JPS58126464A - Ignition timing control method for multi-cylinder internal-combustion engine - Google Patents

Ignition timing control method for multi-cylinder internal-combustion engine

Info

Publication number
JPS58126464A
JPS58126464A JP57008528A JP852882A JPS58126464A JP S58126464 A JPS58126464 A JP S58126464A JP 57008528 A JP57008528 A JP 57008528A JP 852882 A JP852882 A JP 852882A JP S58126464 A JPS58126464 A JP S58126464A
Authority
JP
Japan
Prior art keywords
ignition timing
ignition
cylinder
combination
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57008528A
Other languages
Japanese (ja)
Other versions
JPS6342113B2 (en
Inventor
Yasuhito Takasu
高須 康仁
Shingo Inoue
井上 真悟
Toshiharu Iwata
岩田 俊晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57008528A priority Critical patent/JPS58126464A/en
Priority to US06/459,497 priority patent/US4480615A/en
Publication of JPS58126464A publication Critical patent/JPS58126464A/en
Publication of JPS6342113B2 publication Critical patent/JPS6342113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To obtain earlier the optimum ignition timing for each cylinder, in a method for optimum control of ignition timing so that the number of revolutions of the engine becomes maximum, by changing over the change amount of ignition timing from the change amount for all cylinders to that for individual cylinder. CONSTITUTION:In the process from initial setting of three fundamental points L, H and S to R1, R2..., R6, the optimum ignition timing as average of all cylinders is sought by giving a change amount of ignition timing to be applied to all cylindes. Then in the process from initial setting of L'(R6), H', S' to R1', R2'... R5, such an operation is made as due to the modification amount of ignition timing specified for individual cylinder, and the final optimum ignition timing for each cylinder is determined. Thereby the optimum ignition timing for individual cylinder can be sought in earlier stage.

Description

【発明の詳細な説明】 本発明は多気筒内燃機関において燃料消費率を向上させ
るべく気筒毎に点火時期の最適制御を行なう方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for optimally controlling ignition timing for each cylinder in order to improve fuel consumption in a multi-cylinder internal combustion engine.

内燃機関の点火時期は、一般に、出力を最大限に発揮し
かつ燃料消費率を最小とする平均的な値をエンジン回転
数と吸気圧力(又は吸気流量)セ定める。そして機関が
多気筒のものでは、その平均的な共通の点火時期を各気
筒に採用するのが普通である。しかしながら、製造時の
バラツキ、経時変化等によって最大出力を与える点火時
期は気筒毎に変化し前記した平均的な点火時期がその気
筒にとって最適とは限らず出力損失を招く原因ととる。
The ignition timing of an internal combustion engine is generally determined by setting the engine speed and intake pressure (or intake flow rate) to average values that maximize output and minimize fuel consumption. If the engine has multiple cylinders, it is common to use this average common ignition timing for each cylinder. However, the ignition timing that provides the maximum output varies from cylinder to cylinder due to variations during manufacturing, changes over time, etc., and the average ignition timing described above is not necessarily optimal for that cylinder, causing output loss.

本発明はかかる従来技術の欠点に鑑み、各気筒に最適の
点火時期を与えることによって常に出力効率の最大を確
保すると共に、この最適な運転状態となる点火時期への
収束を円滑に行なうことを目的とする。
In view of the shortcomings of the prior art, the present invention aims to always ensure the maximum output efficiency by giving the optimum ignition timing to each cylinder, and to smoothly converge to the ignition timing that provides the optimum operating state. purpose.

以下図面によって説明すれば第1図は点火時期とエンジ
ン回転数(トルり)との一般的な関係を示すもので、エ
ンジン回転数を最大N m a xとする最適点火時期
θoptを一つもつ。そして、この最適点火時期0op
tは気筒間で変動があるのが普通である。従って、簡単
のため最少の多気筒機関である2気筒機関について考え
れば、第2図の如く、夫々の気筒#1.$2の点火時期
を変化させた場合に、エンジン回転数は破線の如く等高
線状rI  rr2  、r31・・・の如く変化する
。それ故、エンジンの回転数の山■を形成する夫々の気
筒の点火時期の組合せθ1 opt、θ20Ptがあり
、逆に言えばこの最適点火時期の組合せで各気筒を駆動
すれば最大の回転数(トルク)が得られるのである。
To explain the following using drawings, Figure 1 shows the general relationship between ignition timing and engine speed (torque). . And this optimal ignition timing 0op
Normally, t varies between cylinders. Therefore, for simplicity, if we consider a two-cylinder engine, which is the smallest multi-cylinder engine, each cylinder #1. When the ignition timing of $2 is changed, the engine speed changes as shown by contour lines rI rr2 , r31 . . . as shown by the broken line. Therefore, there is a combination of ignition timings θ1opt and θ20Pt for each cylinder that forms the peak of the engine speed.Conversely, if each cylinder is driven with this combination of optimal ignition timings, the maximum rotational speed ( torque) can be obtained.

本発明では以下述べる手法によってエンジン最大回転数
を提供する各気筒の点火時期の組合せを検索するもので
ある。まず、この手法の原理を説明すれば、第2図にお
いて、#l気筒の点火時期をθ1にまた#2気筒の点火
時期を02とし、この点火時期の組合せ(点L)で所定
期間(例えば20回転)運転してエンジンの回転数とし
てN1が得られたとする。(なお、ここで01 、θ2
とは後の説明の便宜上、吸入空気景(又は吸気圧力)及
びエンジンの回転数によって定まる基本進角θBに対す
る補正量と考えられたい。即ち、第2図における原点は
点火時期進角でいえば0ではなくθBであり、これに0
1又はθ2を加えたものが実際の進角値となる。)次に
上記点りとは多少点火時期を変えた点H(例えば#l気
筒の点火時期をΔθだけ僅かに増し、一方#2気筒の点
火時期θ2はそのま1とする)での点火時期の組合せ(
θ1+Δθ、θ2 )で運転しそのときの回転数をN2
とする。更に別の点8(例えば#2の気筒の点火時期を
Δθだけ僅かに増し、一方#lの気筒の点火時期はθ1
とする)での組合せ(01、θ2+Δθ)で運転し得ら
れる回転数をN3とする。つまり2気筒の場合の点火時
期の組合せを表とすれば次の表1のようになる。
The present invention uses the method described below to search for a combination of ignition timings for each cylinder that provides the maximum engine speed. First, to explain the principle of this method, in Fig. 2, the ignition timing of the #l cylinder is set to θ1 and the ignition timing of the #2 cylinder is set to 02, and this ignition timing combination (point L) is used for a predetermined period (for example, 20 rotations) to obtain N1 as the engine rotation speed. (Here, 01, θ2
For convenience of explanation later, it should be thought of as a correction amount for the basic advance angle θB determined by the intake air scene (or intake pressure) and the engine rotation speed. In other words, the origin in Fig. 2 is not 0 but θB in terms of ignition timing advance, and 0
The value obtained by adding 1 or θ2 becomes the actual advance angle value. ) Next, the ignition timing at point H is slightly different from the above-mentioned ignition timing (for example, the ignition timing of the #l cylinder is slightly increased by Δθ, while the ignition timing θ2 of the #2 cylinder is left unchanged at 1). A combination of (
θ1 + Δθ, θ2), and the rotational speed at that time is N2
shall be. Furthermore, at another point 8 (for example, the ignition timing of the #2 cylinder is slightly increased by Δθ, while the ignition timing of the #l cylinder is increased by θ1).
Let N3 be the number of rotations obtained by operating with the combination (01, θ2+Δθ). In other words, if the combinations of ignition timings in the case of two cylinders are made into a table, the following Table 1 will be shown.

表     1 次にこの3つ(即ち気筒数に1を加えたもの)の初期点
火時期の組合せにおける各気筒の平均値pf、求めると
共に、回転数が最少となる点火時期の組合せ(第2図の
例では回転数N□となるL)を捜す。そして、この平均
値Tと最少回転数N1における点火時期の組合せLとを
結ぶ直線上において、石に関しLと反対側(換言すれば
回転数の増大する方向)に新たな点R1を設定する。そ
して、この点R1の点火時期の組合せ(θ1+Δθ。
Table 1 Next, find the average value pf for each cylinder in these three (i.e., the number of cylinders plus 1) initial ignition timing combinations, and calculate the ignition timing combination that minimizes the rotational speed (see Figure 2). In the example, search for L) that gives the rotational speed N□. Then, on a straight line connecting this average value T and the ignition timing combination L at the minimum rotational speed N1, a new point R1 is set on the opposite side of the stone to L (in other words, in the direction in which the rotational speed increases). Then, the combination of ignition timings at this point R1 (θ1+Δθ).

02+Δθ)を計算し、この組合せで運転を行ないその
ときの回転数N4を最少回転数N1と入れ換え、N2 
、N3及びN4の8つの回転数を比較し最少回転数(図
ではN3  )となる点Sを求めると共に、8つの点火
時期の組合せの平均値W′を求め、この平均値r′と最
少回転数となる点Sとを結んだ直接において最少回転数
となる点火時期の組合せSの反対側(即ち回転数の増大
する方向)に新たな点It2を設定する。
02 + Δθ), operate with this combination, replace the rotation speed N4 at that time with the minimum rotation speed N1, and set N2
, N3, and N4 to find the point S at which the minimum number of revolutions (N3 in the figure) is found, and also find the average value W' of the eight ignition timing combinations, and calculate this average value r' and the minimum revolution number. A new point It2 is set directly on the opposite side of the ignition timing combination S that results in the minimum rotational speed (that is, in the direction in which the rotational speed increases) directly connected to the point S that corresponds to the number of rotations.

以下これを繰返しゆけば、R1→几2→R3→R4→R
5→R6→R1→R8の様に点火時期の組合せを回転数
の増大方向に向は次々と修正してゆくことで回転数の山
■を極めることができる。
If you repeat this, R1 → 几2 → R3 → R4 → R
By successively correcting the combination of ignition timings in the direction of increasing the rotational speed, such as 5→R6→R1→R8, the peak of the rotational speed can be reached.

第8図は基本の8点H,8,Lに対し新たな点火時期の
組合せθn e w (即ちR)の求め方が図示される
。この場合平均値はベク) /Ly表示でとなる。また
、回転数が最少となる点火時期の組合せ6m i n 
(即ちL)と置きかえるべき新たな点をθnflWとす
れば、 θn e w = (j −a (6m i n −(
j ) −−−−121α逼定数 となる。
FIG. 8 shows how to obtain a new ignition timing combination θnew (ie, R) for the basic eight points H, 8, and L. In this case, the average value is expressed as vec)/Ly. In addition, the ignition timing combination that minimizes the rotation speed is 6m in
(In other words, L), if the new point to be replaced with θnflW is θn ew = (j −a (6min −(
j ) -----121α is the constant.

しかしながら、1気筒のみの点火時期変化に伴なう回転
数の変化が小さいため挾まった方向に点火時期を修正す
る場合があり、筐た気筒毎に点火時期の変化量を変える
と気筒毎の最適点火時期へ収束するまでの運転期間が長
くなり、その結果飽筒毎の最適点火時期を探索する速度
が遅くなる。
However, since the change in rotation speed associated with a change in the ignition timing of only one cylinder is small, the ignition timing may be corrected in the opposite direction, and if the amount of change in the ignition timing is changed for each cylinder, The operating period until convergence to the optimum ignition timing becomes longer, and as a result, the speed of searching for the optimum ignition timing for each saturated cylinder becomes slower.

そこで本発明においては、全気筒向じ量だけ点火時期を
変化させる運転(表2参照)を上述した点火時期の帰還
制御の開始時よ)所定時間行ない、その後各気筒毎に変
化量を設定した点火時期の組合せによる運転を行なうこ
とによりまず全気筒の平均的な最適点火時期を探索し、
その画点で気筒毎に異なる点火時期の組み合せを設定し
、最終的に気筒毎の最適点火時期を求めるものである。
Therefore, in the present invention, an operation in which the ignition timing is changed by the amount in the direction of all cylinders (see Table 2) is performed for a predetermined time (from the start of the ignition timing feedback control described above), and then the amount of change is set for each cylinder. By performing operation using combinations of ignition timings, we first search for the average optimum ignition timing for all cylinders, and
A different combination of ignition timings is set for each cylinder at that point, and the optimum ignition timing for each cylinder is finally determined.

上記の如く、点火時期の変化量が全気筒−律の点火時期
制御から気筒別の点火時期制御に切替えることにより気
筒別の最適点火時期をより速く探索できる。
As described above, by switching from ignition timing control in which the amount of change in ignition timing is based on all cylinders to ignition timing control for each cylinder, the optimal ignition timing for each cylinder can be searched for more quickly.

表     2 なお、以上は説明の便宜上2気筒エンジンについて説明
したが、これ以上の気筒数のエンジンであっても同様の
原理によって回転数を最大とするよう各気筒の点火時期
の修正制御を行なうことができる。
Table 2 The above description has been about a two-cylinder engine for convenience of explanation, but even in engines with more cylinders, the ignition timing of each cylinder can be corrected and controlled to maximize the rotational speed using the same principle. I can do it.

次に本発明の方法を実現する装置について説明する。第
4図において、10は内燃機関の本体で、この場合は#
1.$2.+8.$4の4個の気筒を有している。吸気
マニホルド12から各気筒への吸入空気が導入され、7
0ツトル弁14はこの吸入空気の流量コンI・ローμを
行なう。エアフローメータ16がスロットル弁14の上
流に設けられて吸入空気量の計測を行なう。なお、エア
フローメータ16によって吸入空気流量の測定を行なう
代シに吸気管内の圧力を計測してもよい。18は回転セ
ンサであり、エンジンの回転に応じた信号を発生する。
Next, an apparatus for implementing the method of the present invention will be described. In Fig. 4, 10 is the main body of the internal combustion engine, in this case #
1. $2. +8. It has 4 cylinders of $4. Intake air is introduced into each cylinder from the intake manifold 12, and
The zero-tuttle valve 14 controls the flow rate of this intake air. An air flow meter 16 is provided upstream of the throttle valve 14 to measure the amount of intake air. Note that instead of measuring the intake air flow rate using the air flow meter 16, the pressure inside the intake pipe may be measured. A rotation sensor 18 generates a signal according to the rotation of the engine.

回転センサとしてはエンジンの成るクランク角度のパ)
v7.信号を発生する周知のクランク角センサを使用す
ることができる。
As a rotation sensor, it measures the crank angle of the engine.
v7. Any known crank angle sensor that generates a signal can be used.

20は点火装置であり、イグナイタと、ディストリビュ
ータと、イブニラシランコイルと全構成要素とするもの
であシ、線22を介して各気筒の点火栓電極に接続して
いる。
Reference numeral 20 denotes an ignition device, which consists of an igniter, a distributor, and an ibunirasilane coil, and is connected to the ignition plug electrode of each cylinder via a wire 22.

点火制御回路26は点火装置2oの作動信号を形成する
ものであり、後述の方法奢夾行すべくプログラムされた
コンピュータとしての機能を持っている。吸入空気量セ
ンサ16及び回転センサ18は夫々線80及び32を介
して制御回路26に接続している。点火制御回路26は
吸入空気量及び回転数の組合せで定まる点火時期の演算
を行ない、この演算結果に応じた点火時期信号を線34
を介して点火装置に出力する。
The ignition control circuit 26 forms an activation signal for the ignition device 2o, and has the function of a computer programmed to carry out the method described below. Intake air amount sensor 16 and rotation sensor 18 are connected to control circuit 26 via lines 80 and 32, respectively. The ignition control circuit 26 calculates the ignition timing determined by the combination of the intake air amount and the rotational speed, and sends an ignition timing signal corresponding to the calculation result to the line 34.
Output to the ignition device via.

第5図は点火制御回路26のブロックダイヤグラムを示
すものであって、入力ポート42は吸入空気量センサ1
6及び回転数センサ18からの信号を受けとる。A/D
コンバータ4oは吸入空気iセンサ16(又は吸気圧力
センサ)からのアナログ信号をデジタル信号に変換する
。出力ポート46は点火装置20への信号ゲートの役割
を行なう。入力ポート42及び出力ポート46は、コン
ピュータの構成要素であるCPU413 、ROM50
、RAM52にパス54を介して接続し、クロック発生
器58からのクロック信号に同期して信号のやりとシを
行なう。
FIG. 5 shows a block diagram of the ignition control circuit 26, in which the input port 42 is connected to the intake air amount sensor 1.
6 and the rotation speed sensor 18. A/D
Converter 4o converts an analog signal from intake air i sensor 16 (or intake pressure sensor) into a digital signal. Output port 46 serves as a signal gate to igniter 20. The input port 42 and the output port 46 are the components of the computer, such as a CPU 413 and a ROM 50.
, are connected to the RAM 52 via a path 54, and exchange signals in synchronization with a clock signal from a clock generator 58.

点火制御回路26は、前述した本発明原理にょる各気筒
の最適点火時期を得るべくプログラムされているが、こ
の概略の作動を第6図にょシ2気筒エンジンの場合で説
明すれば、まず表2の点火時期の組合せで全気筒の平均
的な最適点火時期を探索する。即ち、最初の計算ステッ
プS1では点火時期は仔】、−〕の如く夫々θl 、θ
2に設定される。この状態で運転することにより?−4
の如くエンジン回転数は変化し、向の如く点火パルスが
出る。
The ignition control circuit 26 is programmed to obtain the optimum ignition timing for each cylinder according to the principles of the present invention described above. The average optimum ignition timing for all cylinders is searched for by combining the two ignition timings. That is, in the first calculation step S1, the ignition timing is set as θl and θ, respectively.
Set to 2. By driving in this condition? -4
The engine speed changes as shown, and the ignition pulse appears as shown in the direction.

この第17テツプ8、の終り近くの所定点火パルス間O
fo〜Of andでクロックパルスをに)の如く取り
込みその個数を計数し、これを第1ステツプ81でのエ
ンジン回転数N1 とする。第2回目のステップ82で
は第1気筒はθ1+Δ0、第2気筒は02+Δ0とし、
同様に所定点火回数運転し、Cfo〜Cf and間の
クロックパルス数としての回転数N2を測定する。同様
第8のステップS3での回転数N3を測定する。このよ
うに測定された回転数の平均をとり最小回転数の反対側
に新点火時期・q1′、θ□′を第3図で述べた計算に
よってとシ、同様に所定点火運転し回転数N4をクロッ
クパルス数として計測する。以下これを繰返すのである
During the predetermined ignition pulse near the end of this 17th step 8,
The clock pulses are taken in from fo to Of and, and the number thereof is counted, and this is set as the engine rotational speed N1 at the first step 81. In the second step 82, the first cylinder is set to θ1+Δ0, the second cylinder is set to 02+Δ0,
Similarly, the engine is operated a predetermined number of times, and the rotational speed N2 as the number of clock pulses between Cfo and Cf and is measured. Similarly, the rotation speed N3 in the eighth step S3 is measured. Take the average of the rotational speeds measured in this way, and calculate the new ignition timing q1', θ□' on the opposite side of the minimum rotational speed using the calculation described in Fig. 3. Similarly, perform the prescribed ignition operation and set the rotational speed N4. is measured as the number of clock pulses. This will be repeated below.

そして、所定期間が経過した後、今度は表1に示す点火
時期の組合せで、上述同様に気筒毎の最適点火時期を探
索するのである。
After a predetermined period of time has elapsed, the optimal ignition timing for each cylinder is searched for in the same way as described above using the ignition timing combinations shown in Table 1.

以上本発明における点火時期制御の大甘かなところを説
明したので、その詳細を第7図のフローチャートによシ
説明する。
Now that the lenient aspects of the ignition timing control in the present invention have been explained above, the details will be explained with reference to the flowchart of FIG. 7.

まず、内燃機関が起動すると、プログラムはステ(11
) ツブ100よりこの点火時期演算の割込み処理ルーチン
を実行する。次いでステップ101では吸入空気量セン
サ16(又は吸気圧センサ)、回転数センサ18で検出
した吸入空気量(又は吸気圧)と回転数より基本点火時
期θBの算出を行なう。
First, when the internal combustion engine starts, the program starts at step (11).
) The knob 100 executes this ignition timing calculation interrupt processing routine. Next, in step 101, the basic ignition timing θB is calculated from the intake air amount (or intake pressure) detected by the intake air amount sensor 16 (or intake pressure sensor) and the rotation speed sensor 18 and the rotation speed.

具体的には、メモリには吸入空気量と回転数との組合せ
に対する基本点火時期マツピングがしてあり、実測され
る吸入空気量と回転数とより基本点火時期の演算が行な
われるのである。ステップ102では回転数および吸気
負圧の変化状態からエンジンが定常か否かの判定を行な
う。エンジンが定常でないときはNOに分岐しステップ
108に行く。108ではステップカラガタをi=0、
点火回数カウンタをCf−0、クロックパルスカウンタ
をn p : Q 、後述するフラグをKEY=0と夫
々クリヤする。次にステップ104ではスタート点火時
期を夫々第1.2,8.・・・・・M番目の気筒に対し
て、 (12) にセットする。ここにθl 、θ2・・・・・・0Mは
第2図につき説明したように点火時期の修正量で吸入空
気量(又は吸気圧)と回転数とに応じて記憶されておシ
、これにステップ101で計算される基本点火時期を加
えたものが点火時期として計算されるものである。】0
5でメインルーチンに復帰する。
Specifically, the memory stores basic ignition timing mapping for combinations of intake air amount and rotational speed, and the basic ignition timing is calculated based on the actually measured intake air amount and rotational speed. In step 102, it is determined whether the engine is steady based on the changing state of the rotational speed and intake negative pressure. If the engine is not steady, the process branches to NO and goes to step 108. In 108, the step Karagata is i=0,
The ignition number counter is cleared to Cf-0, the clock pulse counter is cleared to np:Q, and a flag to be described later is cleared to KEY=0. Next, in step 104, the start ignition timing is set to 1, 2, 8, . ...Set (12) for the Mth cylinder. Here, θl, θ2...0M are the correction amounts for the ignition timing, which are stored in accordance with the intake air amount (or intake pressure) and the rotational speed, as explained with reference to Fig. 2. The ignition timing is calculated by adding the basic ignition timing calculated in step 101. ]0
Step 5 returns to the main routine.

ステップ102で定常と判定されればYESに分岐し上
記の如く設定された点火時期[相]1.0□。
If it is determined in step 102 that it is steady, the branch goes to YES and the ignition timing [phase] 1.0□ is set as described above.

・・・◎yの組合せで運転が行なわれ、第2図の最初の
点L(即ち第6図でいえば第1ヌテツプ8□ )での回
転数測定が行なわれる。先ず、ステップ。
The operation is performed using the combination ◎y, and the rotational speed is measured at the first point L in FIG. 2 (that is, the first Nutep 8□ in FIG. 6). First, step.

106では気筒数毎にクリアされるカウンタJの値を点
火1回毎に1つ加算し、ステップ107でJの値が気筒
数Mに達したか否かを判別する。Jの値がMに達してい
ればステップ108でJ=1にクリアし、達していなけ
ればステップ109に移行する。このステップ109で
は気筒毎に点火時期◎、を基本進角θBと点火時期の修
正量OJとを加算することによシ基める。ステップ11
0では点火回数カウンタOfが点火1回毎に1つ加算さ
れることを示す。111のステップでは点火回数Ofが
第6図か)の0fendであるか否かの判定をする。最
初は当然NOに分岐し、120で点火回数Ofが第6図
…)のCfOよシ大きいか否かの判定をする。NOであ
れば、回転数の測定期間に入っていないことを示すので
、122でメインルーチンに復帰する。120で、点火
回数Ofがクロックパルスの計測を始めるべき点火回数
Ofoに達していると認識すればYESに分岐し、12
1においてクロックパルスのカウント開始をした後、メ
インルーチンに122で復帰する。
In step 106, the value of counter J, which is cleared for each number of cylinders, is incremented by one for each ignition, and in step 107, it is determined whether the value of J has reached the number M of cylinders. If the value of J has reached M, it is cleared to J=1 in step 108, and if it has not reached M, the process moves to step 109. In step 109, the ignition timing ◎ for each cylinder is based on the addition of the basic advance angle θB and the ignition timing correction amount OJ. Step 11
0 indicates that the ignition number counter Of is incremented by one for each ignition. In step 111, it is determined whether or not the number of ignitions Of is 0fend (see FIG. 6). At first, it naturally branches to NO, and at step 120 it is determined whether the number of ignitions Of is greater than CfO in FIG. 6...). If NO, this indicates that the rotational speed measurement period has not yet entered, and the process returns to the main routine at step 122. At step 120, if it is recognized that the number of ignitions Of has reached the number of ignitions Ofo at which clock pulse measurement should be started, the process branches to YES;
After starting the clock pulse count at step 1, the process returns to the main routine at step 122.

ステップ111で点火回数Ofが0fendに達したと
判定したら112で、このときのクロックパルスのカウ
ント値npをメモリに格納する。
If it is determined in step 111 that the number of ignitions Of has reached 0fend, then in 112 the clock pulse count value np at this time is stored in the memory.

このカウント値は第6図におけるステップ81でのエン
ジン回転数N1を表わすのである。そして118で、点
火回数カウンタを0f=0、クロックバ!し7カウンタ
in p=oにクリヤし、7テツプカウンタei=j+
1と1つ加算し次の点火時期設定を行ない、第2図の点
Hでの運転を行ない第6図でいえば第2ステツプ82に
入る。
This count value represents the engine rotational speed N1 at step 81 in FIG. Then, at 118, the ignition number counter is set to 0f=0, clock bar! Clear the 7 counter in p=o and clear the 7 step counter ei=j+
The next ignition timing is set by adding 1 to 1, and the operation at point H in FIG. 2 is performed, and the second step 82 in FIG. 6 is entered.

先ず114では16Mか否かの判定が行なわれる。この
とき1=1であるからYESに分岐し、115において
フラグKEYがOか否かを判定する。最初はKEY、、
=0だから各気筒の点火時期の修正量は、 と設定される。ステップ117でメインμmチンに復帰
する。再び100のステップから割込みに入ると、第1
ステツプと同様106.107゜109.110,11
1,120,121,122(15) の手順でこの第2ステツプS2におけるエンジン回転数
N2がクロックパルス数として測定され、結果は112
のステップでメモリ中に格納される。
First, in step 114, it is determined whether the number is 16M or not. At this time, since 1=1, the process branches to YES, and in step 115 it is determined whether the flag KEY is O or not. At first, KEY...
Since =0, the amount of correction of the ignition timing of each cylinder is set as follows. In step 117, the process returns to the main μm process. When the interrupt is entered again from step 100, the first
Same as step 106.107°109.110,11
1, 120, 121, 122 (15) The engine rotation speed N2 in this second step S2 is measured as the number of clock pulses, and the result is 112.
is stored in memory in steps.

その後、118のステップで、点火回数カウンタCf、
クロックパルスカウンタnpのクリヤ、及びステップカ
ウンタ1の1つ加算が行なわれ第3ヌテフプに入る。′
−′1 まず114では2気筒の場合も依然JESとして判定さ
れ、115で依然としてKEY=0だからYESに分岐
し、116で点火時期修正量を、と設定する。その後1
17でメインルーチンに復帰後、100で再びこのプロ
グラムに割込み、前と同様106以降の処理を行ない、
この第8ステップ8.におけるエンジン回転数N3の計
測をクロックバ/l/7−のカウント値npO形で行な
い、112でメモリに格納する。
Thereafter, in step 118, the ignition number counter Cf,
The clock pulse counter np is cleared and the step counter 1 is incremented by one, and the process enters the third inverter. ′
-'1 First, in 114, it is still determined as JES even in the case of two cylinders, and in 115, since KEY=0, it branches to YES, and in 116, the ignition timing correction amount is set. then 1
After returning to the main routine at 17, interrupt this program again at 100, perform the processing from 106 onwards as before,
This eighth step 8. The engine rotational speed N3 is measured in the form of a clock bar/l/7- count value npO, and is stored in the memory in step 112.

(16) 次に114のメチツブi≦Mの判定が行なわれる。2気
筒の場合にはここで始めてNoに分岐し、128でこれ
1での回転数測定ステップにおいて回転数を最小とする
ステップ+=minの検索を行なう。(なお、これ以上
の気筒数の場合は、気筒数に1を加えた点火時期のセッ
トが行なわれる壕で115のステップに分岐する。) 次に124でステップiがi M A Xよシ大きいか
否かを判定する。最初は当然NOに分岐し、125で平
均点火時期万の算出を前記第α)式によって行なう。こ
の式はベクトル表示であるから第+8+ 、 +41 
、 +51の各式における気筒成分毎に計算する。そし
て、126ではこの平均点火時期を基に前記第2式 %式%) によって回転数を増大させる新規な点火時期Onewの
算出を行なう。この式もベクトル表示であるから、C3
1、+41 、 +51式の各成分毎に新点火時期の計
算を行なり。次に127ではこの新点火時期θnewを
最小回転数(第2図の場合ではNI )を構成する点火
時期の組合せ(即ち第(8)式における01 。
(16) Next, in step 114, it is determined whether i≦M. In the case of two cylinders, the process branches to No at this point, and in step 128, a search is made for the step +=min that minimizes the rotation speed in the rotation speed measurement step 1. (If the number of cylinders is greater than this, it branches to step 115 at the trench where the ignition timing is set by adding 1 to the number of cylinders.) Next, in step 124, step i is larger than i M A Determine whether or not. At first, the process naturally branches to NO, and in step 125, the average ignition timing is calculated using the equation α). Since this formula is in vector representation, +8+, +41
, +51 for each cylinder component. Then, at step 126, a new ignition timing One is calculated based on this average ignition timing using the second formula (%). Since this formula is also expressed as a vector, C3
Calculate the new ignition timing for each component of formulas 1, +41, and +51. Next, at 127, this new ignition timing θnew is determined by the combination of ignition timings that constitutes the minimum rotational speed (NI in the case of FIG. 2) (ie, 01 in equation (8)).

02 、・・・、0M)と置き換える。そして、128
のステップで成分毎に点火時期修正量のセットヲ行ない
・01 ・02  r“°゛・OMを得、129でメイ
ンフレーチンに戻る。
02 , ..., 0M). And 128
In step 1, set the ignition timing correction amount for each component to obtain ・01 ・02 r"°゛・OM, and return to the main frequency at step 129.

以後、102の定常判定でYESに分岐し続けるとする
と、124でステップ数1がi M A X f超える
。その場合、124で初めてYESに分岐し、最初はK
EY=0だから182に分岐し、KEY=l、i=0に
セットして133でメインルーチンに復帰する。(以上
までの過程は各気筒の点火時期の変化を示す第8図にお
いて、L、H。
Thereafter, if it continues to branch to YES at the steady state determination of 102, the number of steps 1 exceeds i M A X f at 124. In that case, it branches to YES for the first time at 124, and for the first time K
Since EY=0, the process branches to 182, sets KEY=l and i=0, and returns to the main routine at 133. (The above process is shown in L and H in Fig. 8, which shows the changes in the ignition timing of each cylinder.

Sの初期セットからB−1,・・・R6までの説明であ
る)。そこで100で再びこのプログラムに割り込み、
lO2でなおも定常と判定された場合、前記と同様の過
程を経て115のステップに進む。
This is an explanation from the initial set of S to B-1, . . . R6). So interrupt this program again at 100,
If it is determined that the temperature is still steady at 1O2, the process proceeds to step 115 through the same process as described above.

この時i=l、KEY=1だから118に分岐し各気筒
の点火時期修正量は と設定され気筒ごとに異なる点火時期の組合せを得る。
At this time, since i=l and KEY=1, the process branches to 118, and the ignition timing correction amount for each cylinder is set to obtain a different ignition timing combination for each cylinder.

(表1では第2ヌテツプにおいて#l気筒の点火時期を
Δq1=Δθだけ動かし、#2気筒はそのまま即ち、Δ
θ2、=0で説明しているが、Δθ2□は0でなくても
よい)。そして114でNOに分岐するまで点火時期設
定を行ない、それ以後は前述した演算と全く同じ方法で
e/newを算出し、点火時期修正量セットを行なう。
(In Table 1, the ignition timing of the #l cylinder is moved by Δq1=Δθ in the second step, and the #2 cylinder remains unchanged, that is, Δ
Although the explanation is given with θ2=0, Δθ2□ does not have to be 0). Then, the ignition timing is set until the branch is NO in step 114. After that, e/new is calculated in exactly the same manner as the calculation described above, and the ignition timing correction amount is set.

この過程は第8図において、L’(BB)、 H′、 
S′の初期士ットから几!′、・・・、九′までの説明
である。以下同様の処理が繰シ返され、回転数の山■が
極められる。
This process is shown in Figure 8 as L'(BB), H',
From the beginning of S'! ′,..., this is the explanation up to 9′. Thereafter, the same process is repeated until the peak of the number of rotations is reached.

なお、上記実施例では点火時期の帰還制御の開始時より
所定時間、全気筒同一の点火時期修正量による運転を行
ない、その後、各気筒毎に定めた点火時期修正量による
運転を行なっていたが、全気筒同一の点火時期修正量に
よる運転を金気部平(18) 均の最適点火時期が得られるまで継続し、その時点で各
気筒毎に定めた点火時期修正量による運転に切替えるよ
うにしてもよい。即ち、2気筒エンジンの場合、表2に
示す点火時期の組合せで運転し、最も回転数が低かった
点火時期の組合せと演算式(2)によって求められた新
しい点火時期の組合せとを入れ替えて得られた気筒数に
1を加えた数の点火時期の組合せの中で、新たに入れ替
えられた新しい点火時期の組合せにおける回転数が最も
小さくなる場合に、今度は表1の点火時期の組合せで気
筒毎の最適点火時期を求めるのである。
In the above embodiment, all cylinders are operated with the same ignition timing correction amount for a predetermined period of time from the start of ignition timing feedback control, and thereafter, operation is performed with the ignition timing correction amount determined for each cylinder. , operation with the same amount of ignition timing correction for all cylinders is continued until the optimum ignition timing is obtained, and at that point it is switched to operation with the amount of ignition timing correction determined for each cylinder. It's okay. In other words, in the case of a two-cylinder engine, the engine is operated with the ignition timing combinations shown in Table 2, and the ignition timing combination with the lowest rotation speed is replaced with the new ignition timing combination determined by equation (2). Among the ignition timing combinations of the number of cylinders plus 1, if the rotation speed in the newly replaced ignition timing combination is the smallest, then the cylinders with the ignition timing combinations in Table 1 are The optimum ignition timing for each engine is determined.

以上述べたように本発明は、点火時期の各気筒毎の組合
せを複数設定し、この各組合せのうち回転数(l−μり
)が最も大きくなる最適の運転状態から最も離れた運転
状態となる点火時期の組合せを求め、この組合せを新た
な点火時期の組合せに修正して最適の運転状態が得られ
る点火時期の組合せを得るように点火時期を帰還制御す
るものであシ、特に新たな点火時期の組合せへの修正量
を点火時期の帰還制御の開始時よシ所定時間は金気(1
9) 部間−とし、その後は各気筒毎に設定するようにしてい
るので、前述した最適の運転状態が得られる気筒別に最
適な点火時期への収束を早めることができ、効率良く機
関を運転することができるという優れた効果がある。
As described above, the present invention sets a plurality of combinations of ignition timing for each cylinder, and sets the operating state farthest from the optimal operating state where the rotational speed (l-μ) is the largest among the combinations. This method performs feedback control of the ignition timing in such a way that a combination of ignition timings is determined, and this combination is corrected to a new combination of ignition timings to obtain a combination of ignition timings that provides the optimum operating condition. The amount of correction to the ignition timing combination is set at the start of the ignition timing feedback control and for a predetermined period of time.
9) Since the setting is made for each cylinder after that, it is possible to accelerate the convergence to the optimal ignition timing for each cylinder that provides the optimal operating condition as described above, and to operate the engine efficiently. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は点火時期とエンジン回転数との関係を示す特性
図、 第2図は2気筒の場合における最適点火時期の探索過程
の様子を示す図、 第3図は気筒数に1を加えた点火時期組合せからエンジ
ン回転数を増加させる新点火時期の決定方法を示す図、 第4図は本発明に係る内燃機関の構成図、第5図は第4
図中の点火制御回路の構成図、第6図は本発明における
演算処理の概念を示すタイミング図、 第7図は本発明における点火時期の演算処理手順を示す
フローチャート、 第8図は本発明による最適点火時期の探索過程の様子を
示す図である。 10・・・エンジン本体、16・・・吸入空気量センサ
、18・・・エンジン回転センサ、20・・・点火装置
、26・・・点火制御回路。 代理人弁理士  岡 部   隆 第1図 遅角0゜、t 旗り 臭史蒔期 第 2 図 第 3 ■ @4図 井1会、習1を内
Figure 1 is a characteristic diagram showing the relationship between ignition timing and engine speed, Figure 2 is a diagram showing the search process for the optimal ignition timing in the case of two cylinders, and Figure 3 is a diagram showing the relationship between ignition timing and engine speed. A diagram showing a method of determining a new ignition timing to increase the engine speed from a combination of ignition timings, FIG. 4 is a configuration diagram of an internal combustion engine according to the present invention, and FIG.
The configuration diagram of the ignition control circuit in the figure, FIG. 6 is a timing diagram showing the concept of calculation processing in the present invention, FIG. 7 is a flowchart showing the calculation processing procedure of ignition timing in the present invention, and FIG. FIG. 3 is a diagram showing a process of searching for optimal ignition timing. DESCRIPTION OF SYMBOLS 10... Engine body, 16... Intake air amount sensor, 18... Engine rotation sensor, 20... Ignition device, 26... Ignition control circuit. Representative Patent Attorney Takashi Okabe Diagram 1 Retard angle 0゜, t flag odor history planting period Diagram 2 Diagram 3 ■ @4 Diagram 1 meeting, Xi 1 within

Claims (1)

【特許請求の範囲】[Claims] ■目標点火時期の近傍で気筒毎に所定の値を持った点火
時期の組合せを複数選択し、この選択した点火時期の各
組合せにて次々に所定期間運転を行ない、これらの各運
転中に機関の回転数等の運転状態信号を検出し、前記各
点火時期の組合せにおける検出信号を比較することによ
シ、最適の運転状態から最も離れた運転状態となる前記
点火時期の組合せを求め、この点火時期の組合せを新た
な点火時期の組合せに変更して最適の運転状態が得られ
る方向に前記点火時期の組合せを修正する点火時期制御
方法であって、前記点火時期の組合せにおける点火時期
の修正量を全気筒同一の値もしくは各気筒毎に設定した
値に設定し、前記点火時期制御の開始時より所定期間、
前記修正量が全気筒同一である点火時期の組合せによる
運転を行ない、その後前記修正量が各気筒毎に設定され
た点火時期の組合せによる運転を行なうことを特徴とす
る多気筒内燃機関の点火時期制御方法。
■Select multiple ignition timing combinations with predetermined values for each cylinder near the target ignition timing, operate for a predetermined period one after another with each selected ignition timing combination, and during each of these operations, the engine By detecting operating state signals such as the rotational speed of the engine and comparing the detection signals for each of the ignition timing combinations, the ignition timing combination that results in the operating state farthest from the optimum operating state is determined. An ignition timing control method that changes a combination of ignition timings to a new combination of ignition timings and corrects the combination of ignition timings in a direction that provides an optimal operating condition, the method comprising: correcting the ignition timings in the combination of ignition timings; The amount is set to the same value for all cylinders or a value set for each cylinder, and for a predetermined period from the start of the ignition timing control.
Ignition timing of a multi-cylinder internal combustion engine, characterized in that an operation is performed using a combination of ignition timings in which the correction amount is the same for all cylinders, and then an operation is performed using a combination of ignition timings in which the correction amount is set for each cylinder. Control method.
JP57008528A 1981-08-01 1982-01-21 Ignition timing control method for multi-cylinder internal-combustion engine Granted JPS58126464A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57008528A JPS58126464A (en) 1982-01-21 1982-01-21 Ignition timing control method for multi-cylinder internal-combustion engine
US06/459,497 US4480615A (en) 1981-08-01 1983-01-20 Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008528A JPS58126464A (en) 1982-01-21 1982-01-21 Ignition timing control method for multi-cylinder internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58126464A true JPS58126464A (en) 1983-07-27
JPS6342113B2 JPS6342113B2 (en) 1988-08-22

Family

ID=11695643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008528A Granted JPS58126464A (en) 1981-08-01 1982-01-21 Ignition timing control method for multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58126464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249969A (en) * 1988-08-10 1990-02-20 Sanshin Ind Co Ltd Electronically controlled advance timing device for multicylinder internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249969A (en) * 1988-08-10 1990-02-20 Sanshin Ind Co Ltd Electronically controlled advance timing device for multicylinder internal combustion engine

Also Published As

Publication number Publication date
JPS6342113B2 (en) 1988-08-22

Similar Documents

Publication Publication Date Title
US4887216A (en) Method of engine control timed to engine revolution
JPH0237171A (en) Ignition timing controller for engine
US6568371B2 (en) Fuel injection control for internal combustion engine
JPS58126464A (en) Ignition timing control method for multi-cylinder internal-combustion engine
ITTO990547A1 (en) EQUIPMENT FOR CALCULATING THE SPEED OF AN ENGINE.
JPS58176468A (en) Ignition timing controlling method for multi-cylinder internal-combustion engine
JP2740317B2 (en) Method and apparatus for adjusting operation amount of internal combustion engine
JPH029185B2 (en)
US5093793A (en) Method of transferring signals within electronic control system for internal combustion engines
US6571775B2 (en) Fuel injection control for start-up of internal combustion engine
US4480615A (en) Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine
JPS6331668B2 (en)
JPS61277845A (en) Fuel injection control method for internal-combustion engine
EP0091283B1 (en) Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine
JPS5937271A (en) Control of ignition timing for internal-combustion engine
JPS6331666B2 (en)
JPH0587667B2 (en)
JPS6331667B2 (en)
JPH0742892B2 (en) Intake air amount detector
JPS6342114B2 (en)
JPS5896132A (en) Electronic control fuel injection device of internal-combustion engine
JPS6287648A (en) Intake-air pressure detecting device for internal combustion engine
JPS61185646A (en) Control device for internal-combustion engine
JPS62258152A (en) Method for controlling ignition timing of internal combustion engine
JPH0742604A (en) Fuel injection timing controller of internal combustion engine