JPS58127156A - Measuring method for convection heat transmissibility and device thereof - Google Patents

Measuring method for convection heat transmissibility and device thereof

Info

Publication number
JPS58127156A
JPS58127156A JP1049082A JP1049082A JPS58127156A JP S58127156 A JPS58127156 A JP S58127156A JP 1049082 A JP1049082 A JP 1049082A JP 1049082 A JP1049082 A JP 1049082A JP S58127156 A JPS58127156 A JP S58127156A
Authority
JP
Japan
Prior art keywords
temperature
flat plate
heat transfer
parts
transfer coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1049082A
Other languages
Japanese (ja)
Other versions
JPH0119536B2 (en
Inventor
Tadahiko Ibamoto
忠彦 射場本
Yoshiaki Arakawa
荒川 美明
Mikio Kawai
河合 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Showa Denko KK
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Tokyo Electric Power Co Inc filed Critical Showa Denko KK
Priority to JP1049082A priority Critical patent/JPS58127156A/en
Publication of JPS58127156A publication Critical patent/JPS58127156A/en
Publication of JPH0119536B2 publication Critical patent/JPH0119536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Abstract

PURPOSE:To enable measuring of only a convection heat transmissibility, by a method wherein a flat plate is partitioned into two parts having different radiation rates, and a measurement is made on a quantity of radiation heat and an atmosphere temperature at a time when temperature is controlled so that surface temperatures at all parts are equal to each other. CONSTITUTION:A flat plate 11 is partitioned into two flat parts 11a and 11b, heat flow meters 12a and 12b are mounted to the backs thereof, heating plates 13a and 13b are further attached to the back thereof, and a temperature controller 15 is connected thereto. A temperature measuring elements 14a and 14b are located in the proximity of the surfaces of the flat plates 11a and 11b, and a temperatures element 17 is installed to the surface side thereof. In this constitution, based on the outputs of the temperature elements 14a and 14b, the surface temperature of the two flat plates 11a and 11b are made equal by the temperature controller 15. A measurement is conducted on the heat flow densities of the heat flow meters 12a and 12b under this condition to measure the atmosphere temperature of the temperature measuring element 17. Based on the measurements, only a convection heat transmissibility can be computed from a given computing formula.

Description

【発明の詳細な説明】 本発明は所望の大きさを有する発熱平面から放熱する場
合のその発熱平面に関する対流熱伝達率を測定するため
の測定方法および測定装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring method and a measuring device for measuring the convective heat transfer coefficient regarding a heat generating plane having a desired size when heat is radiated from the heat generating plane.

物体の表面から気体に向って放熱あるいは吸熱する伝熱
現象は対流伝熱と放射伝熱の2つの和として説明される
ことは公知の事実である。しかし、この2つの伝熱態様
を分離して、各々の伝熱量、さらには伝熱係数(対流熱
伝達率と放射熱伝達率)を求めることは伝熱状況を把握
する上から、あるいは熱設備、熱空間の設計の上からも
重要なことであるにも拘らず、妥当な測定方法および装
置がないため、経験的な数値を用いて計算により分離す
ることしかできなかった。とりわけ人間の居住空間であ
る室内の居住性をより快適に保つ為の設計資料として簡
単に、しかも精度よく上述した2つの伝熱量あるいは伝
熱係数を求める方法および装置の出現は望まれるところ
であった。
It is a well-known fact that the heat transfer phenomenon in which heat is radiated or absorbed from the surface of an object toward a gas can be explained as the sum of convection heat transfer and radiation heat transfer. However, it is difficult to separate these two heat transfer modes and determine the amount of heat transfer and also the heat transfer coefficient (convective heat transfer coefficient and radiant heat transfer coefficient) from the perspective of understanding the heat transfer situation or the thermal equipment. Although this is an important issue from the standpoint of thermal space design, due to the lack of appropriate measurement methods and equipment, it has only been possible to separate it by calculation using empirical values. In particular, it has been desired to develop a method and device for easily and accurately determining the above-mentioned two heat transfer amounts or heat transfer coefficients as design materials for maintaining more comfortable indoor living spaces. .

本発明は上記の事情に鑑みてなされたもので、対流熱伝
達率のみを測定できる測定方法および装置を提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a measuring method and apparatus capable of measuring only the convective heat transfer coefficient.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明方法の実施に際しては、表面が少なくとも
2つ以上の部分に区画され、区画された部分が互いに相
異なる放射率となるように加工された所定の大きさの平
板が用いられる。居住空間の対流熱伝達率を評価する場
合には人体の特定部位の寸法と同等の寸法を有する発熱
板に置きかえて評価する必要があり、かつ寸法によって
対流熱伝達率の値は異なるので、どの程度の大きさの寸
法を有する平板ご必要とするかは測定者の所望する寸法
、形状によって定まる。第1図(a)〜[有])は平板
の例を示す図である。この図に示す平板は、矩形、正方
形1円形など通常想定される形状の放熱平板の表面′f
:2つ以上の部分に区画し、区画した部分を放射率が互
いに異なるように帯色させたものである。平板の形状は
図に示されるものに限るものではなく、楕円形、三角形
など適宜の形状が用いられる他、帯色の方法も必ずしも
等分割に区画する必要はなく、又帯色の配列も図の例に
こだわる必要はない。また、平板の区画された部分を任
意の放射率とする方法は、帯色に限られることはない。
First, when carrying out the method of the present invention, a flat plate of a predetermined size is used, the surface of which is divided into at least two portions and processed so that the divided portions have different emissivities. When evaluating the convective heat transfer coefficient of a living space, it is necessary to replace it with a heating plate that has dimensions equivalent to the dimensions of a specific part of the human body, and since the value of the convective heat transfer coefficient varies depending on the dimensions, which Whether a flat plate with a certain size is required depends on the size and shape desired by the measurer. FIGS. 1(a) to 1) are diagrams showing examples of flat plates. The flat plate shown in this figure is a heat dissipating flat plate with a shape that is normally assumed, such as a rectangle, a square, and a circle.
: It is divided into two or more parts, and the divided parts are colored so that their emissivity is different from each other. The shape of the flat plate is not limited to that shown in the figure; any appropriate shape such as an ellipse or triangle may be used, and the method of coloring the strips does not necessarily have to be divided into equal parts, and the arrangement of the color strips is not limited to that shown in the figure. There is no need to stick to this example. Further, the method of setting the emissivity of the divided portions of the flat plate to an arbitrary value is not limited to band coloring.

その他の方法としては、例えば研摩の方法によって表面
を鏡面としたり多少の凹凸を設けることによって放射率
を変えることができ、更にはアルミニウムの陽極酸化皮
膜の如く酸化皮膜の厚さによって放射率を変えることが
できるなど、これらの方法を用いて任意の放射率を得る
こともできる。
Other methods include changing the emissivity by making the surface mirror-like or creating some irregularities through polishing, and further changing the emissivity by changing the thickness of the oxide film, such as the anodic oxide film on aluminum. Arbitrary emissivities can also be obtained using these methods.

次に、第1図(a)に示す平板を例にとって同平板が空
間内に置かれている場合の伝熱状況を解析する。各々帯
色面1.2の放射率なεI+ε2とすると(第2図参照
)、 帯色面lではQ+−αC1(Ts+−Ta)+ε1cr
(Tsr −Tw?)・・・・・・・・・・・・(1) 帯色面2ではq2=ac2(Tst−’J’a)+tt
 a(Tst’−π−)・・・・・・・・・・・・(2
) (W/ m’又はkcIl/lII″h)αC1;帯色
面10対流熱伝達率 (W/(げ・K)又はd/ばh″C) αC2;帯色面20対流熱伝達率 (W/(♂・K)又は日/がh’c) Tss;帯色面1■表面温度(K) Tsz;帯色面20表面温度(K) TA;雰囲気の温度(K) ε宜;帯色面10表面放射率 C2;帯色面2の表面放射率 σニステアアンボルツマン定数 Tw;対向壁面の平均放射温度(K) (11、(21式において帯色面1,2の表面温度Ts
tとTs2を T s+ = T sz = T s     、−0
”=I31となるように制御した場合を考えると、αC
1ヨαc2 エαC………(4) −4 となり、(3)式の条件下で+11 、 +21式から
(Ts+ −Tw)。
Next, taking the flat plate shown in FIG. 1(a) as an example, the heat transfer situation when the flat plate is placed in a space will be analyzed. Assuming that the emissivity of each colored surface 1.2 is εI+ε2 (see Figure 2), for the colored surface l, Q+-αC1(Ts+-Ta)+ε1cr
(Tsr −Tw?)・・・・・・・・・・・・(1) For colored surface 2, q2=ac2(Tst−'J'a)+tt
a(Tst'−π−)・・・・・・・・・・・・(2
) (W/ m' or kcIl/lII''h) αC1; Colored surface 10 convective heat transfer coefficient (W/(ge・K) or d/bah''C) αC2; Colored surface 20 convective heat transfer coefficient ( W/(♂・K) or day/ga h'c) Tss; Colored surface 1■Surface temperature (K) Tsz; Colored surface 20 surface temperature (K) TA; Temperature of atmosphere (K) εyi; Band Color surface 10 surface emissivity C2; surface emissivity of color surface 2 σ Nystea-Amboltzmann constant Tw; average radiant temperature of opposing wall surface (K) (11, (in equation 21, surface temperature Ts of color surface 1 and 2
t and Ts2 as T s+ = T sz = T s , -0
”=I31, αC
1 yo αc2 d αC……(4) −4 becomes +11 under the condition of equation (3), and (Ts+ −Tw) from the +21 equation.

(T sz’ −Tw’)の項を消去すると、対流熱伝
達率αCは、 一ε2  qt  −C1qt “’  (61−εt)(Ts−TA)   ””””
””として求まる。上述した(3)式における条件すな
わち両帯色面の表面温度を等しく制御することは市販の
温度調節器を用いれば容易に達成でき、しかも対流熱伝
達率が表面温度によって変わることを考えれば正しい対
流熱伝達率を求める上からも重要な測定条件である。q
l * qtは熱流計を帯色面1と2の中央部裏面に設
置しておけば容易に測定できる。更に、帯色面の放射率
ε!、ε2は各々変色O生じ難い、そして放射率差が大
となるように一方の面は黒色塗料を、他方の面はアルミ
箔あるいはアルミペイント塗装を施しておけばその放射
率は小さく又比較的経時変化も少ない。これら放射率の
値は市販されている放射率計によって簡単に求まる。ま
た、雰囲気の温度は熱放射を遮蔽する構造をもった測温
素子によって計測できる。
When the term (T sz' - Tw') is eliminated, the convective heat transfer coefficient αC becomes - ε2 qt - C1qt "' (61-εt) (Ts-TA) """"
It is found as “”. The condition in equation (3) above, that is, controlling the surface temperature of both colored surfaces equally, can be easily achieved using a commercially available temperature controller, and is correct considering that the convective heat transfer coefficient changes depending on the surface temperature. This is an important measurement condition from the viewpoint of determining the convective heat transfer coefficient. q
l * qt can be easily measured by installing a heat flow meter on the back side of the central part of colored surfaces 1 and 2. Furthermore, the emissivity ε of the colored surface! , ε2 are unlikely to cause discoloration O, and if one side is coated with black paint and the other side is coated with aluminum foil or aluminum paint so that the difference in emissivity is large, the emissivity is small and relatively low. There is also little change over time. These emissivity values can be easily determined using a commercially available emissivity meter. Furthermore, the temperature of the atmosphere can be measured by a temperature measuring element having a structure that shields thermal radiation.

次に、本発明による装置の構造について述べる。Next, the structure of the device according to the present invention will be described.

第3図は本発明による装置の原理的構成を示す図である
FIG. 3 is a diagram showing the basic configuration of the device according to the present invention.

まず、εl、ε2が既知の平板11a、llbを並列に
ならべ全体が所定の大きさの平板11を形成する。そし
て、各平板11a 、llbの裏面中央部付近に各々熱
流計(熱流密度W/fを計測するmN)12a、12b
を配設し、更にこれら熱流計12a、12bの裏面側に
平板11a、llbと同程度の大きさの加熱板18a、
13bを配設する。また平板11a 、llbの表面付
近に各々測温素子14a 、14bを配設する。一方、
温度調節器15を準備し、測温素子14a 、14bの
出力に基づいて加熱板18a、18bの発熱量を制御し
て平板11a、llbの表面温度が一定値(同一温度)
となるようにする。(加熱板、測温素子、温度調節器は
平板11a、llbの表面温度を一定値にする温度制御
装置16を構成する。)また、平板11a、llbの表
面側に雰囲気温度を測定するための測温素子17を設置
する。なお、平板11a、llbの表面の性状は、対流
熱伝達率の値に影響を及ぼすので通常は平滑面仕上げと
する。
First, flat plates 11a and llb whose εl and ε2 are known are arranged in parallel to form a flat plate 11 having a predetermined size as a whole. Heat flow meters (mN for measuring heat flow density W/f) 12a and 12b are placed near the center of the back surface of each flat plate 11a and llb, respectively.
Further, on the back side of these heat flow meters 12a, 12b, a heating plate 18a, which is about the same size as the flat plates 11a, llb, is arranged.
13b is arranged. Further, temperature measuring elements 14a and 14b are arranged near the surfaces of the flat plates 11a and llb, respectively. on the other hand,
A temperature controller 15 is prepared, and the heat generation amount of the heating plates 18a, 18b is controlled based on the output of the temperature measuring elements 14a, 14b, so that the surface temperature of the flat plates 11a, llb is kept at a constant value (same temperature).
Make it so that (The heating plate, the temperature measuring element, and the temperature controller constitute a temperature control device 16 that maintains the surface temperature of the flat plates 11a and llb to a constant value.) Also, there is a A temperature measuring element 17 is installed. Note that since the surface properties of the flat plates 11a and llb affect the value of the convective heat transfer coefficient, they are usually finished with smooth surfaces.

上記の構成からなる装置は、温度制御装置16によって
平板11a、llbの表面温度を一定値にすることがで
き、熱流計12a、12bによって平板11a、llb
の表面の熱流密度q+ Iq2を測定することができ、
測温素子17によって雰囲気温度TAを知ることができ
、測温素子14aまたは14bによって平板110表面
温度Tsを知ることができる。そして平板11a、ll
bの各表面の放射率とε11ε2が明らかであるから、
前述した(5)式を用いて対流熱伝達率αCを測定する
ことができる。
In the apparatus having the above configuration, the surface temperature of the flat plates 11a and 11b can be kept at a constant value by the temperature control device 16, and the surface temperature of the flat plates 11a and 11b can be kept at a constant value by the heat flow meters 12a and 12b.
The heat flow density q+ Iq2 on the surface of can be measured,
The ambient temperature TA can be determined by the temperature measuring element 17, and the surface temperature Ts of the flat plate 110 can be determined by the temperature measuring element 14a or 14b. and flat plate 11a, ll
Since the emissivity and ε11ε2 of each surface of b are clear,
The convective heat transfer coefficient αC can be measured using the above-mentioned equation (5).

以上は平板の表面が2つに区画された装置の説明である
が、平板の表面ご3つ以上の複数の部分に区画して互い
に異なる2つずつの表面からそれぞれ対流熱伝達率を算
出すれば測定の確かさを調べることができる。
The above is an explanation of an apparatus in which the surface of a flat plate is divided into two parts, but the surface of the flat plate is divided into three or more parts and the convective heat transfer coefficient is calculated from each of two different surfaces. It is possible to check the accuracy of the measurement.

次に、本発明による伝流熱伝達率測定装置を具体的に製
作して実験を行った結果について述べる。
Next, the results of experiments conducted using a concrete fabrication of the current heat transfer coefficient measuring device according to the present invention will be described.

こ■実験においては、全体で300m×3001nnの
正方形平板の対流熱伝達率を求めることを目的として装
置ご製作した。製作した装置は第を図ないし第7図に示
す構造のものである。第4図ないし第6図は装置本体の
構成を示す図である。装置本体は、箱体21の開口部に
ゴムパツキン22を介在させて平板28を装着してなる
ものである。
In this experiment, an apparatus was manufactured for the purpose of determining the convective heat transfer coefficient of a square flat plate with a total size of 300 m x 3001 nn. The manufactured device has the structure shown in Figures 1 to 7. 4 to 6 are diagrams showing the structure of the main body of the apparatus. The main body of the apparatus is made up of a flat plate 28 attached to the opening of a box 21 with a rubber gasket 22 interposed therebetween.

箱体21は、仕切板24.24で3分割した木製の箱2
5の外周部に断熱材製の枠26を装着してなるものであ
る。この箱体21の外形寸法は、はぼ320簡(高さ)
 ×320闘(幅)×65闘(厚み)である。平板28
は3つのステンレス板(300tmX 10(17aw
X、2m) 27 a N27 cを前面が平担になる
ように配置したものである。ステンレス板27a〜27
Cの中央部には各々孔(3乙鴎XJ4tll)28a〜
28cが形成されており、これら孔288〜28Cには
各々ステンレス[(J弘鴎X 3’tm)29a〜29
cが嵌め込まれている。ステンレス板27b 、29b
の表面には黒色塗料を塗布してありステンレス板27C
,29Cの表面には白色塗料を塗布しである。またステ
ンレス板27 a + 29 aの表面はステンレス地
のままである。各ステンレス板27a、29a、27b
、29b、27c、29cの温度30”Cにおける実効
放射率εM、εB、εWを実測したところ、 6M = 0. /乙 εB=0.I9 εW=QI3 であった。
The box body 21 is a wooden box 2 divided into three by partition plates 24 and 24.
A frame 26 made of a heat insulating material is attached to the outer periphery of the frame 5. The external dimensions of this box body 21 are 320 cm (height)
x 320 (width) x 65 (thickness). flat plate 28
is made of three stainless steel plates (300tm x 10 (17aw)
X, 2m) 27 a N27 c are arranged so that the front side is flat. Stainless steel plates 27a-27
In the center of C there are holes (3 Otsuo XJ4 tll) 28a~
28c are formed in these holes 288 to 28C, respectively.
c is inserted. Stainless steel plates 27b, 29b
The surface of the stainless steel plate 27C is coated with black paint.
, 29C are coated with white paint. Further, the surfaces of the stainless steel plates 27a + 29a remain made of stainless steel. Each stainless steel plate 27a, 29a, 27b
, 29b, 27c, and 29c at a temperature of 30''C were actually measured, and found that 6M = 0. / εB = 0.I9 εW = QI3.

また、第7図はステンレス板27b、29b部分におけ
る測定素子の配置状態を示す図である。
Further, FIG. 7 is a diagram showing the arrangement of measurement elements in the stainless steel plates 27b and 29b.

この図に示すようにステンレス板29bには測温素子(
cc熱電対)80と測温抵抗体81とが設けられている
。またこのステンレス板29bの裏面側には熱流計82
が取付けられている。またステンレス板27bの後側に
はステンレス板29bを囲むようにプラスチック板88
が取付けられている。熱流計82およびプラスチック板
88の後側にはアルミニウム板84が取付けられている
As shown in this figure, the stainless steel plate 29b has a temperature measuring element (
cc thermocouple) 80 and a resistance temperature detector 81 are provided. Also, a heat flow meter 82 is provided on the back side of this stainless steel plate 29b.
is installed. Also, on the rear side of the stainless steel plate 27b, a plastic plate 88 is provided surrounding the stainless steel plate 29b.
is installed. An aluminum plate 84 is attached to the rear side of the heat flow meter 82 and the plastic plate 88.

アルミニウム板84の後面には面状のヒータ85が取付
けられている。ステンレス板27b、29b部分におけ
る測定素子の配置状態は以上の通りであるが、ステンレ
ス板27a、29a、27c、29c部分においても上
記と同様に測定素子が配置されている。また、特にステ
ンレス板g7b、29bの表面側には雰囲気温度を測定
するための測温素子(cc熱電対)86が配置されてい
る。以上の構成において熱流計82の出力は記録計87
において記録されるようになっている。また測温抵抗体
81の出力が温度調節器38に入力され、温度調節器8
8が同出力に基づいてヒータ850発熱量を調節するよ
うになっている。また測温素子80゜86の出力が精密
温度計89に入力されるようになっている。なお、ここ
で使用した熱流計82の感度は0./ざ@V/led/
7h) である。
A planar heater 85 is attached to the rear surface of the aluminum plate 84. The arrangement of the measuring elements on the stainless steel plates 27b and 29b is as described above, and the measuring elements are arranged on the stainless steel plates 27a, 29a, 27c, and 29c in the same manner as above. Moreover, a temperature measuring element (cc thermocouple) 86 for measuring the ambient temperature is arranged particularly on the surface side of the stainless steel plates g7b and 29b. In the above configuration, the output of the heat flow meter 82 is
It is recorded in . In addition, the output of the resistance temperature detector 81 is input to the temperature controller 38, and the temperature controller 81
8 adjusts the amount of heat generated by the heater 850 based on the same output. Further, the output of the temperature measuring element 80.degree. 86 is input to a precision thermometer 89. Note that the sensitivity of the heat flow meter 82 used here is 0. /za@V/led/
7h).

実験方法としては、上記のように構成された測定装置を
ベニア板で囲った閉空間(約/m角)内におき、無風状
態とした状態で放熱面を上向きとして対流熱伝達率を測
定した。測定の結果を第1表に示す。第1表に示される
結果は、 W 、 H、Gi ed tによる対流熱伝達率の弐4
9g(Ts−TA)0°25から計算した値3.7と略
一致している。
The experimental method was to place the measuring device configured as described above in a closed space (approximately /m square) surrounded by a plywood board, and measure the convective heat transfer coefficient with the heat dissipation surface facing upward in a windless state. . The measurement results are shown in Table 1. The results shown in Table 1 show that the convective heat transfer coefficient due to W, H, Gi ed t
This substantially matches the value of 3.7 calculated from 9g(Ts-TA)0°25.

第1表 以上の説明から明らかなように、本発明によれば、対流
熱伝達率を容易に測定できる効果が得られる。
As is clear from the explanations in Table 1 and above, according to the present invention, the effect of easily measuring the convective heat transfer coefficient can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(b)はいずれも本発明方法の実施に使
用する平板の平面図、第2図は第1図(a)に示す平板
を空間に置いた場合の伝熱状態を説明するための説明図
、第3図は本発明による測定装置の原理的構成を示す図
、第μ図は実験用に製作した本発明による測定装置の装
置本体の斜視図、第S図は第を図■−■線視線面断面図
6図は装置本体の分解斜視図、第7図は測定装置におけ
る測定素子の配置状態を示す図である。 11 、28−−・−・・平板、12a、12b、82
−’−’−・熱流計、16・・・・・・温度制御装置、
17,86・・・・・・測温素子、80・・・・・・測
温素子。 出願人 東京電力株式会社 昭和電工株式会社 第1図 (O)               (b)(cl 
              Id)(e)     
         (f)第2図 第3図 第4図     第5図 第7図 手続補正書、アよ、 1、 事件の表示 昭和57 年特許願第10490号 2、発明の名称 対流熱伝達率の測定方法および装置 3、 補正をする者 特許出願人 東京電力株式会社(ほか1名) 4、代理人
Figures 1 (a) and (b) are all plan views of the flat plate used to carry out the method of the present invention, and Figure 2 shows the heat transfer state when the flat plate shown in Figure 1 (a) is placed in a space. FIG. 3 is a diagram showing the basic configuration of the measuring device according to the present invention, FIG. FIG. 6 is an exploded perspective view of the main body of the apparatus, and FIG. 7 is a diagram showing the arrangement of measuring elements in the measuring apparatus. 11, 28--...Flat plate, 12a, 12b, 82
-'-'-・Heat flow meter, 16...Temperature control device,
17, 86... Temperature measuring element, 80... Temperature measuring element. Applicant Tokyo Electric Power Company Showa Denko Co., Ltd. Figure 1 (O) (b) (cl
Id) (e)
(f) Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Procedural amendment, a. 1. Indication of the case 1982 Patent Application No. 10490 2. Name of the invention Method for measuring convective heat transfer coefficient and Device 3. Person making the amendment: Patent applicant Tokyo Electric Power Company, Inc. (and 1 other person) 4. Agent

Claims (1)

【特許請求の範囲】 1 表面が少なくとも2つ以上の部分に区画され、区画
された部分が互いに相異なる放射率となるように加工さ
れた所定の大きさを有する平板を用い、この平板の上記
各部分の表面温度が等しくなるように温度制御をしたと
きの上記各部分からの放散熱量と上記平板の存在する部
分の雰囲気の温度とを測定し、この測定結果に基づいて
上記平板の対流による熱伝達率を測定するようにしたこ
とを特徴とする対流熱伝達率Q測定方法。 2 表面が少なくとも2つ以上の部分に区画され、区画
された部分が互いに相異なる放射率となるように加工さ
れた所定の大きさを有する平板と、この平板の上記各部
分から放熱する熱流密度を測定する熱流計と、同平板の
上記各部分の表面温度を等しく制御する温度制御装置と
、上記平板の存在する部分の雰囲気の温度ご測定する測
温素子とを具備してなることを特徴とする対流熱伝達率
の測定装置。
[Claims] 1. Using a flat plate having a predetermined size whose surface is divided into at least two parts and processed so that the divided parts have different emissivities from each other, When the temperature is controlled so that the surface temperature of each part is equal, the amount of heat dissipated from each part and the temperature of the atmosphere in the part where the flat plate is present are measured, and based on the measurement results, the convection of the flat plate is A method for measuring convective heat transfer coefficient Q, characterized in that the heat transfer coefficient is measured. 2. A flat plate having a predetermined size whose surface is divided into at least two parts and processed so that the divided parts have different emissivities from each other, and a heat flow density that radiates heat from each of the above parts of this flat plate. , a temperature control device that equally controls the surface temperature of each part of the flat plate, and a temperature measuring element that measures the temperature of the atmosphere in the part where the flat plate is present. A device for measuring convective heat transfer coefficient.
JP1049082A 1982-01-26 1982-01-26 Measuring method for convection heat transmissibility and device thereof Granted JPS58127156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049082A JPS58127156A (en) 1982-01-26 1982-01-26 Measuring method for convection heat transmissibility and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049082A JPS58127156A (en) 1982-01-26 1982-01-26 Measuring method for convection heat transmissibility and device thereof

Publications (2)

Publication Number Publication Date
JPS58127156A true JPS58127156A (en) 1983-07-28
JPH0119536B2 JPH0119536B2 (en) 1989-04-12

Family

ID=11751614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049082A Granted JPS58127156A (en) 1982-01-26 1982-01-26 Measuring method for convection heat transmissibility and device thereof

Country Status (1)

Country Link
JP (1) JPS58127156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217261A (en) * 1987-03-06 1988-09-09 Snow Brand Milk Prod Co Ltd Method for measuring surface temperature of sensor used for electrical heating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217261A (en) * 1987-03-06 1988-09-09 Snow Brand Milk Prod Co Ltd Method for measuring surface temperature of sensor used for electrical heating method

Also Published As

Publication number Publication date
JPH0119536B2 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
Zhang et al. Non-Boussinesq effect: Thermal convection with broken symmetry
Parkinson A simple method for determining the boundary layer resistance in leaf cuvettes
US7981046B2 (en) Temperature measurement device
CN109632874A (en) A kind of garment material insulation property testing device for heat preservation and test method
Smith et al. A calorimeter for high-power CW lasers
JPS58127156A (en) Measuring method for convection heat transmissibility and device thereof
CA2553373C (en) Temperature control device
Niedermann et al. Heat flux measurements for use in physiological and clothing research
Welsh et al. The thermal characteristics of different diodes on in vivo patient dosimetry
JPH05187931A (en) Instrument and method for measuring heat flow at opening
JPS6012569B2 (en) Thermal environment measuring instrument
CN108663400A (en) Thermal conductivity of vacuum glass instrument
Lawton et al. A calorimeter for rapid determination of heat loss and heat production in laboratory animals
Hoare LXXXII. A determination of the Stefan-Boltzmann radiation constant using a callendar radio balance
RU2657332C1 (en) Method for determining reduced thermal resistance of non-uniform enclosing structure in climatic chamber
CN108663397A (en) The device for measuring thermal conductivity of vacuum glass
US4134015A (en) System for measuring the reflectance or emittance of an arbitrarily curved surface
RU166709U1 (en) INSTALLATION FOR PRECISION NO CONVECTION MEASUREMENTS OF HEAT PERMEABILITY OF MATERIALS AT TEMPERATURES CLOSE TO ROOM
Benzinger et al. A 4π‐Radiometer
JPH027023B2 (en)
JPH0629799B2 (en) Heat dissipation measurement device
JPS6128852A (en) Apparatus for measuring heat insulating property
Hager Jr Method for measuring total hemispheric emissivity of plane surfaces with conventional thermal conductivity apparatus
JPS60146118A (en) Method and apparatus for measuring level of interface
JPS5923369B2 (en) Zero-level heat flow meter