JPS5812811B2 - Bosenden Ryuusokutei Souchi - Google Patents

Bosenden Ryuusokutei Souchi

Info

Publication number
JPS5812811B2
JPS5812811B2 JP50053583A JP5358375A JPS5812811B2 JP S5812811 B2 JPS5812811 B2 JP S5812811B2 JP 50053583 A JP50053583 A JP 50053583A JP 5358375 A JP5358375 A JP 5358375A JP S5812811 B2 JPS5812811 B2 JP S5812811B2
Authority
JP
Japan
Prior art keywords
power
bus
section
algebraic sum
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50053583A
Other languages
Japanese (ja)
Other versions
JPS51129641A (en
Inventor
坂口敏明
中川秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP50053583A priority Critical patent/JPS5812811B2/en
Publication of JPS51129641A publication Critical patent/JPS51129641A/en
Publication of JPS5812811B2 publication Critical patent/JPS5812811B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 この発明は母線電流を厳密にかつ容易に測定できる装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that can accurately and easily measure bus current.

第1図は二重母線系統を示す系統図で1は母線、2は発
電機、3は負荷、4は母線連絡線、5は発電機2と母線
1又は負荷3と母線1を接続する接続線、6はしゃ断器
、7は断路器で各接続線5と母線1との接続点は母線1
を複数個の母線区間に区分する。
Figure 1 is a system diagram showing a double bus system. 1 is the bus, 2 is the generator, 3 is the load, 4 is the bus connection line, and 5 is the connection connecting the generator 2 and bus 1 or the load 3 and bus 1. line, 6 is a breaker, 7 is a disconnector, and the connection point between each connection line 5 and bus 1 is bus 1
is divided into multiple bus sections.

第1図において、系統運転中の負荷状態によっては特定
の母線区間のみが母線許容電流値を越える電流が流れ危
険な状態を招く恐れがあり全ての母線区間の電流値を監
視する必要があった。
In Figure 1, depending on the load condition during system operation, current exceeding the allowable bus current value may flow in only a specific bus section, causing a dangerous situation, so it was necessary to monitor the current value in all bus sections. .

上記の目的の為全ての母線区間にCTを設置し直接電流
値を計測することはいたずらに母線構成要素を複雑にす
るだけでありコスト上も好ましくない。
Installing CTs in all busbar sections to directly measure current values for the above purpose only unnecessarily complicates the busbar components and is not desirable in terms of cost.

従来有効電力潮流のみから電流値を演算計測する装置も
考えられているが、電力潮流が系統運転中に大きく変動
するような母線系統では力率を一定値とした簡易測定法
では正確な測定を期することが出来なかった。
Conventionally, devices have been considered that calculate and measure current values only from active power flow, but in bus systems where power flow fluctuates greatly during system operation, a simple measurement method with a constant power factor cannot provide accurate measurements. I couldn't wait.

この発明は上記の点を考慮し、各母線区間の全ての電流
を直接測ることなく各母線区間の電流を厳密に計測しよ
うとするものである。
This invention takes the above points into consideration and attempts to accurately measure the current in each bus section without directly measuring all the currents in each bus section.

第2図はこの発明の一実施例を示しており、ここでは説
明のため単母線系統に適用している。
FIG. 2 shows an embodiment of the present invention, which is applied to a single bus system for the sake of explanation.

なお二重母線系統等他の母線系統方式への適用の拡張も
全く容易に行なえる。
Furthermore, the application can be easily extended to other bus system systems such as a double bus system.

第2図において8は各接続線に設置された変流器CTで
、9は母線に設置された計器用変圧器PTである。
In FIG. 2, 8 is a current transformer CT installed on each connection line, and 9 is a voltage transformer PT installed on the bus bar.

CT8,PT9いずれも通常母線系統に設置されている
ものを利用出来る。
Both CT8 and PT9 that are normally installed in the bus system can be used.

10はPT9の出力と各接続線毎のCT8の出力から測
定される力率測定器、11はPT9の出力と各接続線毎
のCT8の出力から測定される有効電力測定器、12は
有効電力測定器11の出力と力率測定器10の出力から
無効電力を算出する無効電力変換装置、13,14はそ
れぞれ有効電力演算装置と無効電力演算装置、B1〜B
3は母線と各接続線との接続点によって区分された各母
線区間、L1〜L4は発電機2と母線1を接続する電源
線又は負荷3と母績1を接続する負荷線である。
10 is a power factor measuring device that measures from the output of PT9 and the output of CT8 for each connection line, 11 is an active power measuring device that measures from the output of PT9 and the output of CT8 for each connection line, and 12 is an active power A reactive power conversion device that calculates reactive power from the output of the measuring device 11 and the output of the power factor measuring device 10, 13 and 14 are active power calculation devices and reactive power calculation devices, respectively, B1 to B
Reference numeral 3 denotes each bus bar section divided by connection points between the bus bar and each connection line, and L1 to L4 are power lines connecting the generator 2 and the bus bar 1 or load lines connecting the load 3 and the bus line 1.

15は有効電力演算装置13と無効電力演算装置14の
出力から電流値を計算する実効電流演算装置である。
Reference numeral 15 denotes an effective current calculation device that calculates a current value from the outputs of the active power calculation device 13 and the reactive power calculation device 14.

以下の説明では母線での電力損失はないものとする。In the following explanation, it is assumed that there is no power loss in the bus bar.

今母線区間B2を流れる有効電力X2と無効電力Y2を
求めてみる。
Let us now calculate the active power X2 and reactive power Y2 flowing through the bus section B2.

接続線L2の無効電力Q2はその接続線の有効電力P2
と力率cosθ2から、 Q2=P2√1−coc2θ2/COSθ2 ・・・・
・・(1)で算出される。
The reactive power Q2 of the connection line L2 is the active power P2 of that connection line.
From the power factor cosθ2, Q2=P2√1−coc2θ2/COSθ2...
...Calculated using (1).

上記接続線L2と母線との接続点においてキルヒホッフ
の法則Iこより次の式が成立する。
At the connection point between the connection line L2 and the bus bar, the following equation holds true based on Kirchhoff's law I.

X2−X1−P2=P1−P2 ・・・・・・
(2)Y2=YI−Q2=Q1=Q2 ・・・
・・・(3)こ\にX1,X1は母線区間B1の有効電
力、無効電力、P1,Q1は接続線L1の有効電力、無
効電力、P2,Q2は接続線L2の有効電力.無,効電
力である。
X2-X1-P2=P1-P2...
(2) Y2=YI-Q2=Q1=Q2...
(3) Here, X1 and X1 are the active power and reactive power of the bus section B1, P1 and Q1 are the active power and reactive power of the connection line L1, and P2 and Q2 are the active power of the connection line L2. No, it is effective power.

上記Q1は(1)式に従いP1,cosθ1から算出さ
れる。
The above Q1 is calculated from P1 and cos θ1 according to equation (1).

次に母線に対し流入する有効電力.無効電力を正方向と
考え、(2)及び(3)式を一般化すると XK= Σ PJ ・・・・・
・(4)J二1 YK= Σ QJ ・・・・・
・(5)J=l QJ−=PJ 1−cos”&JンcosθJ ・−
・・−(6)が得られる。
Next is the active power flowing into the bus. Considering reactive power as positive direction and generalizing equations (2) and (3), XK= Σ PJ...
・(4) J21 YK= Σ QJ ・・・・・
・(5) J=l QJ−=PJ 1−cos”&J cosθJ ・−
...-(6) is obtained.

PJ,QJは母線の端から数えて第j番目の接続線の有
効電力及び無効電力、XK,YKは第K番目の母線区間
の有効電力及び無効電力、cosθJは第j番目の接続
線の力率である。
PJ, QJ are the active power and reactive power of the j-th connection line counting from the end of the bus, XK, YK are the active power and reactive power of the K-th bus section, and cos θJ is the force of the j-th connection line. rate.

(4)式及び(5)式は、「任意の母線区間の有効電力
、無効電力はその母線区間の一端に至るまでの全て?接
続線の有効電力、無効電力の代数和である」ことを意味
している。
Equations (4) and (5) mean that "the active power and reactive power of any bus section are all the power up to one end of that bus section? They are the algebraic sum of the active power and reactive power of the connecting line." It means.

従って各母線区間の有効電力及び無効電力はそれらを直
接測定することなく各接続線の有効電力及び力率の測定
値を上記無効電力変換装置、有効電力演算装置及び無効
電力演算装置に入力することにより演算測定することが
できる。
Therefore, the active power and reactive power of each busbar section should not be measured directly, but the measured values of the active power and power factor of each connection line should be input to the above-mentioned reactive power converter, active power calculation device, and reactive power calculation device. It can be calculated and measured by

次Iこ第2図において三和母線でかつ母線電圧が全ての
母線区間で等しいとすると、第k番目の母線区間の電流
IKは次の(6)式で与えられる。
Next, in FIG. 2, if it is a Sanwa bus and the bus voltage is equal in all bus sections, the current IK in the k-th bus section is given by the following equation (6).

J『F丁〒1T IK= ・・・・・・(6) J『W こゝは■は母線電圧である。J “F-cho〒1T IK=・・・・・・(6) J'W Here ■ is the bus voltage.

以上で各母線区間の電流値を求めることができる。With the above steps, the current value of each bus section can be determined.

この発明によれば各母線区間の有効電力と無効電力から
演算により電流値を算出している為系統運転中のいかな
る母線潮流に対しても常に正確な電流値を計測できる。
According to this invention, since the current value is calculated by calculation from the active power and reactive power of each bus section, it is possible to always accurately measure the current value for any bus power flow during system operation.

等に上記各接続線には有効電力測定器及び力率測定器が
設置される場合が多いから、この発明はコストの面から
も適用の効果は大きい。
Since an active power measuring device and a power factor measuring device are often installed on each of the above-mentioned connection lines, the present invention is highly effective in terms of cost.

上記の説明のようにこの発明では、各母線区間の有効電
力及び無効電力を各接続線の有効電力及びその有効電力
と力率から計算した無効電力の代数和に基づき算出する
ようにしたので、各母線区間にCTを設置して直接計測
する必要がなく母線構成を複雑にしないで任意の母線区
間の電流値を計測することができる。
As explained above, in this invention, the active power and reactive power of each bus section are calculated based on the active power of each connection line and the algebraic sum of the reactive power calculated from the active power and power factor. There is no need to install a CT in each busbar section to directly measure the current value, and the current value in any busbar section can be measured without complicating the busbar configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二重母線系統を示す系統図、第2図はこの発明
の一実施例を示す系統図であり、図において1は母線、
2は発電機、3は負荷、6はしゃ断器、8は変流器(C
T)、9は計器用変圧器(PT)、10は力率測定器、
11は有効電力測定器、12は無効電力変換装置、13
は有効電力演算装置、14は無効電力演算装置、15は
実効電流演算装置、L1〜L4は接続線、B1〜B3は
母線区間を示す。 なお各図中同一符号は同一又は相当部分を示す。
Fig. 1 is a system diagram showing a double bus system, and Fig. 2 is a system diagram showing an embodiment of the present invention.
2 is a generator, 3 is a load, 6 is a breaker, 8 is a current transformer (C
T), 9 is a potential transformer (PT), 10 is a power factor measuring device,
11 is an active power measuring device, 12 is a reactive power converter, 13
14 is an active power calculation device, 14 is a reactive power calculation device, 15 is an effective current calculation device, L1 to L4 are connection lines, and B1 to B3 are busbar sections. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 母線と電源又は母線と負荷をそれぞれ接続する接続
線、母線と上記各接続線との接続点によって区分された
母線区間、上記各接続線を流れる電力潮流の大きさと方
向を測定する有効電力測定器、上記各接続線を流れる電
力潮流の力率を測定する力率測定器、上記有効電力測定
器と力率測定器の出力から各接続線を流れる無効電力の
大きさと方向を算出する無効電力変換装置、上記母線の
一端の区間の有効電力とその区間の他端の接続線の有効
電力の代数和をとり、この代数和と上記母線区間の次の
母線区間の他端の接続線の有効電力の代数和をとり、以
下順次その次の母線区間の他端の接続線の有効電力との
代数和をとる有効電力演算装置、上記母線の一端の区間
の無効電力とその区間の他端の接続線の無効電力の代数
和をとり、この代数和と上記母線区間の次の母線区間の
他端の接続線の無効電力の代数和をとり、以下順次その
次の母線区間の他端の接続線の無効電力との代数和をと
る無効電力演算装置、上記の有効電力演算装置及び無効
電力演算装置の出力から電流の大きさを計算する実効電
流演算装置を備え、所定母線区間の電流値をその区間の
一端に至るまでの接続線の有効電力の代数和及び無効電
力の代数和に基づいて演算測定するようにした母線電流
測定装置。
1 Active power measurement that measures the size and direction of the power flow flowing through the connection lines that connect the bus and the power supply or the bus and the load, the bus section divided by the connection points between the bus and each of the above connection lines, and each of the above connection lines. A power factor measuring device that measures the power factor of the power flow flowing through each of the above connection lines, and a reactive power that calculates the magnitude and direction of the reactive power flowing through each connection line from the outputs of the above active power measurement device and power factor measurement device. The converter calculates the algebraic sum of the active power of the section at one end of the bus bar and the active power of the connecting line at the other end of that section, and calculates the algebraic sum and the effective power of the connecting line at the other end of the next bus section of the bus bar section. An active power calculation device that calculates the algebraic sum of the power and then sequentially calculates the algebraic sum of the active power of the connection line at the other end of the next bus section, and the reactive power of the section of one end of the bus bar and the active power of the other end of that section. Calculate the algebraic sum of the reactive power of the connecting line, and calculate the algebraic sum of this algebraic sum and the reactive power of the connecting line at the other end of the next bus section of the above bus section, and then sequentially calculate the connection at the other end of the next bus section. It is equipped with a reactive power calculation device that takes an algebraic sum with the reactive power of the line, and an effective current calculation device that calculates the magnitude of the current from the outputs of the above-mentioned active power calculation device and reactive power calculation device, and calculates the current value in a predetermined bus section. A bus current measuring device that performs calculation and measurement based on the algebraic sum of active power and the algebraic sum of reactive power of a connecting line up to one end of the section.
JP50053583A 1975-05-02 1975-05-02 Bosenden Ryuusokutei Souchi Expired JPS5812811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50053583A JPS5812811B2 (en) 1975-05-02 1975-05-02 Bosenden Ryuusokutei Souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50053583A JPS5812811B2 (en) 1975-05-02 1975-05-02 Bosenden Ryuusokutei Souchi

Publications (2)

Publication Number Publication Date
JPS51129641A JPS51129641A (en) 1976-11-11
JPS5812811B2 true JPS5812811B2 (en) 1983-03-10

Family

ID=12946857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50053583A Expired JPS5812811B2 (en) 1975-05-02 1975-05-02 Bosenden Ryuusokutei Souchi

Country Status (1)

Country Link
JP (1) JPS5812811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124016U (en) * 1986-01-31 1987-08-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124016U (en) * 1986-01-31 1987-08-06

Also Published As

Publication number Publication date
JPS51129641A (en) 1976-11-11

Similar Documents

Publication Publication Date Title
US20050200364A1 (en) Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
RU2580934C1 (en) Method and device for identification of short circuit by means of differential current protection
JPH0656402B2 (en) Method and device for identifying ground fault location
Ghijselen et al. Exact voltage unbalance assessment without phase measurements
US9488682B2 (en) Method for determining power consumption of loads in ungrounded power distribution systems
KR20190076794A (en) Apparatus for measuring current error of mof
JPS5812811B2 (en) Bosenden Ryuusokutei Souchi
US11327105B2 (en) Fault location in multi-terminal tapped lines
JP3167620B2 (en) Harmonic outflow evaluation device
CN106026155A (en) Flexible DC convertor station small interference impedance equivalence method
JPS5812812B2 (en) Bosenden Ryuusokutei Souchi
US20210382097A1 (en) Three-phase power meter monitoring for star and delta configurations
JPS6019492Y2 (en) ground fault distance relay
JPH0373825B2 (en)
JP4752006B2 (en) Three-phase three-wire load simulator
JP7255384B2 (en) Three-phase load distribution method and unbalanced voltage calculation method
JPS6357739B2 (en)
JP2004333418A (en) Transmission line current detection device
Baghzouz et al. Q-hour meter performance under unbalanced voltage supply
CN106099967A (en) The equivalent circuit of flexible direct current converter station little interference impedance
JP2005201854A (en) Electric power measurement method and apparatus
Wath et al. Design of standard revenue energy meter for electrical locomotive (Railway traction)
JP6656009B2 (en) Power measuring device and power measuring method
JPH0381105B2 (en)
JP4333539B2 (en) Three-phase power measurement method and three-phase power measurement device