JPS58127528A - Generator facility - Google Patents
Generator facilityInfo
- Publication number
- JPS58127528A JPS58127528A JP57008723A JP872382A JPS58127528A JP S58127528 A JPS58127528 A JP S58127528A JP 57008723 A JP57008723 A JP 57008723A JP 872382 A JP872382 A JP 872382A JP S58127528 A JPS58127528 A JP S58127528A
- Authority
- JP
- Japan
- Prior art keywords
- generator
- superconducting
- voltage
- normal
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は超電導界磁巻線を有する超電導発電機を、電力
系統に適用する場合に電圧の制御を行ない得るように構
成した発電設備に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to power generation equipment in which a superconducting generator having a superconducting field winding is configured to control voltage when applied to a power system.
近年、界磁巻線を超電導状態にした超電導発電機は、小
形・軽量化かつ大容量化が望め、また同期リアクタンス
が極端に小さくなることから、電力系統に適用し丸場金
安定度の向上することが期待できる。仁のため、超電導
発電機はり
各国で研究が続けlれているが、いまだ実用機として商
用運転に入った例はなく、一つの顕著な特徴として界磁
時定数が極端に大きいことが予想されている。これは、
超電導界磁巻線の抵抗分が零であるため、口出しリード
部等一部常電導部分の抵抗値を考慮しても回路直流抵抗
が極端に低く、シかも強力な磁界を発生させるためイン
ダクタンス分が大きく 4の値が大きくなる為である0
例えば、300MVA級のものでは’r’:16の値が
常電導機で5秒程度のものが、800秒にも達すると考
えられる。In recent years, superconducting generators with field windings in a superconducting state are expected to be smaller, lighter, and larger in capacity, and because their synchronous reactance is extremely small, they are being applied to power systems to improve round-field stability. You can expect to do so. For this reason, research into superconducting generators continues in many countries, but no practical equipment has entered commercial operation, and one notable feature is expected to be an extremely large field time constant. ing. this is,
Since the resistance of the superconducting field winding is zero, the circuit DC resistance is extremely low even considering the resistance of some normal conducting parts such as the lead-out leads, and the inductance component generates a strong magnetic field. is large and the value of 4 becomes large.
For example, in a 300 MVA class, the value of 'r': 16 is considered to be about 5 seconds in a normal conductor, but it can reach 800 seconds.
このことは、逆の見方をすると超電導発′に機を励磁制
御によシミ圧調整しようとすると、通常の方法では時間
がかかシすぎて実用に供せない、つtb電圧制御が不可
能であるということが言える。また、頂上電圧を極端に
高くとって磁界を急速に変えるためには、超電導喪失い
わゆるクエンチ現象をいかに防止するか等、解決すべき
技術的な諸問題が非常に多い。Looking at this in the other way, if you try to adjust the stain pressure by excitation control in a superconducting generator, the normal method would take too much time to be of practical use, and tb voltage control would be impossible. It can be said that. Furthermore, in order to make the peak voltage extremely high and change the magnetic field rapidly, there are many technical problems that need to be solved, such as how to prevent the loss of superconductivity, so-called quench phenomenon.
上述したように、超電導発電機は現在のままでは、実系
統に接続して実用に供することは困難である。As mentioned above, in its current state, it is difficult to connect superconducting generators to an actual system and put them into practical use.
本発明は上記のような問題を解決するために成されたも
ので、その目的は電圧制御が不可能若しくは極めて困難
な超電導発電機の電圧制御を可能として実系統に適用す
ることができる発電設備を提供することにある。The present invention was made in order to solve the above-mentioned problems, and its purpose is to provide power generation equipment that can be applied to an actual system by making it possible to control the voltage of a superconducting generator whose voltage control is impossible or extremely difficult. Our goal is to provide the following.
上記目的を達成するために本発明では、タービン轡の原
動機にて駆動される複数の発電機が並列運転可能に構成
された発電設備において、前記発電機を少なくとも一台
の常電導発電機と超電導発電機とから構成し、発電機群
全体の電圧が所定の値となるように前記常電導発電機を
励磁制御するように構成したことを特徴とする。In order to achieve the above object, the present invention provides a power generation facility in which a plurality of generators driven by a prime mover of a turbine bed are configured to be able to operate in parallel. The generator is characterized in that the normal conduction generator is configured to be excitation-controlled so that the voltage of the entire generator group becomes a predetermined value.
以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.
なお、ここではクロスコ/・Iランド形発電設備を例と
して述べる。In addition, here, a Crossco/I-land type power generation facility will be described as an example.
第1図は、本発明による発電設備の軸系における構成例
を示す図、第2図は同じく電気回路接続構成を示す図で
ある。図において、原動機としての中、高圧蒸気タービ
ンIP、HPおよび低圧蒸気タービンLP−z、Lp−
2をプライマリ−およびセコンダリーの二軸で構成し、
!ライマリー軸に超電導発電機Gノを、またセコンダリ
ー軸に常電導発電機G2を夫々直結してクロスコン・ヤ
ウンド形タービン発電設備を構成する。ここで、各発電
機Gl、G2は超電導界磁巻線IPI、常電導界磁巻線
F2を有し、特に超電導界磁巻線Fノは初期励磁完了後
、超電導線で短絡して永久短絡電流が流れるようにして
いる。従ってこの状態では発電機G1は、し大な永久磁
石発電機と等価である。また、各発電機Gl、G2は相
分離母線にょシ相互に接続して並列運転可能に構成され
、主変圧器Trを介して図示しない電力系統に接続して
いる。FIG. 1 is a diagram showing an example of the configuration of a shaft system of a power generation facility according to the present invention, and FIG. 2 is a diagram similarly showing an electric circuit connection configuration. In the figure, medium and high pressure steam turbines IP, HP and low pressure steam turbines LP-z, Lp- are used as prime movers.
2 consists of two axes, primary and secondary,
! The superconducting generator G is directly connected to the primary shaft, and the normal-conducting generator G2 is directly connected to the secondary shaft to form a cross-conductor round turbine power generation facility. Here, each of the generators Gl and G2 has a superconducting field winding IPI and a normal conducting field winding F2, and in particular, the superconducting field winding F is short-circuited by the superconducting wire after initial excitation is completed, resulting in a permanent short circuit. Allows current to flow. Therefore, in this state, the generator G1 is equivalent to a large permanent magnet generator. Further, the generators Gl and G2 are connected to each other through phase-separated busbars so as to be able to operate in parallel, and are connected to a power system (not shown) via a main transformer Tr.
一方、AVRは電流、電圧変成器CT 、PTにて検出
される常電導発電機G2の出力電流、電圧を入力とする
自動電圧調整装置で、褪電機群全体の電圧が所定の値と
なるように、サイリスク変換器SCRを介して常電導界
磁巻線F2に励磁電流を供給、つi)常電導発電機G2
を励磁制御するように構成する。On the other hand, the AVR is an automatic voltage regulator that receives the output current and voltage of the normal conduction generator G2 detected by the current and voltage transformers CT and PT as input, and adjusts the voltage of the entire power generator group to a predetermined value. , an excitation current is supplied to the normally conducting field winding F2 via the Cyrisk converter SCR, i) the normally conducting generator G2;
is configured to control excitation.
かかるクロスコン/4ウンド形タービン発電設備におい
て、超電導発電機G1と常電導発電機G2が並列運転さ
れているとする。この状態において、いま電力系統の負
荷が変動(増加)すると、超電導発電機G1の端子電圧
は変化(低下)するが、各発電機G J r G 2は
相分離母線によ多接続されているので、クロスコンノ々
ウンド機として2台の発電機G r p a xが並列
運転されていると、自動電圧調整装置A■によシサイリ
スタ変換器80Rを介して常電導発電機02を励磁制御
することによシ、超電導発電機G1の電圧変動(降下)
分が補償されて、発電機群全体としての端子電圧が、所
定の値となるように制御されることとなる。換言すれば
、常電導発電機02が超電導発電機Glの電圧降下分に
相当する無効電力を、循環電流として流れ込んでいると
考えることもできる。It is assumed that in such a cross-conductor/four-round turbine power generation facility, a superconducting generator G1 and a normal-conducting generator G2 are operated in parallel. In this state, if the load on the power system changes (increases), the terminal voltage of superconducting generator G1 changes (decreases), but each generator G J r G 2 is connected to the phase-separated bus bar. Therefore, when two generators G rpa x are operated in parallel as a cross-connected machine, the normal conduction generator 02 is controlled to excite via the thyristor converter 80R by the automatic voltage regulator A. Especially, voltage fluctuation (drop) of superconducting generator G1
As a result, the terminal voltage of the entire generator group is controlled to a predetermined value. In other words, it can be considered that reactive power corresponding to the voltage drop of the superconducting generator GI flows into the normal conductive generator 02 as a circulating current.
このように、原動機としての中、高圧蒸気タービンI
P 、 HPおよび低圧蒸気タービンLP−1゜LP−
Jを、f2イマリー、セコンダリーの二軸で構成したク
ロスコンノ臂つンド形タービン発電設備において、上記
ブライマリ−軸に超電導発電機01を、またセコンダリ
ー軸に常電導発電機02を夫々直結すると共に並列運転
可能に構成し、発電機群全体の電圧が所定の値となるよ
うに、AVRによ)サイリスタ変換器SCRを介して、
常電導発電機G2を励磁制御するように構成したもので
ある。In this way, medium and high pressure steam turbine I as a prime mover
P, HP and low pressure steam turbine LP-1゜LP-
J is a cross-conductor armature turbine power generation facility consisting of two shafts, an f2 primary shaft and a secondary shaft, in which the superconducting generator 01 is directly connected to the primary shaft, and the normal conductive generator 02 is directly connected to the secondary shaft, and they are operated in parallel. (by the AVR) via the thyristor converter SCR, so that the voltage of the entire generator group is a predetermined value.
It is configured to control the excitation of the normal conduction generator G2.
従って、超電導発電機Gノ単機では不可能若しくは極め
て困難な電圧制御を可能なものとして、実系統へ容易に
適用することができ極めて信頼性の高いものである。Therefore, it is possible to perform voltage control that is impossible or extremely difficult with a single superconducting generator G, and can be easily applied to an actual system and has extremely high reliability.
尚、上記実施例ではプライマリ−軸に超電導発電機G1
を、セコンダリー軸に常電導発電機G2を夫々直結した
が、この逆に!ライマリー軸に常電導発電機G2を、セ
コンダリー軸に超電導発電機G1を直結して構成しても
よい。In the above embodiment, the superconducting generator G1 is installed on the primary shaft.
, the normal conduction generator G2 was directly connected to the secondary shaft, but it was the other way around! The normal-conducting generator G2 may be directly connected to the primary shaft, and the superconducting generator G1 may be directly connected to the secondary shaft.
また、上記ではクロスコン/母つンド方式にて述べたが
、複数の発電機が低圧で同期する例えノン
ばコンバインドサイクツ方式のような場合には、少なく
とも一台の常電導発電機と超電導発電機とを組合わせて
構成してもよい。In addition, although the above mentioned the cross-conductor/mother-conductor system, in cases where multiple generators are synchronized at low voltage, such as the non-combined cycle system, at least one normal-conducting generator and a superconducting generator are used. It may also be configured by combining machines.
また、超電導発電機@Flは超電導線によシ短絡して永
久短絡電流を流しつづける方式にて述べたが、常電導線
を接続して損失分励磁電流をサイリスタ変換器を介して
補給しつづける方式とし、さらに超電導発電機01何に
も応答は遅くとも自動電圧調整装置ム■を設け、電力系
統のゆっくシとした変動に対しては超電導発電機G1の
AVB効果を期待し、早い変動に対しては主として常電
導発電機G2のAVRが応答するよ?に構成することも
可能である。In addition, the superconducting generator @Fl was described as a method in which the superconducting wire is short-circuited and a permanent short-circuit current continues to flow, but a normal-conducting wire is connected and the excitation current for the loss is continuously supplied through a thyristor converter. In addition, we installed an automatic voltage regulator (mu), which responds to the superconducting generator 01 at a slow rate, and expects the AVB effect of the superconducting generator G1 to respond to slow fluctuations in the power system, and to prevent rapid fluctuations. In response, the AVR of the normal conduction generator G2 will mainly respond. It is also possible to configure
以上説明したように本発明によれば、電圧制御が不可能
若しくは極めて困難な超電導発電機の電圧制御を可能と
して実系統に容易に適用することができる極めて信頼性
の高い発電設備が提供できる。As explained above, according to the present invention, it is possible to provide extremely reliable power generation equipment that enables voltage control of superconducting generators for which voltage control is impossible or extremely difficult, and that can be easily applied to actual power systems.
第1図および第2図は本発明の一実施例を示す構成図で
ある。
HP、IP、LP−J・L P−!・・・高、中、低圧
蒸気タービン、G1・・・超電導発電機、G2・・・常
電導発電機、Fl、F2・・・界磁巻線、CT、F T
・・・電流、電圧変成器、7r・・・主変圧器、AVR
・・・自動電圧調整製置、SCR・・・サイリスタ変換
器。FIGS. 1 and 2 are configuration diagrams showing one embodiment of the present invention. HP, IP, LP-J・LP-! ...High, medium, and low pressure steam turbines, G1...Superconducting generator, G2...Normal conducting generator, Fl, F2...Field winding, CT, F T
...Current, voltage transformer, 7r...Main transformer, AVR
...Automatic voltage adjustment equipment, SCR...Thyristor converter.
Claims (1)
運転可能に構成され九発電設備において、前記発電機を
少なくとも一台の常電導発電機と超電導発電機とから構
成し、発電機群全体の電圧が所定の値となるように前記
常電導発電機を励磁制御するように構成したことを特徴
とする発電設備。In a power generation facility in which a plurality of generators driven by a prime mover such as a turbine are configured to be able to operate in parallel, the generator is composed of at least one normal-conducting generator and a superconducting generator, and the entire generator group is A power generation facility characterized in that the normal conduction generator is controlled in excitation so that the voltage of the generator becomes a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57008723A JPS58127528A (en) | 1982-01-22 | 1982-01-22 | Generator facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57008723A JPS58127528A (en) | 1982-01-22 | 1982-01-22 | Generator facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58127528A true JPS58127528A (en) | 1983-07-29 |
Family
ID=11700866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57008723A Pending JPS58127528A (en) | 1982-01-22 | 1982-01-22 | Generator facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58127528A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5058506A (en) * | 1973-09-24 | 1975-05-21 | ||
JPS5558736A (en) * | 1978-10-27 | 1980-05-01 | Hitachi Ltd | Generating facility |
-
1982
- 1982-01-22 JP JP57008723A patent/JPS58127528A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5058506A (en) * | 1973-09-24 | 1975-05-21 | ||
JPS5558736A (en) * | 1978-10-27 | 1980-05-01 | Hitachi Ltd | Generating facility |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Radun et al. | Two-channel switched reluctance starter/generator results | |
US5949221A (en) | Line powered, primary side connected apparatus injecting voltage compensation into an electric power line using one transformer | |
Tang et al. | Shunt capacitor failures due to windfarm induction generator self-excitation phenomenon | |
AU2012306561B2 (en) | Superconducting machine and method for the operation thereof | |
Starr et al. | Series capacitors for transmission circuits | |
DE2530112B2 (en) | Arrangement for feeding a hysteresis motor | |
JPS58127528A (en) | Generator facility | |
Nitta et al. | Power charging and discharging characteristics of SMES connected to artificial transmission line | |
JP4469512B2 (en) | Saturable DC reactor type fault current limiter | |
Vajda et al. | Improved design and system approach of a three phase inductive HTS fault current limiter for a 12 kVA synchronous generator | |
Fenwick et al. | Review of trends in excitation systems and possible future developments | |
US2146778A (en) | Device for regulating a condition of a main circuit controlled by an auxiliary circuit | |
Dhara et al. | Modelling and analysis of an efficient DC reactor type superconducting fault current limiter circuit | |
Shindy et al. | Finite element model of a novel three-phase inductive saturated-core fault current limiter | |
US3007105A (en) | Electrical control apparatus | |
JPS58127600A (en) | Generator facility | |
Kulig et al. | Investigation of the transient performance of superconducting generators with an advanced network-torsion-machine program | |
JPS63121499A (en) | Generating set for welding | |
Naphade et al. | Experimental Study of Single Core Configurations of Saturated Iron Core Fault Current Limiter | |
Storm | A static magnetic exciter for synchronous alternators | |
JPS58133130A (en) | Controller for superconductive generator | |
JPS605739A (en) | Generating facility | |
Thompson et al. | Automatic regulation of synchronous condensers equipped with superspeed excitation | |
Khalil et al. | Saturated Iron Core Fault Current Limiter Allocation in Integrated Renewable Energy System | |
Do Ingle et al. | Development of a 1200-Hertz alternator and controls for space power systems |