JPS58126489A - Pump - Google Patents

Pump

Info

Publication number
JPS58126489A
JPS58126489A JP865482A JP865482A JPS58126489A JP S58126489 A JPS58126489 A JP S58126489A JP 865482 A JP865482 A JP 865482A JP 865482 A JP865482 A JP 865482A JP S58126489 A JPS58126489 A JP S58126489A
Authority
JP
Japan
Prior art keywords
liquid
section
control
pump
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP865482A
Other languages
Japanese (ja)
Other versions
JPH0448952B2 (en
Inventor
Tetsuo Shimizu
哲夫 清水
Isamu Fukuoka
勇 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP865482A priority Critical patent/JPS58126489A/en
Publication of JPS58126489A publication Critical patent/JPS58126489A/en
Publication of JPH0448952B2 publication Critical patent/JPH0448952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities

Landscapes

  • Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To transfer a liquid simply and surely at a desired and corrected flow quantity by applying a processing function, and a measuring function of the flow to a liquid transfer pump. CONSTITUTION:Pulses of different numbers per predetermined time are fed to a pulse motor 14 in sequence to transfer liquid in accordance with a program stored in a control section 17 beforehand, and the flow quantity of the transfer liquid at different number of pulses per predetermined time is measured by means of a mesuring section 11, a calibration curve is generated from the relatioship between the number of pulses and the measured data of the flow quantity of the transfer liquid and is stored in memory beforehand, and the number of pulses per predetermined time to be fed to the pulse motor 14 is determined from the desired flow quantity of the transfer liquid input from an input section by using the above calibration curve. Accordingly, an extremely correct flow quantity of the pump transfer liquid can be available, and also the operation is performed automatically under the control of a control section 17, thereby the handling of the pump can be simplfied.

Description

【発明の詳細な説明】 本発明は定流足ポンプに関し、更に詳述すれば内部に流
源校正機能を有する定流社ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant flow foot pump, and more specifically to a constant flow pump having an internal flow source calibration function.

従来1所定流量で送液するプランジャポンプはある。し
かし、その送液鉦は温度、粘度、シール部材の摩耗によ
る漏れ、負荷圧力の変動等により変化し、一定のもので
はない。流量の変動に対しては、従来はポンプの吐出量
を実測し、これから目標値との偏差を求め、ポンプに設
けられた流址#節用螺子等を適当に調節することを繰返
して行なっていた。しかし、上記方法による場合には、
流量の−を節は勘に頼る部分が多くなり、時間がかかる
のが一般である。また、予め流量の実測値と目盛の関係
(検[1N)を作成しておいて、この検量線を用いてポ
ンプの流量を定めることも行なわれている。しかし、こ
の方法による場合には、上述したように、送液する流体
、温度、粘度その他が変わる毎に検量線も変化し、従っ
てその都度、検量線を作り直すことが必要となり、やは
り繁雑なものである。
Conventionally, there is a plunger pump that pumps liquid at a predetermined flow rate. However, the liquid feeding gong changes due to temperature, viscosity, leakage due to wear of the sealing member, fluctuations in load pressure, etc., and is not constant. In the past, to deal with fluctuations in flow rate, the pump's discharge amount was actually measured, the deviation from the target value was found from this, and the flow adjustment screws, etc. installed on the pump were repeatedly adjusted as appropriate. . However, in the case of the above method,
In general, the minus part of the flow rate requires a lot of reliance on intuition and takes time. In addition, a relationship between the actual measured value of the flow rate and the scale (calibration [1N) is created in advance, and this calibration curve is used to determine the flow rate of the pump. However, when using this method, as mentioned above, the calibration curve changes every time the fluid to be delivered, temperature, viscosity, etc. change, and therefore it is necessary to recreate the calibration curve each time, which is still complicated. It is.

本発明は上記事情を改善するためになされたもので、演
算処理機能と流量の計蓋機能を送液ポンプに付与するこ
とにより、簡単かつ確実に所望の校正された流量で液送
するポンプを提供することを目的とする。
The present invention has been made to improve the above-mentioned situation, and by providing a liquid feeding pump with an arithmetic processing function and a flow rate metering function, a pump that easily and reliably feeds liquid at a desired calibrated flow rate can be created. The purpose is to provide.

以下、本発明の一実施例につき図面を参照して説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図中1は基板2に取付けられたポンプヘッドで、その内
部には垂直方向に輸送液体の通路3が穿設されている。
In the figure, reference numeral 1 denotes a pump head attached to a substrate 2, in which a passage 3 for transporting liquid is perforated in the vertical direction.

この通路3の下部にはバルブシート4とボール5とから
なる下部逆止弁を介装して吸入部6が、また通路3の上
部にはバルブシート7とボール8とからなる上部逆止弁
を介装して吐出部9が形成されている。
In the lower part of this passage 3, a lower check valve consisting of a valve seat 4 and a ball 5 is interposed, and a suction part 6 is installed, and in the upper part of the passage 3, an upper check valve consisting of a valve seat 7 and a ball 8 is installed. A discharge portion 9 is formed by interposing.

前記ポンプヘッド1内には通路3方向に向って上向傾斜
をもってボンピングシリンダ孔10が穿設されており、
通路3と前記ポンピングシリンダ孔10はポンプヘッド
1内において連通している。
A pumping cylinder hole 10 is bored in the pump head 1 with an upward slope toward the passage 3, and
The passage 3 and the pumping cylinder bore 10 communicate within the pump head 1 .

このシリンダ孔10内にはプランジャ11の一端側がパ
ツキン12を介装して液密かつその軸方向に摺動自在に
挿入されている。
One end of a plunger 11 is inserted into the cylinder hole 10 with a packing 12 interposed therebetween in a fluid-tight manner and slidable in the axial direction thereof.

また、プランジャ11の他端には円柱状のラック13が
取付けられている。そして、このラック13はパルスモ
ータ140回転軸15に取付けられたピニオン16に噛
み合されており、回転軸150回転運動がこれらピニオ
ン16及びラック13により直線連動に変換されてプラ
ンジャ11に伝達され、プランジャ11がシリンダ孔1
0内をその軸方向に沿って往復運動せしめられ、これに
より吸入部6からシリンダ内に吸入された液体が上部逆
止弁を介して吐出部9から吐出されるものである。17
は外部から入力を行なう入力部を備え、外部からの人力
に基づいて各種演算、制御を予め組込まれたプログラム
に従って実行する制御部で、この制御部の送出する制御
量であるパルスに対応シテ、前記パルスモータ14の回
転方向及び回転角が制御される。
Further, a cylindrical rack 13 is attached to the other end of the plunger 11. The rack 13 is meshed with a pinion 16 attached to the rotating shaft 15 of the pulse motor 140, and the rotational motion of the rotating shaft 150 is converted into linear interlocking motion by the pinion 16 and the rack 13, and is transmitted to the plunger 11. Plunger 11 is cylinder hole 1
The liquid is sucked into the cylinder from the suction part 6 and discharged from the discharge part 9 via the upper check valve. 17
is a control unit that is equipped with an input unit that receives input from the outside, and executes various calculations and controls based on external human power according to a pre-installed program. The rotation direction and rotation angle of the pulse motor 14 are controlled.

前記吐出部9には吐出パイプ18の一端が連結されて、
これにより吐出側流路が形成され、このパイプ18を通
って送液すべき液体が圧送される。
One end of a discharge pipe 18 is connected to the discharge part 9,
As a result, a discharge side flow path is formed, and the liquid to be sent is pumped through this pipe 18.

この吐出パイプ18には、前記制御部17により流路の
切換えを制御される三方電磁弁19が介装されている。
This discharge pipe 18 is provided with a three-way solenoid valve 19 whose flow path switching is controlled by the control section 17 .

前記電磁弁19には分岐管20の一端が接続されている
と共に、他端は計祉部21の計量管22内に配設され、
これにより計量部流路が形成されている。前記計量管2
2は透明のシリンダを垂直に立設すると共に、その外周
壁に垂直方向に沿って所定間隔毎にそれぞれ一対の第1
〜第4発光部23a−a及び第1〜第4受光部24a〜
dが対向して配設されており、この各発光部23a〜d
の放射する光量の変化をそれぞれ対向する受光部24a
−dが検出し、これを制御部に送ることにより計量管2
2内の液面位置を検出する。
One end of a branch pipe 20 is connected to the solenoid valve 19, and the other end is disposed within a metering pipe 22 of a metering section 21,
This forms a metering section flow path. The measuring tube 2
2, a transparent cylinder is vertically installed, and a pair of first cylinders are installed at predetermined intervals along the outer circumferential wall of the cylinder.
~Fourth light emitting section 23a-a and first to fourth light receiving sections 24a~
d are arranged to face each other, and each of the light emitting parts 23a to 23d
The light receiving sections 24a facing each other detect changes in the amount of light emitted by the
-d detects it and sends it to the control unit to control the metering tube 2.
Detect the liquid level position within 2.

次に、上記ポンプを用いて所定の流量で送液する場合に
つき説明する。
Next, a case will be described in which the pump is used to send liquid at a predetermined flow rate.

まず、制御部17の入力部から所望の送液流量を入力し
、スタートボタン(図示せず)を押すと、制御部17に
組込まれた制御プログラムが起動し、校正の準備が行な
われる。即ち、制御部17から三方電磁弁19に信号が
送られて電磁弁19の流路が針鼠部流路に切換えられる
と共に、制御部17からパルスモータ14に所定時間当
りのパルス数(第2図においてはft )のパルスが送
られる。
First, when a desired liquid feeding flow rate is inputted from the input section of the control section 17 and a start button (not shown) is pressed, a control program incorporated in the control section 17 is started and preparations for calibration are performed. That is, a signal is sent from the control section 17 to the three-way solenoid valve 19 to switch the flow path of the solenoid valve 19 to the needle groin flow path, and at the same time, the control section 17 sends a signal to the three-way solenoid valve 19 to change the number of pulses per predetermined time to the pulse motor 14 (see FIG. At , a pulse of ft ) is sent.

すると、ポンプ14は所定時間当りのパルス数(fl)
に応じた送液流量(第2図においてはV、 )  で送
准し、送液された液体は吐出パイプ18、三方弁19、
分岐管20を通って計量管22内に吐出される。これに
より、計量管22内の液面が上昇し、最下部に配設され
た第1受光部24aを液面が越える際に、対向する第1
発光部23aから第1受光部24aに到達する光量が変
化する。この光磁の変化が第1受光部24aで検知され
て検知信号が制御部17に送られ、この時から第2受光
部24bを液面が越えるまでの送液に要するパルス数が
制御部17で測定される。そして、予め実測により求め
である第1受光部24aと第2受光部24bとの間の計
量管の容積と、この容積を満すのに要した前記実測パル
ス数とから、ポンプの送液流値が制御部17で算出され
、所定時間当りのパルス数f1 に対する送液流量■1
  が制御部17のメモリに記憶される。
Then, the pump 14 generates the number of pulses (fl) per predetermined time.
The liquid is delivered at a flow rate corresponding to (V in FIG. 2), and the delivered liquid is delivered to the discharge pipe 18, the three-way valve 19,
It is discharged into a metering tube 22 through a branch pipe 20. As a result, the liquid level in the metering tube 22 rises, and when the liquid level exceeds the first light receiving part 24a disposed at the bottom, the opposing first light receiving part 24a rises.
The amount of light reaching the first light receiving section 24a from the light emitting section 23a changes. This change in magnetism is detected by the first light receiving section 24a and a detection signal is sent to the control section 17, and the number of pulses required for liquid feeding from this time until the liquid level exceeds the second light receiving section 24b is determined by the control section 17. It is measured in Then, based on the volume of the metering tube between the first light receiving section 24a and the second light receiving section 24b, which is determined in advance by actual measurement, and the number of actually measured pulses required to fill this volume, the pump's liquid delivery flow rate is determined. The value is calculated by the control unit 17, and the liquid feeding flow rate ■1 for the number of pulses f1 per predetermined time
is stored in the memory of the control unit 17.

次に、所定時間当りのパルス数の異なるパルス列(第2
図においてはf2)が制御部17からパルスモータ14
に送られ、前記同様にして第3受光部240から第4受
光部24(iに液面が到達するのに要するパルス数が測
定され、これから同様にして所定時間当りのパルス数f
2 に対する送液流量■2  が算出されメモリに記憶
される。次いで、送液流値の閑係を用いて検*?fMが
作成され、これがメモリに記憶される。
Next, a pulse train with a different number of pulses per predetermined time (a second
In the figure, f2) is connected to the pulse motor 14 from the control unit 17.
The number of pulses required for the liquid level to reach from the third light receiving section 240 to the fourth light receiving section 24 (i) is measured in the same manner as described above, and from this, the number of pulses f per predetermined time is determined in the same way.
The liquid feeding flow rate ■2 for 2 is calculated and stored in the memory. Next, check *? using the flow rate value. fM is created and stored in memory.

その後、制御部17のメモリに記憶された前記検量線を
用いて最初に入力部から入力された所望の送液流量の値
から、最初に入力された送液流量(第2図においては■
3)に対応する所定時間当りのパルス数(第2図におい
てはfa )が算出され、このパルス数のパルスがパル
スモータ14に送出され、所望の流量の液体が送液され
る。
Thereafter, using the calibration curve stored in the memory of the control unit 17, the value of the desired liquid feeding flow rate inputted first from the input unit is calculated from the initially inputted liquid feeding flow rate (in FIG.
The number of pulses per predetermined time (fa in FIG. 2) corresponding to 3) is calculated, and this number of pulses is sent to the pulse motor 14, so that a desired flow rate of liquid is delivered.

本実施例のポンプにおいては、制御部17内に予め組込
まれたプログラムに従って、所定時間当りのパルス数の
異なるパルスを順次パルスモータ14に送って送液を行
なうと共に、それぞれの異なる所定時間当りのパルス数
における送液流量を計量部で実測して求め、これらのパ
ルス数と送液流量実測値との関係から検量線を作成して
メモリに予め記憶しておき、入力部から入力された所望
送液流斌値から前記検量線を用いてパルスモータ14に
送出すべき所定時間当りのパルス数を決定しているため
、ポンプの送液流量は極めて正確なもので、しかもこれ
らの操作は制御部17の制御下に自動的に行なわれるた
め、このポンプの取扱いは極めて簡単なものである。そ
して、駆動源としてパルスモータ14を使用してその回
転運動をラック13、ビニオン16により直線運動に変
換し、これを直接プランジャ11に伝達するようにした
ので構造が簡素化され、しかもプランジャ11の運動が
数値化されているため、ポンプの送液精度は高いもので
ある。更に、シリンダ孔10を上向傾斜をもって形成し
たので、何らかの原因で気泡が混入又は発生し、これが
シリンダ孔10内に滞留することにより送液流量に影智
を与える等の事故もない。
In the pump of this embodiment, according to a program pre-installed in the control unit 17, pulses with different numbers of pulses per predetermined time are sequentially sent to the pulse motor 14 to perform liquid feeding, and at the same time, pulses with different numbers of pulses per predetermined time are sequentially sent to the pulse motor 14. The liquid feeding flow rate at the number of pulses is actually measured using the metering section, a calibration curve is created from the relationship between these pulse numbers and the measured liquid feeding flow rate, and stored in memory in advance. Since the number of pulses per predetermined time to be sent to the pulse motor 14 is determined from the fluid flow rate value using the calibration curve, the fluid flow rate of the pump is extremely accurate, and these operations are controlled. Since this is done automatically under the control of section 17, handling of this pump is extremely simple. The pulse motor 14 is used as a drive source, and its rotary motion is converted into linear motion by the rack 13 and pinion 16, and this is directly transmitted to the plunger 11, which simplifies the structure. Since the movement is digitized, the pump has high liquid delivery accuracy. Furthermore, since the cylinder hole 10 is formed with an upward slope, there is no possibility that air bubbles may be mixed in or generated for some reason and remain in the cylinder hole 10, thereby affecting the liquid flow rate.

なお、上記実施例においては送液流量の測定に際し為送
液容量を測定するために計量管22を用いたがこれに限
られず、例えば重量センサー等を用いて送液重量を測定
するようにしても良く、またプランジャ11の駆動源も
パルスモータ14に限られず、各種の公知の駆動源が利
用でき、更にシリンダ孔10も上向傾斜をなして形成し
たがこれに限られず、その他事発明の要旨を逸脱しない
範囲で種々変ルして差支えない。
In the above embodiment, the measuring tube 22 was used to measure the volume of the liquid to be fed when measuring the flow rate of the liquid to be fed, but the present invention is not limited to this. For example, a weight sensor or the like may be used to measure the weight of the liquid to be fed. Furthermore, the driving source of the plunger 11 is not limited to the pulse motor 14, and various known driving sources can be used.Furthermore, although the cylinder hole 10 is also formed with an upward slope, it is not limited to this, and other aspects of the invention may be used. Various changes may be made without departing from the gist.

而して、本発明のポンプは外部から演算処理部に入力を
行なう入力部と、外部からの入力に基づいて各種演算、
制御を行なう制御部と、制御部の送出する制御量信号に
よりその送液流量が制御される送液ポンプと、送液ポン
プの吐出側流路に存し制御部からの信号により吐出側流
路と計1部流路とを切換える流路切換弁と、H[置部流
路に連結され送液ポンプの送液流量を計量すると共に、
得られる計量値を制御部に返送する計量部とからなり、
送液するに際し予め制御部の信号により切換弁を吐出側
流路から計i部流路に切換えた後、制御部から順次巣な
る制御量信号を送液ポンプに送出して送液ポンプを作動
させると共に、前記送出した順次異なる制御量信号に対
応して作動する送液ポンプの送液流値をそれぞれ*+°
m部で計量してその計量値を制御部に送り、制御部でこ
れらの制御量と計に値とから検量線を作成してこれを制
御部内のメモ、りに一時記憶しておき、その後制御部の
信号により切換弁を計i+を部流路から吐出側流路に切
換えると共に、入力部から入力される送液流量を前記検
′M線を用いて制御量に換算し、この換算した制御量信
号を送液ポンプに送出してその送液流量を校正するよう
に構成したので、その送液精度は極めで高いものであり
、またこれら校正操作は全て自動的に行なわれるため取
扱いが簡単である等の特長を有する。
The pump of the present invention has an input section that inputs input from the outside to the arithmetic processing section, and performs various calculations and calculations based on the input from the outside.
A control unit that performs control, a liquid feeding pump whose liquid feeding flow rate is controlled by a control amount signal sent from the control unit, and a liquid feeding pump that is located in a discharge side flow path of the liquid feeding pump and that is controlled by a signal from the control unit. A flow path switching valve that switches between the flow path and the flow path in the first part;
It consists of a measuring section that returns the obtained measured value to the control section,
When sending liquid, the switching valve is switched from the discharge side flow path to the i-section flow path in advance according to a signal from the control unit, and then the control unit sequentially sends control amount signals to the liquid sending pump to operate the liquid sending pump. At the same time, the liquid feeding flow values of the liquid feeding pumps that operate in response to the sequentially different control amount signals sent out are respectively *+°
Measure in the m section and send the measured values to the control section.The control section creates a calibration curve from these controlled variables and the meter values, temporarily stores it in a memo in the control section, and then The switching valve is switched from the partial flow path to the discharge side flow path according to a signal from the control section, and the liquid feeding flow rate inputted from the input section is converted into a control amount using the above-mentioned detection line M. Since the control volume signal is sent to the liquid sending pump to calibrate the liquid sending flow rate, the liquid feeding accuracy is extremely high, and all of these calibration operations are performed automatically, making it easy to handle. It has features such as being simple.

【図面の簡単な説明】[Brief explanation of the drawing]

関係を示すグラフである。 1 ・・・ポンプヘッド、  6・・・吸入部、9・・
・吐出部、  14・・・パルスモータ、17・・・制
御部、 19・・・三方電磁弁120・・・分岐管、 
21・・・計鑓部、22・・・計量管。 1
It is a graph showing a relationship. 1...Pump head, 6...Suction part, 9...
・Discharge part, 14... Pulse motor, 17... Control part, 19... Three-way solenoid valve 120... Branch pipe,
21... Gauge lug part, 22... Measuring tube. 1

Claims (1)

【特許請求の範囲】 /、 外、部から演算処理部に入力を行なう入力部と、
外部からの入力に基づいて各種演算、制御を行なう制御
部と、制御部の送出する制御量信号によりその送液流量
が制御される送液ポンプと、送液ポンプの吐出側流路に
存し制御部からの信号により吐出側流路と針鼠部流路と
を切換える流路切換弁と、計量部流路に連結され送液ポ
ンプの送液流量をu[蓋すると共に、得られる計旭値を
制御部に返送するitt部とからなり、送液するに際し
予め制御部の信号により切換弁を吐出細流路から計蓋部
流路に切換えた後、ttilJ御部から順次大なる制御
量信号を送液ポンプに送出して送液ポンプを作動させる
と共に、前記送出した順次大なる制御tht信号に対応
して作動する送液ポンプの送液流量をそれぞれ計四部で
計重してその計に値を制御部に送り、制御部でこれらの
制御部と針鼠値とから検*iIMを作成してこれを制御
部内のメモリに一時記憶しておき、その後制御部の信号
により切換弁を計量部流路から吐゛出側流路に切換える
と共に、入力部から入力される送液流量を前記検量線を
用いて制御部に換算し、この換算した制御量信号を送液
ポンプに送出してその送液流量を校正するよう構成した
ことを特徴とするポンプ。 2 送液ポンプがパルスモータで駆動される特許請求の
範囲第1項記載のポンプ。
[Claims] /, an input section for inputting input from the outside section to the arithmetic processing section;
There is a control unit that performs various calculations and controls based on input from the outside, a liquid delivery pump whose liquid delivery flow rate is controlled by a control amount signal sent from the control unit, and a flow path on the discharge side of the liquid delivery pump. A flow path switching valve that switches between the discharge side flow path and the needle groin flow path based on a signal from the control section, and a flow path switching valve that is connected to the metering section flow path and controls the liquid feeding flow rate of the liquid feeding pump by u [and the obtained meter value. It consists of an itt part that returns the amount of water to the control part, and after switching the switching valve from the discharge narrow flow path to the meter lid part flow path in advance according to a signal from the control part when sending liquid, a large control amount signal is sequentially sent from the ttilJ control part. The liquid is sent to the liquid feeding pump to operate the liquid feeding pump, and the liquid feeding flow rate of the liquid feeding pump that is activated in response to the sent out sequentially larger control tht signal is measured in each of the four parts, and the value is added to the total. is sent to the control section, the control section creates an inspection*iIM from these control section and needle values, temporarily stores it in the memory within the control section, and then switches the switching valve to the metering section flow according to the signal from the control section. At the same time, the fluid flow rate input from the input section is converted to the control section using the calibration curve, and the converted control amount signal is sent to the fluid pump to control its delivery. A pump characterized in that it is configured to calibrate a liquid flow rate. 2. The pump according to claim 1, wherein the liquid feeding pump is driven by a pulse motor.
JP865482A 1982-01-22 1982-01-22 Pump Granted JPS58126489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP865482A JPS58126489A (en) 1982-01-22 1982-01-22 Pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP865482A JPS58126489A (en) 1982-01-22 1982-01-22 Pump

Publications (2)

Publication Number Publication Date
JPS58126489A true JPS58126489A (en) 1983-07-27
JPH0448952B2 JPH0448952B2 (en) 1992-08-10

Family

ID=11698914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP865482A Granted JPS58126489A (en) 1982-01-22 1982-01-22 Pump

Country Status (1)

Country Link
JP (1) JPS58126489A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264912A (en) * 1985-09-17 1987-03-24 Minoru Atake Distributive injection apparatus
JPS6295180U (en) * 1985-12-06 1987-06-17
JPH046776U (en) * 1990-04-27 1992-01-22
JPH0440170U (en) * 1990-02-27 1992-04-06
WO2016059551A3 (en) * 2014-10-13 2016-06-09 Alfa S.R.L. Positive-displacement pump and pumping group for fluid products and method for the use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529262A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Brush holder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529262A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Brush holder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264912A (en) * 1985-09-17 1987-03-24 Minoru Atake Distributive injection apparatus
JPH0552886B2 (en) * 1985-09-17 1993-08-06 Minoru Atake
JPS6295180U (en) * 1985-12-06 1987-06-17
JPH0440170U (en) * 1990-02-27 1992-04-06
JPH046776U (en) * 1990-04-27 1992-01-22
WO2016059551A3 (en) * 2014-10-13 2016-06-09 Alfa S.R.L. Positive-displacement pump and pumping group for fluid products and method for the use thereof
KR20170070153A (en) * 2014-10-13 2017-06-21 알파 에스알엘 Positive―displacement pump and pumping group for fluid products and method for the use thereof
EP3483434A1 (en) * 2014-10-13 2019-05-15 Alfa S.r.l. Positive-displacement pump and pumping group for fluid products and method for the use thereof
AU2015332105B2 (en) * 2014-10-13 2019-06-20 Alfa S.R.L. Positive-displacement pump and pumping group for fluid products and method for the use thereof
US11053930B2 (en) 2014-10-13 2021-07-06 Alfa S. R. L. Positive-displacement pump and pumping group for fluid products and method for the use thereof

Also Published As

Publication number Publication date
JPH0448952B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
US4998914A (en) Procedure for the perfusion of cavities in objects and device for executing the procedure
US6672841B1 (en) Pumping and metering device
US4832689A (en) Infusion means
US4897797A (en) Proportional chemical feeding system
US20090131863A1 (en) Volume Measurement Using Gas Laws
US10105666B2 (en) Method for dispensing a fluid medium
FI101864B1 (en) Method for correcting fluid dosing errors, and liquid dosing device
US5263367A (en) Method and apparatus for determining delivery amounts and rates of pumps in the medicotechnical field
US20070151350A1 (en) Measuring fluid volumes in a container using pressure
EP2062605A1 (en) Calibrating device for dosing machines of radioactive substances
JPS58126489A (en) Pump
CN208476874U (en) A kind of buret accurately calculating titer
US5769108A (en) Fluid measuring, dilution and delivery system with air leakage monitoring and correction
US6065940A (en) Diaphragm dosing pump
AU742819B2 (en) System and method for monitoring a dosage pump in a dialysis machine
US7367473B2 (en) Circuit for dispensing fluid products, in particular colouring agents, paints or similar fluid products
GB2256478A (en) Flow measurement device
JPS6332385Y2 (en)
US7263900B2 (en) Volumetric flow metering device
JPS6173024A (en) Piston prober
JPS59159019A (en) Apparatus for feeding constant quantity of liquid
JPH0819921B2 (en) Accumulator accumulation measurement system
JPH0326306Y2 (en)
JPS60113149A (en) High-pressure metering pump for liquid chromatography
JP3093222B2 (en) Bellows pump