compound mainly consisting of a coordination compound of cobalt and carbon monoxide and a pyridine. In a method of hydroesterifying and/or hydrocarboxylating an unsaturated compound having a carbon double bond by reacting carbon monoxide with alcohol and/or water, the cobalt-pyridine catalyst whose activity has decreased during recycling is activated. It concerns how to play.

不飽和化合物のヒドロエステル化またはヒドロカルボキ
シル化反応用触媒として、コバルトb01Jジン類触媒
は良く知られているが、工業的実施に際しては触媒の回
収循環再使用が必要である。
Cobalt b01J catalysts are well known as catalysts for hydroesterification or hydrocarboxylation reactions of unsaturated compounds, but in industrial implementation, it is necessary to recover and reuse the catalysts.

従来、コバルト−ピリジン類触媒の回収方法としては、
生成物を加熱してコバルトカルボニルを分解し金属コバ
ルトとする方法、また鉱酸等で処理して無機コバルト塩
にする方法などがある。これらの方法はその工程や操作
が複雑なばかりでなく、活性コバルトを一旦不活性コバ
ルトに戻すため、循環再使用する際再び苛酷な条件を用
いて活性コバルトにしなければならないという欠点があ
った。
Conventionally, the recovery method for cobalt-pyridine catalysts is as follows:
There are methods such as heating the product to decompose cobalt carbonyl to produce metal cobalt, and treating the product with mineral acids to produce inorganic cobalt salts. These methods not only have complicated processes and operations, but also have the disadvantage that, since activated cobalt is once returned to inactive cobalt, harsh conditions must be used to convert it back to active cobalt when it is recycled and reused.

また、特開昭50−109886において、反応後に常
態で液体である炭化水素を混合することにより、反応生
成物を含む炭化水素相とコバルト−ピリジン類触媒を分
離し、触媒を回収し再使用する方法が提案されている。
In addition, in JP-A-50-109886, by mixing hydrocarbons that are normally liquid after the reaction, the hydrocarbon phase containing the reaction product and the cobalt-pyridine catalyst are separated, and the catalyst is recovered and reused. A method is proposed.

この方法は触媒を活性の状態で分離回収し、その1ま反
応系に戻す事が出来る優れた方法である。しかしながら
、回収した触媒を循環使用していくと反応中にピリジン
類塩基の一部に変化がおきピペリジン類等のピリジン類
変化物を生成しこのピリジン類変化物がコバルトとより
安定な錯体を形成し、触媒、が急速に失活していくとい
う重大な欠点を有する事が明らかになった。
This method is an excellent method in which the catalyst can be separated and recovered in an active state and then returned to the reaction system. However, when the recovered catalyst is recycled and used, some of the pyridine bases change during the reaction, producing pyridine derivatives such as piperidines, and these pyridine derivatives form more stable complexes with cobalt. However, it has become clear that the catalyst has a serious drawback in that it rapidly deactivates.

本発明者らは、上記の原因で活性低下したコバルト−ピ
リジン類触媒を効率よく簡単に賦活再生する方法を確立
すべく研究を重ねた結果、活性低下した触媒f、液状炭
化水素の存在下、不活性ガスおよび/または一酸化炭素
雰囲気のもとて散水溶液で処理することによシ、コバル
トはコバルトカルボニルの形で炭化水素相に、ピリジン
類および有害物であるピリジン類変化物は酸と塩を形成
して水相に選択的に溶解してくる事を見い出し、工業的
に極めて有利々賦活方法として本発明を完成するに至っ
た。
The present inventors have conducted extensive research to establish a method for efficiently and easily reactivating cobalt-pyridine catalysts whose activity has decreased due to the above causes. By treatment with an aqueous solution under an inert gas and/or carbon monoxide atmosphere, cobalt is transferred to the hydrocarbon phase in the form of cobalt carbonyl, and pyridines and hazardous pyridine derivatives are transferred to the acid. It was discovered that salts are formed and selectively dissolved in the aqueous phase, and the present invention was completed as an industrially extremely advantageous activation method.

すなわち、本発明はピリジン類変化物の存在が原因で活
性低下または失活したコバルト−ピリジン類触媒を賦活
再生する方法において、コバルトカルボニルを溶解し得
るに充分な炭化水素溶剤を存在させ触媒中の全窒素化合
物(ピリジン類とピリジン類変化物の合計を称す)1グ
ラム当量当り0.5グラム当量以上の酸水溶液と不活性
ガスおよび/または一酸化炭素雰囲気下で接触させるこ
とにより、コバルトカルボニルを炭化水素相に、有害物
であるピリジン類変化物を含むピリジン類を水相に分離
せしめ、前記炭化水素相はそのまま反応系に循環させる
か、または前記炭化水素相にコバルト1グラム原子当り
少なくとも1.5グラム当量のピリジン類を添加し、コ
バルト−ピリジン類触媒を形成させ、前記炭化水素相か
ら分離した後に反応系に循環させる事を特徴とするコバ
ルト−ピリジン類触媒の賦活再生方法を提供するもので
ある。
That is, the present invention provides a method for activating and regenerating a cobalt-pyridine catalyst whose activity has decreased or been deactivated due to the presence of a pyridine derivative, in which a hydrocarbon solvent sufficient to dissolve cobalt carbonyl is present in the catalyst. Cobalt carbonyl is produced by contacting 0.5 gram equivalent or more of an acid aqueous solution per gram equivalent of all nitrogen compounds (the sum of pyridines and pyridine derivatives) under an inert gas and/or carbon monoxide atmosphere. Pyridines containing harmful pyridine derivatives are separated into an aqueous phase, and the hydrocarbon phase is recycled to the reaction system as it is, or at least 1 pyridine per gram atom of cobalt is added to the hydrocarbon phase. .5 gram equivalent of pyridine is added to form a cobalt-pyridine catalyst, which is separated from the hydrocarbon phase and then recycled to the reaction system. It is something.

本発明に使用する炭化水素溶剤は、水と相溶せず、コバ
ルトカルボニルを溶解する物であれば良く、例えば炭素
数4〜20のアルカンおよび/またはシノロアルカン、
具体的にはペンタン、ヘキサン、ヘゾタン、デカン、テ
トラデカン、シクロヘキサン等、および芳香族炭化水素
、具体的にはベンゼン、トルエン、キシレン、クメン、
サイメン等、および本発明に使用される出発原料の不飽
和化合物およびこれらの混合物を包含する。使用する炭
化水素溶剤の量は、炭化水素溶剤の種類、処理温度によ
って異なるが、コバルトカルボニルを充分溶解する量、
すなわちコバルト1グラム原子fi 、D 0.5 を
以上が必要である。炭化水素がコバルト1グラム原子当
〕0.5を未満では触媒を充分に溶解することが出来ず
コバルト回収率の低下を来たす。炭化水素溶剤量が多い
程コバルト回収率は上昇するが、あまり多いと装置が大
きくなシ、工業化する時不利であるので、好ましくはコ
バルト1グラム原子当り8を以下で用いる。
The hydrocarbon solvent used in the present invention may be any solvent as long as it is incompatible with water and dissolves cobalt carbonyl, such as alkanes and/or sinoloalkanes having 4 to 20 carbon atoms,
Specifically, pentane, hexane, hezotane, decane, tetradecane, cyclohexane, etc., and aromatic hydrocarbons, specifically benzene, toluene, xylene, cumene,
cymen, etc., and the starting unsaturated compounds used in the present invention and mixtures thereof. The amount of hydrocarbon solvent to be used varies depending on the type of hydrocarbon solvent and processing temperature, but the amount that sufficiently dissolves cobalt carbonyl,
That is, more than 1 gram atom of cobalt fi, D 0.5 is required. If the hydrocarbon content is less than 0.5 per gram atom of cobalt, the catalyst cannot be sufficiently dissolved, resulting in a decrease in cobalt recovery. The cobalt recovery rate increases as the amount of hydrocarbon solvent increases, but if the amount is too large, the equipment becomes large and is disadvantageous in industrialization, so preferably 8 or less per gram atom of cobalt is used.

本発明を実施するのに重要な要件である酸水溶液として
は、鉱酸例えば塩酸、硫酸、リン酸等および炭素数1〜
3の有機酸例えばギ酸、酢酸等およびこれらの混合物が
使用される。好ましい酸は、硫酸および塩酸である。酸
水溶液の使用量は、触媒中の全窒素化合物1グラム当量
当り0.5グラム当量以上が必要であり、好ましくは、
触媒中の全窒素化合物1グラム当量当り1グラム当量以
上である。酸水溶液の使用量が触媒中の全窒素化合物の
0.5グラム当量未満では、触媒中のコバルトと有害物
であるピリジン類変化物との分離が不充分であシ、炭化
水素相に有害物が混入し触媒賦活が充分に達成されない
。一方酸水溶液量が多い程、コバルトと有害物の分離は
良好となるが、あまり多いとコバルトカルボニルの形で
炭化水素相に回収されたコバルトが更に分解され、コバ
ルトイオンとして水相に流出し回収率を低下させるので
、好ましくは触媒中の全窒素化合物1グラム当量当95
グラム当量以下で用いる。また酸水溶液の酸濃度は特に
制限されないが、濃度が低すぎると酸水溶液の使用量が
増大し装置が大きくなるだけでなく、水相に溶解して来
たピリジン類の濃度かうすぐなって、回収に困難を来す
ことにも々るので、好ましくは1M、01/’L以上で
用いる。
The acid aqueous solution which is an important requirement for carrying out the present invention includes mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, etc.
3 organic acids such as formic acid, acetic acid, etc. and mixtures thereof are used. Preferred acids are sulfuric acid and hydrochloric acid. The amount of the acid aqueous solution used is 0.5 gram equivalent or more per gram equivalent of all nitrogen compounds in the catalyst, and preferably,
The amount is 1 gram equivalent or more per gram equivalent of all nitrogen compounds in the catalyst. If the amount of the acid aqueous solution used is less than 0.5 gram equivalent of the total nitrogen compounds in the catalyst, the separation of cobalt in the catalyst from the harmful pyridine derivatives will be insufficient, and the harmful substances will be present in the hydrocarbon phase. is mixed in, and catalyst activation is not achieved sufficiently. On the other hand, the larger the amount of acid aqueous solution, the better the separation of cobalt and harmful substances. However, if the amount is too large, the cobalt recovered in the hydrocarbon phase in the form of cobalt carbonyl will be further decomposed and will flow out into the water phase as cobalt ions and be recovered. 95 per gram equivalent of total nitrogen compounds in the catalyst.
Use in gram equivalent or less. The acid concentration of the acid aqueous solution is not particularly limited, but if the concentration is too low, not only will the amount of acid aqueous solution used increase and the size of the apparatus will increase, but the concentration of pyridines dissolved in the aqueous phase will be diluted. Since this may cause difficulty in recovery, it is preferably used at 1M, 01/'L or more.

触媒と酸水溶液との接触方法に関しては特に制、限され
ないが、不均一系の為接触効率が高い方が処理時間が短
縮される。接触方法としては一般的には、回転羽根攪拌
機、循環ポンプ、不活性ガス吹き込み式、多段向流接触
塔などが使用される。
There are no particular restrictions on the method of contacting the catalyst with the acid aqueous solution, but since it is a heterogeneous system, the higher the contact efficiency, the shorter the processing time. As a contact method, a rotary blade stirrer, a circulation pump, an inert gas blowing type, a multistage countercurrent contact tower, etc. are generally used.

処理条件の1つである処理時の雰囲気は、コバルトカル
ボニルの安定性から不活性ガスおよび/または一酸化炭
素下である。コバルトカルボニルの安定性から、好まし
くは一酸化炭素であシ、更に好ましくは一酸化炭素下圧
下1〜50W、2で行なうとコバルトイオンの形で水相
に流出することによるコバルト回収率の低下を抑え・る
事が出来る。
The atmosphere during the treatment, which is one of the treatment conditions, is an inert gas and/or carbon monoxide atmosphere due to the stability of cobalt carbonyl. Due to the stability of cobalt carbonyl, carbon monoxide is preferably used, and more preferably carbon monoxide is used under a pressure of 1 to 50 W to prevent a decrease in the cobalt recovery rate due to the cobalt ion flowing out into the aqueous phase. I can suppress it.

また、処理温度は、コバルトカルボニルの安定性を保ち
うる温度以下であれば良く処理雰囲気によシ異なるが、
7般的には50℃以下で行なうのが好ましい。
In addition, the treatment temperature may vary depending on the treatment atmosphere as long as it is below a temperature that maintains the stability of cobalt carbonyl.
7 Generally, it is preferable to carry out the reaction at a temperature of 50°C or lower.

ここでいうコバルト−ピリジン点触媒のピリジン類とは
、ピリジンおよびその同族体の総称であシ、β−ピコリ
ン、r−ピコリン等のメチル誘導体、4−エチルピリジ
ン等のエチル誘導体、2,6−ルチジン、3,4−ルチ
ジン等のジメチル誘導体、r−コリジン、β−コリジン
等のトリメチル誘導体等が含まれる。また、キノリン、
インキノリンもピリジン類として使用可能である。これ
らのうちでピリジン、r−ピコリン、β−ピコリンが最
も好ましい。
The pyridine of the cobalt-pyridine point catalyst here is a general term for pyridine and its homologues, methyl derivatives such as β-picoline and r-picoline, ethyl derivatives such as 4-ethylpyridine, 2,6- Dimethyl derivatives such as lutidine and 3,4-lutidine; trimethyl derivatives such as r-collidine and β-collidine; and the like. Also, quinoline,
Inquinoline can also be used as a pyridine. Among these, pyridine, r-picoline, and β-picoline are most preferred.

本発明によって得られるコバルトカルボニルを含む炭化
水素は何ら特別の処理を施すことなくそのまま反応系に
戻すことによシ、あるいはピリジン類を添加しコバルト
−ピリジン類触媒を形成させ炭化水素相よシ分離した後
反応系に戻すことによシ初期の反応活性を示す。この場
合添加するピリジン類の量はコバルト1グラム原子当シ
少なくとも1.5グラム当量が必要である。それより少
ないと添加の効果は生じない。
The hydrocarbon containing cobalt carbonyl obtained by the present invention can be returned to the reaction system as it is without any special treatment, or it can be separated from the hydrocarbon phase by adding pyridines to form a cobalt-pyridine catalyst. After that, the initial reaction activity is shown by returning it to the reaction system. In this case, the amount of pyridine added must be at least 1.5 gram equivalent per gram atom of cobalt. If the amount is less than that, the addition will not have any effect.

また、酸処理賦活条件によっては、得られた炭化水素相
中に微量窒素化合物や酸を含む為不活性ガスおよび/ま
たは一酸化炭素雰囲気下で水洗することによシ微量含ま
れる窒素化合物あるいは酸を除去した後反応系に戻す事
も可能である。
Also, depending on the acid treatment activation conditions, the resulting hydrocarbon phase may contain trace amounts of nitrogen compounds and acids, so washing with water under an inert gas and/or carbon monoxide atmosphere may remove trace amounts of nitrogen compounds or acids. It is also possible to return it to the reaction system after removing it.

また、水相中に流出したコバルトに関しては水相を水酸
化ナトリウム、水酸化カリウム等によりアルカリ性にす
ることで水酸化コバルトの形で析出させp別回収し、コ
バルトカルボニルに再slIg後反応系に戻す事も可能
である。一方、水相中のピリジン類は液を中和後蒸留等
により有害物であるピリジン類変化物と分離し回収し反
応系に戻す事が可能である。
In addition, regarding the cobalt that has leaked into the aqueous phase, the aqueous phase is made alkaline with sodium hydroxide, potassium hydroxide, etc. to precipitate it in the form of cobalt hydroxide, recover it separately, and re-slIg it into cobalt carbonyl before adding it to the reaction system. It is also possible to return it. On the other hand, the pyridines in the aqueous phase can be separated from harmful pyridine derivatives by distillation after neutralization, and recovered and returned to the reaction system.

本発明による触媒賦活操作は触媒の全量につき実施して
も良いが、触媒の一部を抜き出し賦活処理を行ない反応
系に戻す事によシ触媒活性を一部レベルに維持すること
も可能であシ、工業的に極めて有利な触媒賦活法である
Although the catalyst activation operation according to the present invention may be performed on the entire amount of the catalyst, it is also possible to maintain the catalyst activity at a partial level by extracting a portion of the catalyst, performing the activation treatment, and returning it to the reaction system. This is an industrially extremely advantageous catalyst activation method.

以下に実施例を示し、本発明の方法をさらに詳細に説明
する。
Examples are shown below to explain the method of the present invention in further detail.

参考例 1 内容積54のオートクレーブを用い、トリシクロデカン
ジカルボン酸エステルの合成を目的としてこれにジシク
ロペンタジェン6モル、メチルアルコール15モル、r
−ピコリン7、5モルおよびジコバルトオクタカルボニ
ル1.5モルを仕込み一酸化炭素で70?/WI2G″
!で加圧した後、140℃に加熱し反応を行なわせた。
Reference Example 1 Using an autoclave with an internal volume of 54 mm, 6 moles of dicyclopentadiene, 15 moles of methyl alcohol, and r
- Prepare 7.5 moles of picoline and 1.5 moles of dicobalt octacarbonyl and add carbon monoxide to 70? /WI2G''
! After pressurizing at 140° C., the reaction mixture was heated to 140° C. to carry out the reaction.

反応によシ消費される一酸化炭素を外部から補給するこ
とにより一酸化炭素圧力を100〜15I2Gに保ちつ
つ2時間反応させた。その後反応温度を160℃に昇温
しさらに2時間反応を行なった。
The reaction was carried out for 2 hours while maintaining the carbon monoxide pressure at 100 to 15 I2G by externally replenishing carbon monoxide consumed by the reaction. Thereafter, the reaction temperature was raised to 160°C, and the reaction was continued for an additional 2 hours.

冷却後、−酸化炭素を除き、反応混合物をシクロヘキサ
ン4を中に送入し、攪拌後装置すると触媒層が下層に分
離してぐるので反応生成物と触媒に分離した。分離した
触媒にコバルト1グラム原子当り、ジシクロペンタジェ
ン2モル、メタノール5モル、r−ピコリン2.5モル
になる様に各成分を追加し、同様に反応させた。
After cooling, the carbon oxide was removed, and cyclohexane 4 was introduced into the reaction mixture. After stirring, the catalyst layer was separated into a lower layer, and the reaction product and catalyst were separated. Each component was added to the separated catalyst in such a manner that 2 moles of dicyclopentadiene, 5 moles of methanol, and 2.5 moles of r-picoline per 1 gram atom of cobalt were reacted in the same manner.

上記操作を繰返し触媒を8回循環使用したところ、表1
の如く、トリシクロデカンジカルボン酸ジメチルの収率
が81チから19チに低下した。
When the above operation was repeated and the catalyst was circulated 8 times, Table 1
As shown, the yield of dimethyl tricyclodecanedicarboxylate decreased from 81 to 19.

実施例 1 参考例1で得られた活性低下した触媒中のコバルト、r
−ピコリン、およびr−ピコリン変化物を分析したとこ
ろ、該触媒1Kg中にコバルト1.8グラム原子、r−
ピコリン1.7モル、r−ピコリン変化物1.8モルを
含有していた。
Example 1 Cobalt in the catalyst with reduced activity obtained in Reference Example 1, r
Analysis of -picoline and r-picoline derivatives revealed that 1.8 gram atoms of cobalt and r-
It contained 1.7 moles of picoline and 1.8 moles of r-picoline derivatives.

該触媒1Kgを窒素下でシクロヘキサン5を中に送入し
攪拌下、室温で全窒素化合物の約2グラム当量に相当す
る6Mot/LのH2SO4水溶液600mjを1時間
で滴下し、約1時間攪拌した後装置したところシクロヘ
キサン相と水相に分離した。
1 kg of the catalyst was introduced into cyclohexane 5 under nitrogen, and while stirring, 600 mj of a 6 Mot/L H2SO4 aqueous solution corresponding to about 2 g equivalent of the total nitrogen compound was added dropwise at room temperature over 1 hour, and the mixture was stirred for about 1 hour. When the mixture was re-applied, it was separated into a cyclohexane phase and an aqueous phase.

シクロヘキサン相中のコバルトおよび窒素化合物を分析
したところ、コバルト1.5グラム原子コバルト回収率
85チを含有し窒素化合物は検出されなかった。
Analysis of the cobalt and nitrogen compounds in the cyclohexane phase revealed that it contained 1.5 grams of cobalt with a cobalt recovery of 85 grams and no nitrogen compounds were detected.

該シクロヘキサン相に窒素下でr−ピコリン3.0モル
ヲ添加シ、コバルト−r−ピコリン錯体の形でシクロヘ
キサン相よシ分離した後、該触媒にコバルト1グラム原
子当シジシクロはンタジエン2モル、メタノール5モル
、r−ピコリフ2.5モルになる様に各成分を追加し、
参考例1と同様に反応させた。反応成績は表1の如くで
あシ、触媒は初期活性とほぼ同等の値を示した。
3.0 mol of r-picoline was added to the cyclohexane phase under nitrogen, and after separation from the cyclohexane phase in the form of a cobalt-r-picoline complex, 2 mol of ntadiene per gram atom of cobalt and 5 mol of methanol were added to the catalyst. Add each component to make 2.5 moles of r-Picorif,
The reaction was carried out in the same manner as in Reference Example 1. The reaction results were as shown in Table 1, and the catalyst showed a value almost equal to the initial activity.

実施例 2 実施例1の酸処理賦活操作を一酸化炭素圧力20Kg/
1yR2G下で実施した。
Example 2 The acid treatment activation operation of Example 1 was carried out at a carbon monoxide pressure of 20 kg/
It was carried out under 1yR2G.

シクロヘキサン相中のコバルトは1.7グラム原子(コ
バルト回収率94%)を含有し、窒素化合物は検出され
なかった。
Cobalt in the cyclohexane phase contained 1.7 gram atoms (94% cobalt recovery) and no nitrogen compounds were detected.

該シクロヘキサン相より、実施例1と同様にr−ピコリ
ン錯体としてコバルトを分離し反応に使用したところ、
表1の如く初期活性とほぼ同等の活性を示した。
When cobalt was separated from the cyclohexane phase as an r-picoline complex and used in the reaction in the same manner as in Example 1,
As shown in Table 1, the activity was almost the same as the initial activity.

実施例 6 実施例1の酸処理時に得られたコバルトカルボニルを含
有するシクロヘキサン相1 tcコバルト0.3グラム
原子含有)、ジシクロペンタジェン0.6モル、メタノ
ール1.5モル、r−ピコリン0.75モルを2tオー
トクレーブに仕込み、−酸化炭素で701!4732G
まで加圧した後、140℃に加熱し2時間反応させた。
Example 6 Cyclohexane phase 1 containing cobalt carbonyl obtained during the acid treatment of Example 1 (containing 0.3 g atom of tc cobalt), 0.6 mol of dicyclopentadiene, 1.5 mol of methanol, 0 r-picoline Pour .75 mol into a 2t autoclave, -701!4732G with carbon oxide
After pressurizing the mixture to 140° C., the mixture was heated to 140° C. and reacted for 2 hours.

その後反応温度を160℃に昇温しさらに2時間反応を
行なった。
Thereafter, the reaction temperature was raised to 160°C, and the reaction was continued for an additional 2 hours.

反応中外部よシー酸化炭素を補給し一酸化炭素圧を10
0Q/m2Gに維持した。結果を表2に示す様に、 c
o2(co)s/シクロヘキサンを触媒とした時と同等
の活性を示した。
During the reaction, add carbon oxide from outside to raise the carbon monoxide pressure to 10
It was maintained at 0Q/m2G. As the results are shown in Table 2, c
It showed the same activity as when o2(co)s/cyclohexane was used as a catalyst.

比較例 1 実施例1の酸処理賦活操作を空気下で行なった。Comparative example 1 The acid treatment and activation operation of Example 1 was carried out in air.

シクロヘキサン相中のコバルトは0.76グラム原子(
コバルト回収率42%)のみを含有し、大部分はコバル
ト塩の形にまで分解され水相中に流出した。
The cobalt in the cyclohexane phase is 0.76 g atom (
It contained only cobalt (cobalt recovery rate: 42%), most of which was decomposed into the form of cobalt salts and leaked into the aqueous phase.

比較例 2 実施例1の酸処理賦活操作において、6Mo17’jの
H2SO4水溶液を全窒素化合物の0.4グラム当量に
相当する12〇−用い行なった。
Comparative Example 2 In the acid treatment activation operation of Example 1, an aqueous H2SO4 solution of 6Mo17'j was carried out using 120 - equivalent to 0.4 gram equivalent of the total nitrogen compound.

シクロヘキサン相中のコバルトは0.2グラム原子(コ
バルト回収率11%)および窒素化合物8.4モル(窒
素化合物混入率24チ)を含有する。また、シクロヘキ
サン相、および水相以外に第3の相が形成されコバルト
および窒素化合物の大部分がこの相に含まれ、該第3の
相は反応活性を示さなかった。
The cobalt in the cyclohexane phase contains 0.2 gram atoms (cobalt recovery 11%) and 8.4 moles of nitrogen compounds (nitrogen compound loading 24 g). In addition, a third phase was formed in addition to the cyclohexane phase and the aqueous phase, and most of the cobalt and nitrogen compounds were contained in this phase, and the third phase did not exhibit any reaction activity.

表   1 +1  ガスクロマトグラフィー分析 薫2 トリシクロデセンカルボン酸メチル%3 トリシ
クロデカンジカルボン酸ジメチル表   2
Table 1 +1 Gas chromatography analysis Kaoru 2 Methyl tricyclodecenecarboxylate %3 Dimethyl tricyclodecanedicarboxylate Table 2

Claims (1)

【特許請求の範囲】 (1)  不飽和化合物のヒドロエステル化反応および
/またはヒドロカルボキシル化反応において、ピリジン
類変化物を含む活性の低下したコバルト−ピリジン類触
媒を不活性ガスおよび/または一酸化炭素グ囲気下、コ
バルト1グラム原子当り0,5を以上の炭化水素溶剤中
に存在させ、該触媒中の全窒素化合物1グラム当量当り
0.5グラム当量以上の酸水溶液と接触させることによ
りコバルトカルボニルを前記炭化水素相に、前記ピリジ
ン類変化物を含むピリジン類を水相に分離せしめ、前記
炭化水素相はそのまま反応系に循環させるか、または前
記炭化水素相にコバルト1グラム原子当り少なくとも1
.5グラム当量のピリジン類を添加してコバルト−ピリ
ジン類触媒を形成させ、前記炭化水素相から分離した後
に反応系に循環させることを特徴とするコバルト−ピリ
ジン類触媒の賦活再生法。 (2)−酸化炭素1〜50Kg/cM2の雰囲気下で酸
水溶液と接触させる特許請求の範囲第(1)項記載の賦
活再生法。 (8)  触媒中の全窒素化合物1グラム当量当り1グ
ラム当量以上の酸水溶液と接触させる特許請求の範囲第
(1)項記載の賦活再生法。
[Scope of Claims] (1) In the hydroesterification reaction and/or hydrocarboxylation reaction of unsaturated compounds, a cobalt-pyridine catalyst with reduced activity containing a pyridine derivative is treated with an inert gas and/or monoxide. cobalt by contacting the catalyst with an acid aqueous solution containing 0.5 or more gram equivalents per gram equivalent of total nitrogen compounds in the catalyst in a hydrocarbon solvent of 0.5 or more per gram atom of cobalt under a carbon atmosphere. Either the carbonyl is separated into the hydrocarbon phase and the pyridines containing the pyridine derivatives are separated into an aqueous phase, and the hydrocarbon phase is recycled to the reaction system as is, or at least 1 carbonyl per gram atom of cobalt is added to the hydrocarbon phase.
.. A method for activating and regenerating a cobalt-pyridine catalyst, which comprises adding 5 gram equivalents of pyridine to form a cobalt-pyridine catalyst, separating it from the hydrocarbon phase, and then recycling it to a reaction system. (2) - The activation regeneration method according to claim (1), which comprises contacting with an acid aqueous solution in an atmosphere of 1 to 50 kg/cM2 of carbon oxide. (8) The activation regeneration method according to claim (1), wherein 1 gram equivalent of all nitrogen compounds in the catalyst is brought into contact with an acid aqueous solution in an amount of 1 gram equivalent or more.
JP57009001A 1982-01-25 1982-01-25 Activating and regenerating method of catalyst Pending JPS58128150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57009001A JPS58128150A (en) 1982-01-25 1982-01-25 Activating and regenerating method of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009001A JPS58128150A (en) 1982-01-25 1982-01-25 Activating and regenerating method of catalyst

Publications (1)

Publication Number Publication Date
JPS58128150A true JPS58128150A (en) 1983-07-30

Family

ID=11708428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009001A Pending JPS58128150A (en) 1982-01-25 1982-01-25 Activating and regenerating method of catalyst

Country Status (1)

Country Link
JP (1) JPS58128150A (en)

Similar Documents

Publication Publication Date Title
US3316279A (en) Preparation of olefin oxides
ES457530A1 (en) Isolation and regeneration of rhodium-containing catalysts from distillation residues of hydroformylation reactions
GB1495025A (en) Recovery of the rhodium and triphenyl phosphine components of a catalyst system used in a hydroformylation process
EP0902004A3 (en) Process for producing aromatic carboxylic acid
JPWO2019098242A1 (en) Aldehyde production method and alcohol production method
JPH0237215B2 (en)
JPS621541B2 (en)
JPH02145440A (en) Method for recovery of rhodium
MXPA98001074A (en) Procedure to separate a pala catalyst
JPH0129778B2 (en)
JPS58128150A (en) Activating and regenerating method of catalyst
TW546169B (en) Process for the separation of iron from other metal ions, and process for recycling catalysts in reactions for the oxidation of alcohols and ketones to carboxylic acid
CN102950028B (en) Regeneration method for inactivated rh-p (rhodium-phosphine) complex catalyst for carbonylation reaction
KR101604242B1 (en) Method for reclaiming rhodium from aqueous solutions comprising rhodium complex bonds
CN103506167A (en) Treatment method of inactivated rhodium-phosphine catalyst
JPH0248419A (en) Separation and recovery of oxo synthetic product from distillation residue
Bischof et al. Designing molecular catalysts for selective CH functionalization
JPS5916545A (en) Improved activating and regenerating method of catalyst
JPH01203227A (en) Recovery rhodium from aqueous solution containing rhodium complex
CN104248994A (en) Method for recovering activity of carbonylation Rh-P catalyst
JPH10291996A (en) Preparation of rhodium complex solution
JPH09215934A (en) Separation and recovery of ruthenium complex
JPH0672115B2 (en) Method for recovering rhodium from distillation residues of products of oxo synthesis
JPH0791211B2 (en) Method for producing carboxylic acid
JP2009101326A (en) Method for regenerating iridium compound