JPS58128107A - Separating or concentrating method for liquid mixture - Google Patents

Separating or concentrating method for liquid mixture

Info

Publication number
JPS58128107A
JPS58128107A JP843082A JP843082A JPS58128107A JP S58128107 A JPS58128107 A JP S58128107A JP 843082 A JP843082 A JP 843082A JP 843082 A JP843082 A JP 843082A JP S58128107 A JPS58128107 A JP S58128107A
Authority
JP
Japan
Prior art keywords
liquid mixture
membrane
temperature
separating
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP843082A
Other languages
Japanese (ja)
Inventor
Shuji Yoshida
周二 吉田
Eiichi Mizutani
水谷 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Kakohki Coltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Chuo Kakohki Coltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Chuo Kakohki Coltd filed Critical Showa Denko KK
Priority to JP843082A priority Critical patent/JPS58128107A/en
Publication of JPS58128107A publication Critical patent/JPS58128107A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate or concentrate liquid mixtures by controlling the temp. of the liquid mixtures in sections which use polymer membranes in many stages and separate or concnetrate said mixtures by means of the respective polymer membranes in a prescribed temp. range. CONSTITUTION:For example, 10 pieces each of membrane separating units V1- Vn and heat exchangers H1-Hn are connected in series, and the pressures of primary sides of the units V1-Vn are maintained at 760Torr and the pressures of secondary sides at 150Torr with a vacuum pump 4. The heat exchangers H1-Hn are put in a thermostatic bath of about 70 deg.C to maintain the outlet temp. t1 thereof at about 65 deg.C. When 94wt% aq. ethanol soln. M is supplied from a tank 1 with a pump 2 to the units V1-Vn and the heat exchangers H1- Hn the aq. ethanol soln. concd. to about 95wt% is obtained in a tank 5a and 90.7wt% aq. ethanol soln. is obtained in a tank 5b.

Description

【発明の詳細な説明】 本発明は、液体混合物を高分子膜を用いたパーベーパレ
ーションによシ分離又は濃縮する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating or concentrating a liquid mixture by pervaporation using a polymer membrane.

液体混合物を非多孔質高分子膜の一次側(高圧備)に供
給し、二次側C低圧側)に透過させるととくよシ膜を透
過し易い物質の濃度を一次側より高くして液体混合物の
成分を分離又は濃縮する方法は、パーベーパレーション
(P@rvaporaHon)プロセスと呼ばれ以前か
ら知られている。
When a liquid mixture is supplied to the primary side (high pressure equipment) of a non-porous polymer membrane and permeated to the secondary side C (low pressure side), the concentration of substances that easily permeate through the membrane is made higher than that on the primary side. The method of separating or concentrating the components of is called the pervaporation (P@rvaporaHon) process and has been known for a long time.

王妃パーペレーションプロセスは、従来、簡単な方法で
は分離できない液体混合物、例えば共沸混合物或いは比
揮発*0小さい混合物等を分離又は濃縮する方法、更に
は蒸溜のように多大のエネルギーを必要とする分離又は
濃縮の方法とは別個の省エネルギータイプの方法として
、その原理が注目を浴びている。
The queen perturbation process is a conventional method for separating or concentrating liquid mixtures that cannot be separated by simple methods, such as azeotropic mixtures or mixtures with low specific volatility*0, and also separations that require a large amount of energy such as distillation. Also, its principle is attracting attention as an energy-saving type method separate from the concentration method.

通常、パーベーパレーションには、ホリエチレン、ポリ
プロピレン、ポリスチレン、ポリテトラフルオロエチレ
ン、ボリア2ド、セルa−ヌ系高分子等又はこれらの共
重合体から作られ九非多孔質高分子展が使用されて込る
。を禽、−次側圧力としては0.01〜100 #/l
sa ” abs、二次側圧力としては一次側圧力よ)
低く、かつ処理する液体混合物の操作温度Kかける飽和
蒸気圧より低い圧力が採用される。
Normally, non-porous polymers made from polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, boria 2, Cel-A-N polymers, etc. or copolymers thereof are used for pervaporation. It's crowded. The next pressure is 0.01 to 100 #/l
sa ” abs, the secondary pressure is the primary pressure)
A pressure that is low and below the operating temperature K times the saturated vapor pressure of the liquid mixture to be treated is employed.

ところで、上記パーベーパレーション法により液体混合
物を分離又は濃縮する方法にはその工業的使用(XFI
Iがなく、工業的に使用するためには以下のような技術
的課題を鱗決しなければならない。
By the way, the method of separating or concentrating a liquid mixture by the pervaporation method has its industrial use (XFI
There is no I, and in order to use it industrially, the following technical issues must be determined.

パーベーパレーション法により液体混合物の分離又は濃
縮を行なう場合にシいて必要とする膜面積の大きさは、
膜の分離係数αABと単位時間に態位lIw積を透過す
る蒸気量で示される透過速度Q (P/sa”hr )
 K!ツテ決ル。(l、+ms数αABは、液体混合物
Oム、B成分の膜透過帥にシける重量割合をム1.11
 とし、膜透過後の重量割合をム2% B2  とする
と 土9 ムlBz α””    t=Ir■「 で示される。
The size of the membrane area required when separating or concentrating a liquid mixture by the pervaporation method is:
The permeation rate Q (P/sa”hr) is expressed by the separation coefficient αAB of the membrane and the amount of vapor that permeates the attitude lIw product per unit time.
K! Tute decision. (l, +ms number αAB is the weight ratio of the liquid mixture Om, B component to the membrane permeation.
If the weight percentage after permeation through the membrane is 2% B2, it is expressed as 9 mlBz α""t=Ir■".

上記αAB  とQが大きい程必要とする膜面積は小さ
くてすむ。上記αAB  とQは膜透過前の液体混合物
の温11  と−次側圧力P1、二次側圧力P、 Kよ
って変化する。通常、α五Bはtl が低い程大きくな
り、Qはtl が高い程大きくなる。
The larger the above αAB and Q, the smaller the required membrane area. The above αAB and Q vary depending on the temperature 11 of the liquid mixture before membrane permeation, the downstream pressure P1, and the secondary side pressures P and K. Normally, α5B becomes larger as tl is lower, and Q becomes larger as tl is higher.

tたs P2 / Pt  が小さい程Qは大きくなる
。しかしP、/P1が小さくなると蒸気吸引に要する動
力が増大するとともに、P2 が小さくなると透過蒸気
の凝縮Il[が低くなり、これを回収するための冷凍機
が必要となる可能性がある。従って工業的使用に際し最
も経済的にパーベーパレーション法を行うには、高分子
膜と液体混合物の組合せに対して適正な液体混合物温f
t□を設定し、これに俸い一次圧力P シよび二次圧力
P、を選定すす る必要がある。
The smaller P2/Pt is, the larger Q becomes. However, as P and /P1 become smaller, the power required for steam suction increases, and as P2 becomes smaller, the condensation Il of the permeated vapor becomes lower, and a refrigerator may be required to recover it. Therefore, in order to carry out the pervaporation method most economically for industrial use, it is necessary to set an appropriate liquid mixture temperature f for the combination of the polymer membrane and the liquid mixture.
It is necessary to set t□ and select the primary pressure P and the secondary pressure P based on this.

tた、パーベーパレーション法は本質的KIsを伴うO
で、−次側の液温度は透過し九蒸気の蒸発潜熱に見合う
分低下する。このため−次側液体混合物は適正な温度に
保持されない。し九がって、単に膜の一次側Kfi合液
を供給し、二次側を低圧トシたのみでは、パーベーパレ
ーション法による工業的使用に際し、経済的な液体混合
物の分離又は濃縮が行なわれない不都合を生ずる。
In addition, the pervaporation method involves O
Then, the temperature of the liquid on the negative side decreases by an amount corresponding to the latent heat of vaporization of the vapor that passes through. As a result, the downstream liquid mixture is not maintained at the correct temperature. Therefore, by simply supplying the Kfi mixture on the primary side of the membrane and applying low pressure to the secondary side, it is not possible to economically separate or concentrate the liquid mixture for industrial use by the pervaporation method. This will cause unnecessary inconvenience.

更に高分子1IIKおける透過速fQは一般に最大5.
00017m”br ill!であ1工業的規模の処理
量を得るには単一〇エニットの高分子膜のとり得る膜面
積には眼界があ抄、分離係数αAn  も高々10であ
り単一のエエットによっては、液体混合物の分離又は濃
縮には不十分であり九。
Furthermore, the permeation rate fQ in polymer 1IIK is generally a maximum of 5.
In order to obtain an industrial-scale throughput with 00017m"br ill!, the possible film area of a single 〇enit polymer film has a limited optical range, and the separation coefficient αAn is at most 10, and a single 〇enit polymer membrane has a limited area. In some cases, it may be insufficient for separating or concentrating liquid mixtures.

本発明は上記の事情に鑑み、パーベーパレーション法の
工業的使用を可能にし、常に最適操作桑件下で効率よく
、経済的な液体混合物の分離又は濃縮を行なう方法を提
供するものであって、多段階に使用する高分子膜によ染
分離又は濃縮する部分にシける液体混合物の温度を所定
の温度範囲に ′関節することを特徴とする方法である
In view of the above-mentioned circumstances, the present invention enables industrial use of the pervaporation method and provides a method for efficiently and economically separating or concentrating a liquid mixture under optimal operating conditions at all times. This method is characterized in that the temperature of the liquid mixture discharged into the dye separation or concentration section is adjusted to a predetermined temperature range using a polymer membrane used in multiple stages.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

第1図は、本発明に係る液体混合物の分離又は濃縮方法
に用いられる装置の基本フローを示す外熱型itの概略
工糧図である。1uet”Do原料液体温合−Mは、タ
ンク1よりポンプ2によって圧送される。圧送された原
料液体混合物Mは、ラインa0  を通って熱交換器H
1に導入され、tl ℃まで昇温され食後、ラインミニ
 を通って纂1膜分離ユニットv、の一次側に導入され
る。分離5−エツトviの一次側の圧力は、ポンプ2に
よってpbIil鶴Hg abs K保持され、二次側
は、凝縮器3を介して真空ポンプ4によって減圧されP
M 2 W Hx*’bsに保持されている。この場合
凝縮器3にかいて捕集された液はタンク5bK貯奮れる
ようになっている。第1分離エニツ)V  Kシいて高
分子膜s1を透過して透過し易い成分が濃くなった蒸気
は、ラインd・: より導出される。一方膜l111 
 を透過しにくい成分が濃縮された液体混合物は、ライ
ンb0よシ排出される。このラインb1  より排出さ
れた液体混合物のamは、膜賜、を透過した蒸気の蒸発
着熱により降温され%t、”0となる。次いでラインb
1(D液体混合−は、熱交換@H,によ〉纂1膜分離3
−ニットVO人ロ液−at1 tで加熱l されラインa より第2膜分離エニットv2 に導冨 入される。 V、 Kシルてもvl  と同じようにし
て膜s3 を透過しにくい成分に富んだ混合液が温度t
、となってラインb、よシ出る。これを順次繰返し、膜
分離エエットVnの出口ラインbnから膜語□〜−を透
過しにくい成分が濃縮され、タンク5ail的の製品が
取出される。を九、各膜分離エニット、v (v□、v
、 −Vn)  の二次側に@襲(鶴1、wh、 −m
611)を透過した、膜を透過し易い成分が濃縮され九
蒸気は、凝縮II3によって捕集され、凝縮タンク5b
に貯留される。
FIG. 1 is a schematic diagram of an external heating type IT showing the basic flow of the apparatus used in the method for separating or concentrating a liquid mixture according to the present invention. 1uet"Do raw material liquid mixture M is pumped from tank 1 by pump 2. The pumped raw material liquid mixture M passes through line a0 to heat exchanger H.
After being heated to tl°C, the membrane is introduced into the primary side of the membrane separation unit v through the line mini. The pressure on the primary side of the separation 5-et VI is maintained by the pump 2, and the pressure on the secondary side is reduced by the vacuum pump 4 via the condenser 3.
It is held in M 2 W Hx*'bs. In this case, the liquid collected in the condenser 3 is stored in a tank 5bK. The vapor that has passed through the polymer membrane s1 and is enriched with easily permeable components is led out through line d. On the other hand, the membrane l111
The liquid mixture, which is enriched with components that are difficult to pass through, is discharged through line b0. The temperature of the liquid mixture discharged from line b1 is lowered to %t, 0 due to the heat of evaporation of the vapor that has passed through the membrane.
1 (D liquid mixing is done by heat exchange @H) 1 Membrane separation 3
- Knit VO liquid - heated with at1 t and introduced into the second membrane separation enit v2 from line a. In V and K sils, in the same way as vl, a mixed liquid rich in components that are difficult to pass through the membrane s3 is heated to a temperature t.
, and line b comes out. This is repeated one after another, and the components that are difficult to pass through the membranes are concentrated, and the product in the tank 5ail is taken out from the outlet line bn of the membrane separation unit Vn. 9, each membrane separation enit, v (v□, v
, -Vn) on the secondary side @ attack (Tsuru 1, wh, -m
611), the components that are easily permeable through the membrane are concentrated, and the vapor is collected by condenser II3 and sent to condensation tank 5b.
is stored in

膜分離シニツ)Vl、V、−・1− 優々の温度をV□
+Vz +−◆vnO必要展面積ができるだけ小となる
最適温l!に近−範囲に調節することに本発明の要点が
ある。この最適温度は所望の濃縮又は分離O@度、α、
Q1設備費およびランニングコメ)0比較の上で設計的
に選択されるものであり、一義的ではないが、要はvl
、V、 −Vn  個々のamが、ζ01Lfよp大き
く外t′Lないように便宜的KQを大きくとるために、
使用可能な高い温度、すなわち膜の最高使用温度又は液
体混合物を沸騰させない程度の高い温度等を採用するこ
とができる。
Membrane separation) Vl, V, -・1- The superior temperature is V□
+Vz +-◆vnO Optimum temperature l at which the required expansion area is as small as possible! The key point of the present invention is to adjust to a range close to . This optimum temperature is the desired concentration or separation O@degrees, α,
Q1 equipment cost and running cost) It is selected based on the design based on the comparison, and is not unambiguous, but the point is that vl
, V, -Vn In order to take a large expedient KQ so that each am is not p larger than ζ01Lf,
A high usable temperature can be employed, such as the maximum working temperature of the membrane or a temperature as high as not to boil the liquid mixture.

上記嘆分離エニツ)Vl、V、・V、  の入口温rI
/lt1 および出口温1ft、は、tl−t、 xΔ
jとした場合最適膜分離装置内温度t op に対しt
−1+″t/、t−t−′!′t/、に1  0p  
  2   2  0p設定される。また、各膜分離装
@V1、V、 −V。
Inlet temperature rI of Vl, V, ・V,
/lt1 and outlet temperature 1ft, is tl-t, xΔ
j, then t for the optimum temperature inside the membrane separator t op
-1+''t/, t-t-'!'t/, 1 0p
2 2 0p is set. In addition, each membrane separation device @V1, V, -V.

のそれぞれの膜s、 、s、−・−の膜面積を、そこで
の蒸発による液体混合物・の*を低下がΔtとなるよう
な大きさとする。さらに各熱交換器H1、へ・・・馬で
の上昇温度がΔtとなるように調節することくよシ膜分
離エエットV1、V、−Vnの入口、出口における液体
混合物の温度はそれぞれt工〜t2  の関すな、やち
to、±″t/2  に保九れる、したがって、全膜分
離エニク)Vl、V。
Let the membrane area of each membrane s, , s, --- be so large that the decrease in * of the liquid mixture due to evaporation there is Δt. Furthermore, the temperature of the liquid mixture at the inlet and outlet of the membrane separation units V1, V, -Vn is adjusted so that the temperature increase at each heat exchanger H1, H1, etc. becomes Δt. ~t2 is maintained at ±''t/2, therefore, the total membrane separation efficiency) Vl, V.

・・・V は、最適iit to、  を中心として操
作され、エネルギー的にも装置的にも最も経済的な分離
又は―縮が可能となる。
...V is operated around the optimum iit to, which enables the most economical separation or reduction in terms of energy and equipment.

上記Δtは、大きく覗〉過ぎるとαムB%Qが最適値よ
シ大きく外れ、必要とする膜面積が大きく1に!t%小
さく取)過ぎると全体の膜面積は最小値に近ずく、シか
して、膜分離エニットv□、■2−vnシよび熱交換器
H1、H,−H,、の段数nが大きくなシかえって不経
済となる。通常Δtは1〜30℃、好ましくは3〜20
℃である。
If the above Δt is too large, αmB%Q will deviate greatly from the optimum value, and the required membrane area will increase to 1! If t% is too small, the total membrane area approaches the minimum value, and as a result, the number of stages n of membrane separation units v□, ■2-vn and heat exchangers H1, H, -H, . A large scale would actually be uneconomical. Usually Δt is 1 to 30°C, preferably 3 to 20°C
It is ℃.

−次側の圧力P1 は、41に低圧でない限シ膜分離能
にあまbilI与しないので操作性によシ決定され、通
常0〜10kg7cm ” Gl!fである。二次側の
8E力P、は、一般的に小さい程Qが大きくなり、膜と
液体混合物の組合せによってはαも大きくなるので好し
いが、透過蒸気の凝縮tC1?ける経済性シエび減圧動
力費をも考慮して決められる。例えば水10/エタノー
ル90の透過蒸気は、20℃にシいて50 Torr 
olK気圧を示し、40℃において150 Torrで
あるので、工業用水にて冷却する方が経済的であればP
2は150 Torr V(とどめるのが得策である。
- The pressure P1 on the downstream side is determined by the operability since it does not affect the membrane separation ability unless it is at a low pressure, and is usually 0 to 10kg7cm'' Gl!f.8E force P on the secondary side, In general, the smaller Q is, the larger Q becomes, and depending on the combination of membrane and liquid mixture, α also becomes larger, so it is preferable, but it is determined by taking into account the economical efficiency of condensing the permeated vapor tC1? and the decompression power cost. For example, permeated vapor of 10 parts water/90 parts ethanol is heated to 50 Torr at 20°C.
olK pressure is 150 Torr at 40℃, so if it is more economical to cool with industrial water, P
2 is 150 Torr V (it is a good idea to keep it at a maximum of 150 Torr V).

上記外熱型膜分離装置に用いる膜分離具ニットVとして
は、非多孔性高分子膜をスパイラルに轡いたスパイラル
臘、膜によりプレートフレームを形成し、これを重ね合
せたプレートフレーム濾等があるが最も代表的なものは
、中空糸型である。
Examples of the membrane separator knit V used in the above-mentioned externally heated membrane separator include a spiral lug in which a non-porous polymer membrane is wrapped in a spiral, a plate frame filter in which a plate frame is formed by the membranes, and these are stacked one on top of the other. The most typical type is the hollow fiber type.

中空糸型は、第2図に示すようにポリエチレン等の非多
孔質高分子の中空糸6を多数束ね胴7に入れ、両側に中
空糸6を連通するi18を設けた40である。通常、連
通側を1次側とし原料を導入管9よシ圧入し、導出管1
01り抜出し、膜を透過し次蒸気は、排出管11よシ抜
き出している。
The hollow fiber type is 40, as shown in FIG. 2, in which a large number of hollow fibers 6 made of a non-porous polymer such as polyethylene are bundled together in a barrel 7, and i18 are provided on both sides to communicate the hollow fibers 6. Normally, the communication side is the primary side, and the raw material is press-fitted into the inlet pipe 9, and the outlet pipe 1
The vapor that passes through the membrane is extracted through the exhaust pipe 11.

ま九、熱交換器としては、あらゆるものが使用できるが
、通常シェル、チェープ臘が簡便である。
Any type of heat exchanger can be used, but shells and chain tubes are usually convenient.

また、第3図は、本発明の方法を実施する内熱型の膜分
離装置を示す概略図である。液体混合物と蒸気の流れは
纂1図の外熱渥と本質的に同じであ抄同一部分には同一
符号が付しである。この場合第1図の熱交換器Hよ、H
,−、%  に相当するり、 、h、−hn  は、そ
れぞれの膜分離エエットV1、V、 、−V、  の−
次側に内蔵されている。原料タンク10原料液体温舎物
Mはポンプ2によってライン11 によ)膜分離ユニッ
トv0 の−次側に導入される。膜部□ を透過し易い
成分に富んだ蒸気はラインd1  より排出され、@1
w11  を透過しにくい成分に富んだ混合液はライン
a、を経て、膜分離ユニットv2の一次側に供給される
。これを順次繰返見し、出口ライン’n+”11から目
的とする膜を透過しにくい酸分濃度の製品が取出される
。この場合各膜分離纂ニッ)V□、v、・−vnの一次
側には、熱交換器h1%  h、 ・hn  が内蔵さ
れでいるので、前記Δtは段数nの割には小さくとヤえ
、最適操作ILlll!に近い範囲に保たれるので、外
熱11に比して効率のよい分離が可能となる。
Furthermore, FIG. 3 is a schematic diagram showing an internal heating type membrane separation apparatus for carrying out the method of the present invention. The flow of the liquid mixture and vapor is essentially the same as in the external heat exchanger shown in Figure 1, and the same parts are given the same reference numerals. In this case, the heat exchanger H in Figure 1, H
, -, %, , h, -hn are - of the respective membrane separation units V1, V, , -V, -
Built in on the next side. The raw material liquid temperature room M from the raw material tank 10 is introduced into the downstream side of the membrane separation unit v0 via the line 11 by the pump 2. Steam rich in components that easily permeate through the membrane part □ is discharged from line d1,
The mixed liquid rich in components that are difficult to pass through w11 is supplied to the primary side of membrane separation unit v2 via line a. This is repeated in sequence, and a product with an acid concentration that is difficult to pass through the target membrane is taken out from the exit line 'n+''11. Since the primary side has a built-in heat exchanger h1% h, ・hn, the above Δt is small compared to the number of stages n, and is kept within a range close to the optimum operation ILllll!, so that external heat This enables more efficient separation compared to No. 11.

上記内熱型に使用される膜分離ユニットは、前記中空条
束の一部を熱交換器としたもの或いはプレートフレーム
渥のもの等がある。
The membrane separation unit used in the above-mentioned internal heating type includes one in which a part of the hollow strip bundle is used as a heat exchanger, or one in which a plate frame is used.

代表例としてlI4111に熱交換プレートを内蔵した
プレートフレームI!O膜分離ユニットを示す。
A typical example is the plate frame I with a built-in heat exchange plate in lI4111! An O membrane separation unit is shown.

図中9杜、原料混合液の導入管、10は導出管で原料液
体混合物は、−次側91を通過する間に透過し易い成分
が高分子膜鶴を通過して二次側11mに入り蒸気の排出
管11XF)凝縮器3に導かれる。また熱媒は、熱媒導
入管12により導入され、熱交換プレート14を介して
一次側91の混合液を加熱してこれを所定の温度に保持
し、導出管13より導出される。
In the figure, 9 is an inlet pipe for the raw material mixture, 10 is an outlet pipe, and while the raw material liquid mixture passes through the negative side 91, components that are easily permeable pass through the polymer membrane and enter the secondary side 11m. Steam exhaust pipe 11XF) is led to the condenser 3. The heat medium is introduced through the heat medium introduction pipe 12, heats the mixed liquid on the primary side 91 via the heat exchange plate 14, maintains it at a predetermined temperature, and is led out through the discharge pipe 13.

また、第5図は、第1図又は$1!3図で示した膜分離
ユニットv1〜vnをシリーズに並べて構成され鳩分離
装置をさらに並列に組合せた装置の図である。上記装置
において、膜分離ユニットはnxm個となる。
Moreover, FIG. 5 is a diagram of an apparatus in which the membrane separation units v1 to vn shown in FIG. 1 or $1!3 are arranged in series, and a pigeon separator is further combined in parallel. In the above apparatus, the number of membrane separation units is nxm.

1′3 すなわちV−V:V”〜V 2.、、V−〜v1となn
InIn す、任意面積の任意段数の膜分離装置が得られる。
1'3 That is, V-V:V"~V 2.,,V-~v1 and n
With InIn, a membrane separation device having an arbitrary area and an arbitrary number of stages can be obtained.

次に実施例を示し本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施ガ1 膜分離装置としては、第1図に示す外熱式を用いた。Implementation Ga 1 As the membrane separator, an external heating type shown in FIG. 1 was used.

また膜分離ユニットは、膜の厚さ120μ、内径III
jIlψ、有効長さ405Iのナフィオン膜50本を1
12図のように構成して用いた。また、熱交換器は内径
4態のステンレス管ISをスパイラル状に巻き、恒温槽
に浸漬して用いた。
In addition, the membrane separation unit has a membrane thickness of 120μ and an inner diameter of III.
jIlψ, 50 Nafion membranes with an effective length of 405I are
It was configured and used as shown in Figure 12. Further, the heat exchanger was a stainless steel tube IS with four inner diameters wound in a spiral shape and immersed in a constant temperature bath.

上記分離ユニットと熱交換器各10個を謳1図のように
シリーズに接続し、上記膜分離エニン)V□〜V□。の
−次側圧力を76OTorrb二次側を真空ポンプ4に
!p150TorrK保持した。また、熱交換器H8〜
■、。は、フO℃の恒温槽につけそれぞれの熱交換器へ
〜H1゜の出口温度t1 を65℃に保持し友。
The above separation units and 10 heat exchangers each are connected in series as shown in Figure 1, and the above membrane separation units) V□ to V□ are obtained. 76OTorrb secondary side to vacuum pump 4! p150TorrK was retained. In addition, heat exchanger H8~
■,. The samples were placed in a constant temperature bath at 0°C and the outlet temperature t1 of ~H1° to each heat exchanger was maintained at 65°C.

上記装置を用い、94wt1Gのエタノール水溶液を原
料液体混合−Mとしてタンク1に入れ原料ポンプ2によ
って毎時2.2mの割合で膜分離装置Vに供給した。各
膜分離ユニットVユ〜v1゜の入口温ft、は各熱交換
@It1〜H1゜によシロ5℃に保九れたが、各膜分離
エニン)V□〜v8゜の出口温11.は約17℃低下し
約48℃であつ九。
Using the above apparatus, 94wt1G of ethanol aqueous solution was put into tank 1 as raw material liquid mixture-M, and supplied to membrane separation apparatus V at a rate of 2.2 m/hour by raw material pump 2. The inlet temperature ft of each membrane separation unit V□~v1° was kept at 5°C by each heat exchange @It1~H1°, and the outlet temperature of each membrane separation unit V□~v8° was kept at 5°C. The temperature decreased by about 17 degrees Celsius and reached about 48 degrees Celsius.

タンクSmには、98vt  −まで濃縮されたエタノ
ール水溶液が1#/hrで得らへ凝−液タンクsbには
9G、’!−れ 慢の凝縮エタノール水溶液が1−2#
/hro割會で回収された。
In the tank Sm, an aqueous ethanol solution concentrated to 98vt is obtained at a rate of 1 #/hr, and in the condensate tank sb, 9G,'! -The condensed ethanol aqueous solution is 1-2#
It was collected at the /hrowari meeting.

実施例2 膜分離装置として% $1411に示すような熱交換部
内蔵のプレートフレーム製膜分離ユニットを用いた。こ
の膜分離ユニットは、10cm  の膜厚130μのナ
フィオン膜33枚と10clI の板厚11131のス
テンレス製熱交プレート17枚より成っている。また、
−次側圧力は760 Torr %二次側圧力を50 
Torrに保ち、排出膜透過蒸気は凝縮器3により10
℃で凝縮捕集した。膜分離ユニットの一次側液温廖は、
ステンレス熱交換部に70℃の温水を流して60℃に保
持した。
Example 2 A plate frame membrane separation unit with a built-in heat exchange unit as shown in % $1411 was used as a membrane separation device. This membrane separation unit consisted of 33 Nafion membranes of 10 cm 2 and a thickness of 130 μm and 17 stainless steel heat exchanger plates of 10 clI and a thickness of 11131 μm. Also,
- Outlet pressure is 760 Torr % Outlet pressure is 50 Torr
Torr is maintained, and the vapor permeated through the exhaust membrane is transferred to the condenser 3 at a temperature of 10 Torr.
It was condensed and collected at ℃. The primary liquid temperature of the membrane separation unit is
70°C hot water was flowed through the stainless steel heat exchanger to maintain the temperature at 60°C.

上記装置に60 wt I6のイソプロピルアルコール
水溶液を160P/hr の割合で膜分離装置に供給し
たところ、82wt%まで濃縮されたイソプロピルアル
コール水溶液が100P/hr の割合で得られ、凝縮
蒸気として23wt%のイソプロピルアルコール水溶液
が60P/hr の割合で得られ九。
When an isopropyl alcohol aqueous solution of 60 wt I6 was supplied to the membrane separator at a rate of 160 P/hr, an isopropyl alcohol aqueous solution concentrated to 82 wt% was obtained at a rate of 100 P/hr, and 23 wt% of condensed vapor was obtained. An aqueous isopropyl alcohol solution was obtained at a rate of 60 P/hr9.

実施fP43 ステンレス熱交プレートに50℃の温水を流して各膜分
離ユニットの一次側の液体混合物の温度を40℃に保つ
九個は実施例2と同じ条件で操作した。その結果、76
vt  嗟のインプロビルアルコール水溶液が、ll0
P/hrで得られ、また20vt*のイソプロピルアル
コール水溶液がSot/hrの割合で凝縮した。
Implementation fP43 The temperature of the liquid mixture on the primary side of each membrane separation unit was maintained at 40°C by flowing hot water at 50°C through the stainless steel heat exchanger plates. Nine units were operated under the same conditions as in Example 2. As a result, 76
vt Improvil alcohol aqueous solution is ll0
P/hr, and 20 vt* of isopropyl alcohol aqueous solution was condensed at a rate of Sot/hr.

比較例1 ステンレス熱交プレートに温水を流さず、膜分離装置内
o*iiをフリーとし、導入イングロビルアルコール水
**0温度を60℃とした他は、実施例2と全く同じ様
に操作し九。その結果、膜分離装置出口からは、5℃に
温度が低下し九65wt %のイソプロピルアルコール
水溶液が146f/bro割合で得られ、tた、20v
tlGのイソプロピルアルコール水溶液が14 P/ 
hr O割合で得られた。
Comparative Example 1 The operation was carried out in exactly the same manner as in Example 2, except that hot water was not flowed through the stainless steel heat exchanger plate, o*ii in the membrane separator was free, and the introduced Inglobil alcohol water**0 temperature was set at 60°C. Nine. As a result, from the outlet of the membrane separator, the temperature decreased to 5°C, and an aqueous solution of 965 wt % isopropyl alcohol was obtained at a ratio of 146 f/bro.
The isopropyl alcohol aqueous solution of tlG is 14 P/
Obtained in hr O proportion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は外熱蓋の膜分離装置の概略フローを示す図、第
21Ilは、外熱11に使用する膜分離ユニットの一例
を示す図、WXS図は、内熱型の膜分離装置の概略フロ
ーを示す図、IIE4図は、プレートフレーム臘の膜分
離装置の7cr−の−例を示す図、115図は外熱又は
内熱型の装置をさらに並列に組合せて使用する場合の概
略フa−を示す図である。 1・・・・・・原料液体混合物タンク、2−・−・原料
ポンプ、3・−・・・凝縮器、4−・・・・・真空ポン
プ、51・・・−タンク、5b・・・・・・凝縮液タン
ク、6・・・−・中空糸、7−・・・・胴、8・・・・
・・中空糸が連通する室、9・・・−・液体混合物導入
管、9a・・・・・・−次側、10・・・・−液体混合
物導出管、11・・・・−蒸気の排・出管、l1m・・
・・・・二次側、          12・・・・・
・熱媒導入管、13・−・・・熱媒導出管%14−−熱
交換プレート、A 、 B ・・・・・・成分、a、b
、d−”・・・ライン、H、h−・・・・・熱交換器、
■・・・−誤分離エニット内の王、■・・・・−膜分離
ユニット、賜・−一各膜分離二ニットの高分子膜、t−
−−−KL  to。 ・・・・・・最適温度、M・・・−・原料液体混合物。 出願人 昭和電工株式金社
Fig. 1 is a diagram showing a schematic flow of an external heating lid membrane separation device, No. 21I is a diagram showing an example of a membrane separation unit used for external heating 11, and WXS is a schematic diagram of an internal heating type membrane separation device. A diagram showing the flow, Figure IIE4 is a diagram showing an example of a 7CR-type membrane separator with a plate frame, and Figure 115 is a schematic diagram when external heating or internal heating type equipment is used in parallel. - is a figure showing. 1... Raw material liquid mixture tank, 2-... Raw material pump, 3... Condenser, 4-... Vacuum pump, 51...-Tank, 5b... ...Condensate tank, 6...-Hollow fiber, 7-...Body, 8...
...Chamber with which hollow fibers communicate, 9...-Liquid mixture inlet pipe, 9a...-Next side, 10...-Liquid mixture outlet pipe, 11...-Vapor Exhaust/outlet pipe, l1m...
...Secondary side, 12...
・Heat medium inlet pipe, 13---Heat medium outlet tube%14---Heat exchange plate, A, B---Component, a, b
, d-"... line, H, h-... heat exchanger,
■・・・-The king of incorrect separation ennit,■・・・・-Membrane separation unit, T--1 Each membrane separation 2-nit polymer membrane, t-
---KL to. ...Optimum temperature, M...- Raw material liquid mixture. Applicant: Showa Denko K.K.

Claims (1)

【特許請求の範囲】 19 液体混合物を高分子膜を用いたパーベーパレーシ
ョンプロセスにより分離又は濃縮する方法において、上
記高分子膜を多段階に使用し各高分子膜によシ分離又は
濃縮する部分Kかける上記液体混合物oia*を所定の
温度範囲に調節することを特徴とする液体混合物の分離
又は濃縮方法。 (2)高分子膜により分離又は濃縮する部分における液
体混合物OIl変調節を分離装置の外部に設けられた熱
交換器によって行なうことを特徴とする特許請求O範■
第1項記載の液体混合物の分離又は濃縮方法。 (31高分子膜によシ分離又は濃縮する部分における液
体混合物oam調節を分離装置内に設けられた熱交換1
1によって行なうことを特徴とする特許請求の範囲第1
項記載の液体混合物の分離又は濃縮方法。
[Claims] 19 A method for separating or concentrating a liquid mixture by a pervaporation process using a polymer membrane, in which the polymer membrane is used in multiple stages and each polymer membrane separates or concentrates the mixture. A method for separating or concentrating a liquid mixture, characterized in that the temperature of the liquid mixture oia* is adjusted to a predetermined temperature range. (2) A heat exchanger installed outside the separation device is used to adjust the temperature of the liquid mixture in the portion where the polymer membrane separates or concentrates the liquid mixture.
A method for separating or concentrating a liquid mixture according to item 1. (31 Heat exchanger 1 installed in the separation device to adjust the OAM of the liquid mixture in the part to be separated or concentrated by the polymer membrane.
Claim 1 characterized in that:
Method for separating or concentrating a liquid mixture as described in Section 1.
JP843082A 1982-01-22 1982-01-22 Separating or concentrating method for liquid mixture Pending JPS58128107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP843082A JPS58128107A (en) 1982-01-22 1982-01-22 Separating or concentrating method for liquid mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP843082A JPS58128107A (en) 1982-01-22 1982-01-22 Separating or concentrating method for liquid mixture

Publications (1)

Publication Number Publication Date
JPS58128107A true JPS58128107A (en) 1983-07-30

Family

ID=11692901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP843082A Pending JPS58128107A (en) 1982-01-22 1982-01-22 Separating or concentrating method for liquid mixture

Country Status (1)

Country Link
JP (1) JPS58128107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411606A (en) * 1987-07-02 1989-01-17 Agency Ind Science Techn Separating method for liquid mixture
EP0641593A1 (en) * 1993-09-08 1995-03-08 Texaco Development Corporation Pervaporation vessel and method
WO2009084521A1 (en) * 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system, and dehydrating method
WO2009084522A1 (en) * 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system and method
WO2018169037A1 (en) * 2017-03-16 2018-09-20 三菱ケミカル株式会社 Separation membrane unit for producing alcohol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367787A (en) * 1963-01-25 1968-02-06 Henricus Alexis Cornelis Thijs Evaporation concentration of liquids
JPS5433278A (en) * 1977-08-19 1979-03-10 Showa Denko Kk Separating method for liquid mixture
JPS5895523A (en) * 1981-11-30 1983-06-07 Kuraray Co Ltd Liquid mixture separation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367787A (en) * 1963-01-25 1968-02-06 Henricus Alexis Cornelis Thijs Evaporation concentration of liquids
JPS5433278A (en) * 1977-08-19 1979-03-10 Showa Denko Kk Separating method for liquid mixture
JPS5895523A (en) * 1981-11-30 1983-06-07 Kuraray Co Ltd Liquid mixture separation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411606A (en) * 1987-07-02 1989-01-17 Agency Ind Science Techn Separating method for liquid mixture
EP0641593A1 (en) * 1993-09-08 1995-03-08 Texaco Development Corporation Pervaporation vessel and method
WO2009084521A1 (en) * 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system, and dehydrating method
WO2009084522A1 (en) * 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system and method
JP2009160481A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Dehydrating apparatus and method
JP2009160482A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Dehydrating system and dehydrating method
US8721890B2 (en) 2007-12-28 2014-05-13 Mitsubishi Heavy Industries, Ltd. Dehydrating system and dehydrating method
WO2018169037A1 (en) * 2017-03-16 2018-09-20 三菱ケミカル株式会社 Separation membrane unit for producing alcohol

Similar Documents

Publication Publication Date Title
US9266803B2 (en) Liquid separation by membrane assisted vapor stripping process
Ettouney Design and analysis of humidification dehumidification desalination process
AU768969B2 (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
US8613839B2 (en) Water distillation method and apparatus
WO2011027787A1 (en) Method for dewatering water-containing organic substance
US20170361277A1 (en) Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes
Criscuoli Improvement of the Membrane Distillation performance through the integration of different configurations
Khedr Techno‐Economic investigation of an air humidification‐dehumidification desalination process
JPS58128107A (en) Separating or concentrating method for liquid mixture
Summers et al. Cycle performance of multi-stage vacuum membrane distillation (MS-VMD) systems
JP2765032B2 (en) Method for producing concentrated solution of volatile organic liquid aqueous solution
CN111848348A (en) Isopropyl alcohol dehydration refining method
JP2780323B2 (en) Method for producing concentrated aqueous solution of volatile organic liquid
US4911845A (en) Process and apparatus for separation of volatile components
Van Gassel et al. An energy-efficient membrane distillation process
JP5734684B2 (en) Dehydration and concentration method for hydrous solvents
Aboabboud et al. An energy saving atmospheric evaporator utilizing low grade thermal or waste energy
JP2676900B2 (en) Method for producing ethanol concentrate
WO1988004193A1 (en) Liquid purification system
JPH0259394B2 (en)
CN206631440U (en) A kind of Tianna solution dewatering system
JP2006263574A (en) Double-cylinder heating type membrane module
CN214361095U (en) Energy-saving separation device of water-containing ternary azeotropic system
JP6093649B2 (en) Water-soluble organic substance concentration method and water-soluble organic substance concentration apparatus
CN212881891U (en) Isopropanol pervaporation dehydration device