JPS58126254A - Car-body foreseeing tilt device - Google Patents

Car-body foreseeing tilt device

Info

Publication number
JPS58126254A
JPS58126254A JP57005916A JP591682A JPS58126254A JP S58126254 A JPS58126254 A JP S58126254A JP 57005916 A JP57005916 A JP 57005916A JP 591682 A JP591682 A JP 591682A JP S58126254 A JPS58126254 A JP S58126254A
Authority
JP
Japan
Prior art keywords
curve
vehicle body
vehicle
predictive
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57005916A
Other languages
Japanese (ja)
Other versions
JPS6243896B2 (en
Inventor
藤田 豊志
谷野 利夫
高橋 厚雄
寺田 勝之
掛樋 豊
笠井 健次郎
文雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical Hitachi Ltd
Priority to JP57005916A priority Critical patent/JPS58126254A/en
Priority to KR1019830000025A priority patent/KR880001886B1/en
Priority to ZA83343A priority patent/ZA83343B/en
Publication of JPS58126254A publication Critical patent/JPS58126254A/en
Publication of JPS6243896B2 publication Critical patent/JPS6243896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本IAl!j1は、車体予見傾斜装置に係シ、特に曲線
における車体の傾斜制御性を良好にして乗心地を着しく
向上させるに好適な車体予見傾斜装置に関するものであ
る。
[Detailed Description of the Invention] This IAl! J1 relates to a vehicle body predictive tilting device, particularly to a vehicle body predictive tilting device suitable for improving the vehicle body tilting controllability on curves and significantly improving riding comfort.

従来の車体傾斜装置としては、#II図に示すような流
体圧作動機構を用いる方式がToシ、入口緩和曲線の始
点&から情報装置lによシ受信する曲線情報と走行速度
検出!)2によル得た速度を用いて、演算装置3におい
て必要車体傾斜角を演算して指令信号とし、腋指令信号
によ〕操作部4を作動させると共に車体傾斜角検出!S
として流体圧に 作動機構$設は危高さ検出器を用い、該車体傾斜角検出
aSの出力を帰還回路6に戻し、指令信号たる必要車体
傾斜角と現在の車体傾斜角を比較して偏差分だけが制御
信号となるようにしている。
Conventional car body tilting devices use a fluid pressure operating mechanism as shown in Figure #II.The information device receives curve information from the starting point of the entrance transition curve and detects the traveling speed. ) Using the speed obtained in step 2, the calculation device 3 calculates the required vehicle body tilt angle and uses it as a command signal, and the armpit command signal operates the operation unit 4 and detects the vehicle body tilt angle! S
The operating mechanism uses a height detector to detect the fluid pressure, returns the output of the vehicle tilt angle detection aS to the feedback circuit 6, and compares the required vehicle tilt angle, which is a command signal, with the current vehicle body tilt angle to determine the deviation. Only the minutes are used as control signals.

このような構成では、j@2図に示すようにカント量が
調和低減のとき、先ず入口緩和−JIjL+の始点部で
必要車体傾斜角に一致した指令傾斜角φ、フィードバッ
クした車体傾斜角θ (絶対車体傾斜角θb一台車枠傾
斜角θt)とも小さいので両者の偏差は小さく、したが
って制御信号が小さくなシ、操作部の動作が小さく指令
傾斜角φに対して車体傾斜角すは遅れてくる。時間の経
過と共に偏差が大きく、流体流量が多くな)、0点以降
は車体傾斜角θが大きくなってくるので、偏差は次第に
小さくなってくる。すなわち、偏差(φ−θ)は第3図
のようになる。第3図において、最初は偏差が小さいの
で徐々にしか偏差零に向って行かない。
In such a configuration, when the cant amount is harmonically reduced as shown in Figure j@2, first, the commanded inclination angle φ that matches the required vehicle body inclination angle at the starting point of the inlet relaxation −JIjL+, and the feedback vehicle body inclination angle θ ( Since the absolute vehicle body inclination angle θb and the vehicle frame inclination angle θt) are both small, the deviation between the two is small. Therefore, the control signal is small, the operation of the operating section is small, and the vehicle body inclination angle lags behind the commanded inclination angle φ. . As time passes, the deviation becomes larger (as the fluid flow rate increases), the vehicle body inclination angle θ becomes larger after the 0 point, so the deviation gradually becomes smaller. That is, the deviation (φ-θ) is as shown in FIG. In FIG. 3, since the deviation is small at first, the deviation only gradually approaches zero.

そのうち、円曲1iBが終)出口緩和曲線人、に入ると
、最初は偏差が小さいので入口緩−alAtの始点部と
同じ経過をたどる。フィードバック系としているので指
令傾斜角に収束しようとする傾向を有し安定性を有する
が、指令傾斜角に必要車体傾斜角を用いているので制御
信号が小さく、どうしてもどこかで偏差が大きくならな
いとそれ以後の偏差が小さくならないと云う矛盾したこ
とにな如、偏差すなわち車体床面に並行な左右定常力が
残り、乗心地が悪いという欠点があった0 上記の点に鑑み本発明は、−線走行中に左右定常力をな
くして乗心地を著しく向上させうる重体予見傾斜atを
提供することを目的としたものである。
When the circular curve 1iB ends (the exit transition curve), the deviation is small at first, so it follows the same course as the starting point of the entrance gradual curve. Since it is a feedback system, it has a tendency to converge to the commanded tilt angle and is stable, but since the required vehicle body tilt angle is used as the commanded tilt angle, the control signal is small and the deviation must become large somewhere. Although it is paradoxical that the deviation does not become smaller after that, there is a drawback that the deviation, that is, a steady left and right force parallel to the vehicle body floor remains, resulting in poor riding comfort. The object of the present invention is to provide a heavy-body anticipatory slope AT that can significantly improve ride comfort by eliminating left and right steady forces during line running.

流体圧作動機構で本体を傾斜させるが、予見信号で指令
を行う。その場金子見信号は次のようなものであればよ
い。制御弁への予見信号をi、皺制御弁における予見信
号の変換率をμ、制御弁の出力圧をP、制御弁の抵抗係
数をg、 fk量をqとすると畷、弁の遅れを無視する
と次の関係にある。
The main body is tilted using a fluid pressure mechanism, and commands are given using a preview signal. The on-the-spot Kaneko signal may be as follows. If the preview signal to the control valve is i, the conversion rate of the preview signal in the wrinkle control valve is μ, the output pressure of the control valve is P, the resistance coefficient of the control valve is g, and the amount of fk is q, then the delay of the wrinkle valve is ignored. Then we have the following relationship.

q=−(μs −P)      ・・・・・・・・・
 (11p 一方、流体圧作動機構の作動面積をAV2作動変位を2
1等価容量をC12時間をtとするとき、流量qとの関
係は次のようになる0 行わせる場合を考え、かつ、台車枠傾斜角θ1がカント
角#、にほぼ等しいすると式(1)、式(2)よp式(
3)が見られる。
q=-(μs-P) ・・・・・・・・・
(11p On the other hand, the operating area of the fluid pressure operating mechanism is set to AV2 operating displacement by 2
When the equivalent capacity is C12 time t, the relationship with the flow rate q is as follows.Consider the case where the bogie frame inclination angle θ1 is approximately equal to the cant angle #, then Equation (1) , from equation (2), p equation (
3) can be seen.

一1!−I* A、旦t すb チ  五i dt =
 A、 dZ =(3111dt       ry 円曲線における必要車体傾斜角すなわち必費最大車体傾
斜角φ、は、円**における中径をR6、カント量をC
0、軌間をG、重力加速度を2とすると9“  10°
1       ・・・・・・・・・ (4)φ・=T
町−G で表わせるので、さらに、緩和曲線長さを11速度を■
とするとき入口緩和曲線A、における必要車体傾斜角φ
はカント量が直線的に低減する場合、走行距離である。
One eleven! -I* A, dt subb chi 5i dt =
A, dZ = (3111dt ry The required vehicle body inclination angle in a circular curve, that is, the required maximum vehicle body inclination angle φ, is expressed as follows: R6 is the middle diameter of the circle **, and C is the cant amount.
0, if the track is G and the gravitational acceleration is 2, then 9" 10°
1 ・・・・・・・・・ (4)φ・=T
Since it can be expressed as Machi-G, furthermore, the length of the transition curve can be expressed as 11 speed.
When , the required vehicle body inclination angle φ at the entrance transition curve A is
is the travel distance when the amount of cant decreases linearly.

比例定数αを4って必要車体傾斜角φと比例関係にある
上下方向の作動変位2が時間tに比例していれば、必要
車体傾斜角φを実現できることになる。すなわち、前記
式(3)はとすると1、 ■ φ′;φ、?        ・・・・・・・・・ (
7)とおくと、 1=βφ′(カント量が直線低減のとき)・・・(8)
であればよい。前記式+7)、 (81よシ予見信号i
は、曲線と速度が定まれば円曲線の始点まで必要車体傾
斜角φの式(5)の微分値、すなわちカントlが直線低
減の場合は一定値βφ、?  であればよいことがわか
る。逆にいえば一定値目こよる一定渡体流量が積分され
ていくので作動変位Z祉直線的に増加することになり、
カント量が直線低減の場合の必要車体傾斜角φを実現で
きる。円曲線に入ったら     φ ζφ= 、  
  φ′ = 0           ・・・・・・
・・・  (9)であるから、予見信号iを零とすれば
よい。出口緩和a lip A@では、 であればよい。予見信号ゲインβが適切に設定されてい
れば、他のどの曲線を走行する場合で6つても前記式(
71,(8+、 (91,αυによって予見信号iを与
えればよい。
If the proportionality constant α is 4 and the vertical operating displacement 2, which is proportional to the required vehicle body inclination angle φ, is proportional to the time t, the required vehicle body inclination angle φ can be realized. That is, the above equation (3) is 1, ■ φ'; φ, ?・・・・・・・・・ (
7), then 1=βφ′ (when the cant amount is a linear reduction)...(8)
That's fine. The above formula +7), (81 Yoshi foresight signal i
is the differential value of equation (5) of the required vehicle body inclination angle φ up to the starting point of the circular curve once the curve and speed are determined, i.e., a constant value βφ if the cant l is a linear reduction, ? If so, I know it's fine. Conversely, since the constant flow rate over a certain value is integrated, the working displacement Z increases linearly,
The required vehicle body inclination angle φ when the amount of cant is linearly reduced can be achieved. When entering a circular curve, φ ζφ= ,
φ′ = 0 ・・・・・・
... (9) Therefore, the prediction signal i may be set to zero. For exit relaxation a lip A@, it is sufficient if . If the preview signal gain β is set appropriately, the above formula (
71, (8+, (91, αυ) to give the preview signal i.

カント量が調和低減される、すなわち入口緩和曲線Ai
中の必要車体傾斜角φが で表わせるとき、予見信号1は前記式αυを微分しであ
ればよい。円曲線中は前記式(9)でよい。出口緩和−
線入、においては、 上記のように、曲線データを与えて円曲線の必要最大車
体傾斜角φ、を求め、該必要最大車体傾斜角φ、と速度
V、緩和曲線長lから予見信号1を求めるか、または、
時々刻々の曲線中径、カント量かdφ らφ、   を演算し予見信号蜜を求め、これを制]T 御回路を介して制御信号として制御弁に与え流体圧作動
機構を動作させれば、車体傾斜角は各時点における必要
傾斜角となシ、床面における左右富力が常に零となるの
で乗心地を着しく向上することがで亀る。一方、車体傾
斜角を検出してチェックし、必要な場合には予見信号を
補正できるようにするか、または、フィードバック回路
を設けるかして傾斜角會チ、ツク装置を設ける。骸傾斜
角チ、ツク装置としてフィードバック回路を設ける場合
はフィードバック信号分すなわち必要車体傾斜角(前1
eE(51,(9)、 G11t 7ta式(ul、 
(91,a3ニ示すφ)にフィードバックゲインKを乗
じ比値を上記予見信号に加算し、フィードバック信号に
よる制御信号の低減を補正する構成とする。本発明は上
述のような特徴を有するものである。
The amount of cant is harmonically reduced, that is, the entrance transition curve Ai
When the necessary vehicle body inclination angle φ can be expressed by In a circular curve, the above formula (9) may be used. Exit relaxation
In line entry, as mentioned above, the required maximum car body inclination angle φ of the circular curve is determined by giving the curve data, and the preview signal 1 is obtained from the required maximum car body inclination angle φ, the speed V, and the transition curve length l. ask for or
Calculate the curve medium diameter and cant amount dφ to φ from time to time to obtain a predicted signal, and control this] T. If the signal is given to the control valve as a control signal via the control circuit to operate the fluid pressure operating mechanism, The vehicle body inclination angle is the required inclination angle at each point in time, and since the left and right forces on the floor are always zero, the riding comfort can be improved considerably. On the other hand, a tilt angle adjustment device is provided by detecting and checking the vehicle body tilt angle and correcting the predictive signal if necessary, or by providing a feedback circuit. If a feedback circuit is provided as a vehicle body lean angle check device, the feedback signal, that is, the required vehicle body lean angle (front 1
eE (51, (9), G11t 7ta formula (ul,
The configuration is such that (φ shown in 91, a3) is multiplied by the feedback gain K and a ratio value is added to the preview signal to correct the reduction in the control signal due to the feedback signal. The present invention has the features described above.

次に本発明の実施例を第4図ないし第15図により説明
する。第4図および篇5図において、車上または地上か
ら曲線データを得る曲線情報装置7は、lOK検知信号
(軌条において10−ごとに設けられた装置からの信号
)、ATC信号セクシ、ン(軌条の一定距離間にお齢て
形成している糧1] ループ)などによp*定の地上糞定点を検知する定点検
知装置7鳳、走行速度を検出する速度検出装置8の速度
出力から走行距離を計算し、定点検知装置17mの定点
距離で修正して正しい距離を出力する距離カウンタ7b
、距離およびその距離における時々刻々の!!IIII
MP径R,カント量Cからなる曲線データ管記憶してい
て距離カランタフbの距離に対応したdIIIIIデー
タを出力する車上メモリ7cからなる。tた、速度検出
装置8は、車輪回転速度を検知する速度発電機Ba、そ
の時の車輪径を示す車輪径データ8b、速度発電機8a
の出力と車輪径データ8bから走行速度Vを出力する速
度カウンタ8cから成っている。予見装置9は演算部9
aと予見部9bからなシ、演算部9aにおいては曲線情
報装置7から入力された刻々の曲線半径R1左カーブで
正、右カーブで負の符号をもつカント量Cと速度検出装
置8から入力された速度Vを用いて必要車体傾斜角φお
よび必要車体傾斜角の微分φIを計算する。必要車体傾
斜角の微分の求め方は必要車体傾斜角φの変化Δφを時
間変化Δtで諭せばよい。予見部9bにおいて演算部9
aの出力たる必要車体傾斜角の微分φIに予見信号ゲイ
ンβを乗じて予見信号iを求める。咳予見信号iは増幅
要素、補償要素などからなる制御回路Wに入力され、流
体源USから圧力流体が供給され、かつ、サーボ弁、電
磁弁などからなる制御弁ubを作動させ、制御弁ubか
らの圧力流体はカント量Cの左カーブ、右カーブ別によ
る符号変化に伴って通路か切換わる切換弁認を通って左
カーブの時には右配管から右の流体圧作動機構謁(車体
腸を支持する空気はねtたは率体腸と台車枠14に設け
られ九油圧シリンダ)に導かれ、台率枠14に対して車
体tを傾斜させる。そして、台車枠14に対する車体腸
の本体傾斜角θを傾斜角検出器騰によって検出し、出力
を間欠補正装置で構成した傾斜角テs−yり装5117
に入力する。予見信号ゲインβが適切に設定されていれ
ば、前記間欠補正装置において判定部17鳳、で車体傾
斜角θと予見部aSの演算部9aから入力されている必
要車体傾斜角φの偏差lθ−φ1が許容偏差Δよ)小さ
いと判定されるので、修正部17m5で予見信号ゲイ/
βは修正されずにβの11とされ、予見装置9において
次の演算が実行される。
Next, embodiments of the present invention will be described with reference to FIGS. 4 to 15. In Figures 4 and 5, the curve information device 7 that obtains curve data from on-board or on the ground includes an OK detection signal (signal from a device installed every 10-minutes on the rail), an ATC signal A fixed point detection device 7 detects a fixed point on the ground with p A distance counter 7b that calculates the distance, corrects it with the fixed point distance of the fixed point detection device 17m, and outputs the correct distance.
, distance and moment to moment in that distance! ! III
It consists of an on-board memory 7c which stores a curve data tube consisting of an MP diameter R and a cant amount C and outputs dIII data corresponding to the distance Carantuff b. In addition, the speed detection device 8 includes a speed generator Ba that detects the wheel rotation speed, wheel diameter data 8b that indicates the wheel diameter at that time, and a speed generator 8a.
It consists of a speed counter 8c that outputs the running speed V from the output of the wheel diameter data 8b and the wheel diameter data 8b. The prediction device 9 is a calculation unit 9
a and the prediction unit 9b, and in the calculation unit 9a, the instantaneous curve radius R1 input from the curve information device 7, the cant amount C having a positive sign for the left curve and negative sign for the right curve, and the input from the speed detection device 8. The required vehicle body inclination angle φ and the differential φI of the required vehicle body inclination angle are calculated using the calculated speed V. The differential of the required vehicle body inclination angle can be determined by observing the change Δφ in the required vehicle body inclination angle φ using the time change Δt. In the prediction unit 9b, the calculation unit 9
A preview signal i is obtained by multiplying the differential φI of the necessary vehicle body inclination angle, which is the output of a, by a preview signal gain β. The cough prediction signal i is input to a control circuit W consisting of an amplification element, a compensation element, etc., which is supplied with pressure fluid from a fluid source US, and which operates a control valve ub consisting of a servo valve, a solenoid valve, etc. Pressure fluid flows from the right pipe to the right fluid pressure operating mechanism (supporting the vehicle body) during a left curve through a switching valve that switches between passages as the cant amount C changes in sign depending on the left curve and right curve. The air flowing through the vehicle body t is guided to a hydraulic cylinder provided in the bogie frame 14 and tilts the vehicle body t relative to the bogie frame 14. Then, the main body inclination angle θ of the vehicle body with respect to the bogie frame 14 is detected by the inclination angle detector, and the inclination angle tester 5117 configured with the intermittent correction device outputs the inclination angle detector θ.
Enter. If the preview signal gain β is appropriately set, the determination unit 17 of the intermittent correction device determines the deviation lθ− between the vehicle body tilt angle θ and the required vehicle body tilt angle φ input from the calculation unit 9a of the preview unit aS. Since φ1 is determined to be smaller than the allowable deviation Δ, the correction unit 17m5 adjusts the prediction signal gain/
β is set to 11 without being modified, and the following calculation is executed in the prediction device 9.

カント量が直線低減か調和低減かにより、先ず入口緩和
111mA、において予見信号量は前記式(7)l(8
)または式(社)、(8)の大暑さとなル、円曲線では
式f9+、 +81(D大m−J、 in緩和曲曲線は
式(1G、 +81または式α31.(81の大t!i
さとなる。すなわち、カント量Cが直線低減の場合は第
6E1調和低減の割合は@8WAに示す予見信号が与え
られる。このような必要車体傾斜角φの微分φ′に比例
し比値を予見信号量としているので予見信号ゲインβが
適切に設定されていれば、応答として見られる車体傾斜
角θは必要車体傾斜角φの大11さを示し、カント量C
が直線低減の場合第7図、l[和低減の場合第9図に示
すようになる。したがって車体傾斜角θと必要車体傾斜
角φの定常偏差は第9図のφ−θのように常に零に非常
に近い値に保たれるので、床面の左右定常力は常に零で
Toシ、乗心地は著しく向上する。
Depending on whether the cant amount is a linear reduction or a harmonic reduction, the predicted signal amount at the entrance relaxation of 111 mA is expressed by the above equation (7) l (8
) or equation (sha), (8), large heat, circular curve, equation f9+, +81 (D large m-J, in relaxation curve, equation (1G, +81 or equation α31.(81 large t! i
It becomes Satoshi. That is, when the cant amount C is a linear reduction, a preview signal shown as @8WA is given as the ratio of the 6E1 harmonic reduction. Since the ratio value is proportional to the differential φ' of the required vehicle body inclination angle φ and is used as the predictive signal amount, if the predictive signal gain β is set appropriately, the vehicle body inclination angle θ seen as a response will be the required vehicle body inclination angle. Indicates the size of φ, and the cant amount C
When is a linear reduction, it is as shown in FIG. 7, and when it is a sum reduction, it is as shown in FIG. Therefore, the steady deviation between the vehicle body inclination angle θ and the required vehicle body inclination angle φ is always kept at a value very close to zero as shown in φ−θ in Figure 9, so the left and right steady force on the floor is always zero and the Toshield , the ride comfort is significantly improved.

予見信号ゲインβが万一適切に設定されていない場合に
は、傾斜角検出amよシ出力された車体傾斜角θが間欠
補正装置の判定部17組で10−一!≧Δと判定され、
更に修正部17易露において予見信号ゲインβはθ−φ
〉Oのと暑β=β(1−+m)。
In the unlikely event that the preview signal gain β is not set appropriately, the vehicle body tilt angle θ outputted from the tilt angle detection am is determined to be 10-1 by the determination unit 17 of the intermittent correction device! It is determined that ≧Δ,
Furthermore, in the modification section 17, the prediction signal gain β is θ−φ
〉O and heat β=β(1-+m).

O−φくOのときはβ=β(1+ + m )に修正さ
れる。なお、該mは一定なゲイン修正割合である。
When O−φ×O, it is corrected to β=β(1++m). Note that m is a constant gain correction rate.

腋予見信号ゲインβは予見装置9に入力され、予見装置
9では新しい予見信号ゲインβのもとて演算が実行され
る。後続車両に対しては走行距離Xからm腋車両が入口
緩和曲線の始点に到達したことを判別し、その時の速度
マに応じて上記と同様に予見信号を出すようにする。
The armpit prediction signal gain β is input to the prediction device 9, and the prediction device 9 executes calculation based on the new prediction signal gain β. For the following vehicle, it is determined from the travel distance X that the m armpit vehicle has reached the starting point of the entrance transition curve, and a preview signal is issued in the same manner as above according to the speed at that time.

上記し九本発明の一実施例によれば、必要車体傾斜角の
微分に比例した値を刻々演算して予見信号として用いて
いるので、制御の遅れがなく刻々車体傾斜角を必要車体
傾斜角に一致させることができ床面の左右定常力をなく
してI!llIにおける乗心地を著しく向上できる。ま
た、傾斜角チェック装置17として間欠補正装置を用い
ているので、制御の安定性が増すと云う効果がある。
According to the embodiment of the present invention described above, a value proportional to the differential of the required vehicle body inclination angle is calculated every moment and used as a preview signal, so there is no delay in control and the required vehicle body inclination angle is constantly calculated. By eliminating the left and right steady force on the floor surface, I! The riding comfort in llI can be significantly improved. Further, since an intermittent correction device is used as the inclination angle check device 17, there is an effect that the stability of control is increased.

第10図は本発明の他の実施例を示すもので、真4図に
示す前記本発明の一実施例と同一部分は四−符号で示す
。前記一実施例と異なるのは車上メモリ7cに記憶する
曲線データを一つの曲線につき円曲線半径R02円曲線
カント量C0,入口緩和曲線長t!12円曲線長り、出
ロ緩和曲鎗長4pカント量が直線低減に−0か調和低減
にヰ1かの種別にの6種としたことである。したがって
、予見装置9における演算部も91′に変化する。すな
わち、曲線情報装置7からの該曲線データと速度検出装
置8からの速度Vを用いて、先ず入口緩和曲線A1の始
点からの走行距離XおよびGを軌間として円曲線におけ
る必要最大車体傾斜角φ、が求められ、次に走行距離X
を判定して、車両が入口緩和曲線A−二あるか(X<V
l)、円曲線B上にあるが(J。
FIG. 10 shows another embodiment of the present invention, and the same parts as those of the embodiment of the present invention shown in FIG. The difference from the above-mentioned embodiment is that the curve data stored in the on-board memory 7c is: circular curve radius R02 circular curve cant amount C0, entrance transition curve length t! There are six types of 12 circular curve lengths, 4p cant amounts, -0 for linear reduction, and -1 for harmonic reduction. Therefore, the arithmetic unit in the prediction device 9 also changes to 91'. That is, using the curve data from the curve information device 7 and the speed V from the speed detection device 8, first, the required maximum vehicle body inclination angle φ in the circular curve is determined using the traveling distance X and G from the starting point of the entrance transition curve A1 as the gauge. , is calculated, and then the mileage X
Determine whether the vehicle has an entrance transition curve A-2 (X<V
l) is on the circular curve B, but (J.

≦X<11+L)、出口緩和曲線A0上にあるか(l!
十LしX<4 ” L ” 1m ) *直線に復帰し
たか(X≧1. + L + 1m>t″判定、これに
よって、カント量低減の種別kにより異なった演算式で
必要車体傾斜角の微分φ′、必要車体傾斜角φが計算さ
れ、予見部9bにおいて予見信号がβφIとして求めら
れる。この実施例では更に車上メモリ7aのメモ第11
図は本発明の他の実施例を示したもので、114図Iこ
示す一実施例と同一部分は同一符号で示す。前記一実施
例と異なるのは、傾斜角チェック装置17としてフィー
ドバックゲインKを有するフィードバック回路17 b
を有し、かつ、予見装置9の予見部9 lbにおいて予
見信号量を必要車体傾斜角φの微分φ′に比例した値β
φ′と必要車体傾斜角φに比例した値にφの和βφ/+
にφとしている点である。第4図に比べにφを追加する
理由は、フィードバックによシ車体傾斜角に比例した値
にφが予見信号iよp差引かれるために、その分だけ値
であればよい。制御回路Wの出力はβφ′に比例するの
で制御性は変らない。この実施例では傾斜角チェック装
置17としてフィードバック回路17 bを用匹ている
ので、制御の安定性が更に向上するという効果がある。
≦X<11+L), is it on the exit transition curve A0 (l!
10L and then X<4"L"1m) *Determine whether the straight line has been returned (X≧1.+L+1m>t"). From this, the required vehicle body inclination angle is calculated using different calculation formulas depending on the type of cant reduction. The differential φ' of
The figure shows another embodiment of the present invention, and the same parts as in the embodiment shown in Figure 114 are designated by the same reference numerals. What is different from the above embodiment is that the tilt angle check device 17 includes a feedback circuit 17b having a feedback gain K.
and the prediction signal amount in the prediction unit 9 lb of the prediction device 9 is set to a value β proportional to the differential φ′ of the required vehicle body inclination angle φ.
The sum βφ/+ of φ is a value proportional to φ′ and the required vehicle body inclination angle φ.
This is the point where φ is set at φ. The reason why φ is added compared to FIG. 4 is that φ is subtracted from the preview signal i to a value proportional to the vehicle body inclination angle due to feedback, so it is sufficient to have a value corresponding to that value. Since the output of the control circuit W is proportional to βφ', the controllability remains unchanged. In this embodiment, since the feedback circuit 17b is used as the inclination angle check device 17, the stability of the control is further improved.

なお、骸第11図に示す実施例において、どの−纏に対
しても予見装置iteの演算部91で必要最大本体傾斜
角φ、のみを計算し、予見s*’bで必要最大本体#[
#f角φ、に比例し次子見信号貞を得る。
In the embodiment shown in FIG. 11, only the necessary maximum body inclination angle φ is calculated by the calculation unit 91 of the prediction device ite for any one of the tentacles, and the necessary maximum body angle #[
#F is proportional to the angle φ, and the following signal is obtained.

そして、腋予見信号量を入口緩和1M11m相の始点よ
り円曲IIBの終点まで一定値として出方する。このよ
うな構成によれば、前記第11図に示した実施例よりも
制御性は劣るが、従来のものよ〕も制御性は向上し、予
見装置9の構成が簡単になるという効果を有する。
Then, the armpit preview signal amount is output as a constant value from the start point of the entrance relaxation 1M11m phase to the end point of the circular curve IIB. According to such a configuration, although the controllability is inferior to that of the embodiment shown in FIG. .

第13図は本発明の他の実施例を示しておシ、前記第4
図に示す一実施例と同一部分は同一符号で示す。前記一
実施例と^なるのは、#線情報装置17が車上メモリ7
 Cと、入口緩和曲線Aiの始点に設けられ、曲線番号
などを発信する地上子7dを設け、蚊地上子7dからの
信号を車上の車上地点検知器7eで受信して曲線に入っ
たことを検知し、車上地点検知器7eの出方信号に対応
して車上メモリ7cから曲線データを出方させるという
点である。この実施例の特徴としては、前記各実施例に
比べて距離補正をしなくてすむという効果がある。
FIG. 13 shows another embodiment of the present invention.
The same parts as in the embodiment shown in the figure are indicated by the same reference numerals. The difference from the above embodiment is that the # line information device 17 is connected to the on-board memory 7.
A beacon 7d is provided at the starting point of the entrance transition curve Ai and transmits the curve number, etc., and the signal from the mosquito beacon 7d is received by the on-vehicle point detector 7e to enter the curve. The point is that curve data is output from the on-board memory 7c in response to the output signal from the on-board point detector 7e. A feature of this embodiment is that it eliminates the need for distance correction compared to the previous embodiments.

@14図紘本発明の他の実施例を示しておシ、前記JI
4wJに示す一実施例と同一部分は同一符号で示す。本
実施例において′III起−実起倒実施例るのは、−纏
情報装置arb1前記他の実施例等において設けられて
いる車上メ毫す7cを備えておらず、**と並行して設
けられて皺−纏のデータを発信する地上発信器7fと皺
地上発信器7fの出力を車上にて受信し、該曲線データ
を予見装置9に出力する車上受信器7厘によ)構成され
ている点である。この実施例の41黴としては距離補正
をしなくてすむという効果がある。
@Figure 14 shows another embodiment of the present invention, and the above JI
The same parts as in the embodiment shown in 4wJ are designated by the same reference numerals. In this embodiment, the ``III--actual raising-down'' embodiment is not equipped with the onboard information device 7c provided in the other embodiments, etc., and is installed in parallel with **. The on-board receiver 7f receives the output of the wrinkle ground transmitter 7f and outputs the curve data to the prediction device 9. ). 41 in this embodiment has the advantage that distance correction is not necessary.

第15図祉本発明の他の実施例を示しており、前記N4
図に示す一実施例と同一部分は同一符号で示す。本実施
例において、前記第4図の一実施例と^なるのは曲線情
報装置フが曲線データを他の装置よ)受けるのでなく、
車上における計測によシ直接得ている点であプ、車体正
に咳車体すに作用する遠心力Rc と重力Wの合力の絶
対角θ、を計測するジャイ党振子などの遠心力角検出装
置7hと台車にとりつけもれカント角すなわち軌道の絶
対傾斜角θ。を検出するジャイロなどの軌道傾斜角検出
装置7門からなる点および曲線情報偏置7の出力を用い
て予見装置9の演算部9’aでは必要車体傾斜角φは合
力の絶対角0を一軌道の絶対傾斜角θ、で求められる。
Figure 15 shows another embodiment of the present invention, the N4
The same parts as in the embodiment shown in the figure are indicated by the same reference numerals. In this embodiment, unlike the embodiment shown in FIG. 4, the curve information device does not receive curve data (from another device);
Centrifugal force angle detection using a pendulum, etc., which measures the absolute angle θ of the resultant force of centrifugal force Rc and gravity W acting on the car body, which is directly obtained by measurement on the car body. The cant angle, that is, the absolute inclination angle θ of the track, is attached to the device 7h and the truck. The calculating section 9'a of the forecasting device 9 calculates the necessary vehicle body inclination angle φ by using the point consisting of seven track inclination angle detection devices such as gyros and the output of the curve information eccentricity 7. It is determined by the absolute inclination angle θ of the orbit.

本実施例の構成によれば、速度検出装置8がいらず装置
が簡単になるという効果がある。
According to the configuration of this embodiment, there is an effect that the speed detection device 8 is not required and the device is simplified.

さらに、本発明の他の実施例として第5wAの制御回路
10の補償l!素として、流体圧作動機構13の醇価容
量C3と c、 =光           ・・・・曲・ α勾
■、:内容積、P、:内圧、r:ポリトロープ指数、S
ニラプラス演算子 制御弁の抵抗係数12の積からなる時定数による遅れ 
     を補う位相進みII素1+r、(4・Sl 
+ r、C@・8 と、rpCsよりも小さい時定数T、を有する位相遅れ
ex丁会賓τ丁ス*bチーA、÷6を用いたことを4I
gILとする点である。本実施例では、流体圧作動機構
13の時定数r、C,による遅れが大きい部会に、誼遍
れをゴT野τ丁と小さくできるという効果がある。
Further, as another embodiment of the present invention, compensation l! of the fifth wA control circuit 10! As an element, the valence capacity C3 and c of the fluid pressure actuating mechanism 13, = light... curve, α gradient, : internal volume, P, : internal pressure, r: polytropic index, S
Delay due to time constant consisting of product of resistance coefficient 12 of Niraplus operator control valve
Phase lead II element 1+r, (4・Sl
+ r, C@・8 and the time constant T smaller than rpCs.
This is the point of gIL. In this embodiment, there is an effect that the deviation can be made as small as τ in the section where the delay due to the time constants r and C of the fluid pressure operating mechanism 13 is large.

tた、制御回路Wの補償要素として、制御弁11bの時
定数T、による遅れを補う位相進み要素1+T、8と、
時定数T、よシ小さい時定数T、を有する位相遅れ要素
士すなわち÷モに劃を用いた制御弁補償部を有すること
を特徴とする。本実施例では前記他の実施例に比べて制
御弁の遅れが大きい部会に遅れを−ユーーに小さくで龜
るという効1+T、8 果を有する。
In addition, as a compensation element of the control circuit W, a phase lead element 1+T, 8 that compensates for the delay due to the time constant T of the control valve 11b,
The present invention is characterized by having a control valve compensator using a phase delay element, that is, a phase delay element having a time constant T, and a relatively small time constant T. In this embodiment, compared to the other embodiments described above, there is an effect of reducing the delay by -U in a section where the delay of the control valve is large.

以上説明したように本発明によれば、必要車体傾斜角の
微分に比例し九成分を刻々演算して予見信号としている
ので、制御の遅れがなく刻々車体傾斜角を必要車体傾斜
角に一致させることができるため、床面の左右定常力を
なくすことができ曲線における乗心地を著しく向上でき
る。
As explained above, according to the present invention, the nine components proportional to the differential of the required vehicle body inclination angle are calculated moment by moment and used as a predictive signal, so that the vehicle body inclination angle can be made to match the required vehicle body inclination angle moment by moment without delay in control. This eliminates the constant force on the left and right sides of the floor surface, significantly improving riding comfort on curves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の車体傾斜制御*置を示す回路図、第2W
Jは第1図に示した制御装置を用いた車両の走行時にお
ける必要車体傾斜角と実際に車体が傾斜している応答車
体傾斜角を縦軸に、時間を横軸にとったグラフ、第3図
は第2図の偏差すなわち左右定常力を表わしたグラフ、
纂4図は本発明による本体予見傾斜装置の一実施例を示
す回路図、1g5図はM4図を近似的に示したプル1ク
図、第6図は第4図のカント量が直線低減の場合におけ
る予見信号を縦軸にと〕横軸に時間をとったグラフ、第
7図は第6WAの状態における必要車体傾斜角と車体傾
斜角を表わしたグラフ、第8図は第4図の状態における
カント量が調和低減の場合の予見信号を表わすグラフ、
纂9図は第8図の状態における必要車体傾斜角と車体傾
斜角およびその偏差を表わしだグラフ、第10図、第1
1図、第13図、第14図、第15図は本発明による車
体予見傾斜装置の他の実施例を示す回路図、812mC
4)Φ)は第11図における予見信号を示すグラフであ
る。 7・・・・・・曲線情報輪重、8・・・・・・速度検出
装置、9・・・・・・予見装置、W・・・・・・制御輪
重、ub・・・・・・制御弁、ν・・・・・・切換弁、
13・・・・・・流体圧作動機構、脆・・・・・・傾斜
角検出器、17・・−・・傾斜角チェック(ロ)路、φ
・・・・・・必要車体傾斜角、φ′・・−・・必要車体
傾斜角の微分値、φ、・・・・・・必要最大車体傾斜角
、轟・・・・・・予見信号、R・・−・・―−半径、C
・・・・・・カント量、Ro・・・・・・円曲線半径、
9゜・・・・・・円曲線カント量、11・・・・・・入
口緩和曲線長、L・・・・・・円曲線長、l、・・・・
・・出口緩和曲線長代理人 弁理士  薄 1)利 串 才/112I 才13図 才14図
Figure 1 is a circuit diagram showing the conventional vehicle body tilt control system,
J is a graph in which the vertical axis is the required vehicle body tilt angle and the response vehicle body tilt angle when the vehicle is running using the control device shown in FIG. 1, and the horizontal axis is time. Figure 3 is a graph showing the deviation of Figure 2, that is, the left and right steady force.
Figure 4 is a circuit diagram showing an embodiment of the main body predictive tilting device according to the present invention, Figure 1g5 is a pull diagram that approximates the M4 diagram, and Figure 6 is a circuit diagram showing an example of the cant amount in Figure 4 that is linearly reduced. Figure 7 is a graph showing the required vehicle body tilt angle and vehicle body tilt angle in the state of 6WA, and Figure 8 is a graph showing the vehicle body tilt angle in the state of Figure 4. A graph representing a prediction signal when the cant amount in is harmonic reduction,
Figure 9 is a graph showing the required vehicle body tilt angle, vehicle body tilt angle, and its deviation in the state shown in Figure 8, Figure 10, and Figure 1.
1, 13, 14 and 15 are circuit diagrams showing other embodiments of the vehicle body predictive tilting device according to the present invention, 812mC
4) Φ) is a graph showing the foresight signal in FIG. 7...Curve information wheel load, 8...Speed detection device, 9...Prediction device, W...Controlled wheel load, ub...・Control valve, ν...Switching valve,
13...Fluid pressure operating mechanism, fragile...Inclination angle detector, 17...Inclination angle check (b) path, φ
...Required vehicle body inclination angle, φ'...Differential value of required vehicle body inclination angle, φ, ...Required maximum vehicle body inclination angle, Todoroki...Forecast signal, R...---Radius, C
...Cant amount, Ro...Circular curve radius,
9°...Circular curve cant amount, 11...Entrance transition curve length, L...Circular curve length, l,...
...Exit transition curve length agent Patent attorney Bo 1) Li Kusai/112I 13th figure 14th figure

Claims (1)

【特許請求の範囲】 1、車体の傾斜を制御する流体圧作動機構を介して車体
を台車上に支持した軌道上を走行する車両において、該
車両が走行する軌道の曲線データを出力するjiIll
I情報装置と、車速を検出し出力する速度検出装置と、
前記曲線情報装置からの曲線データと前記速度検出装置
からの車速によシ必費事体傾斜角の微分に比例しfc値
を予見信号として出力する予見fifltと、腋予見装
置の出力によ〕前記流体圧作動機構へ圧力流体の供給を
制御する制御弁と、該制御弁から流体圧作動機構へ供給
される圧力流体をカント量によって制御する切換弁とか
ら成る車体予見傾斜装置02、車体の傾斜を制御する流
体圧作動機構を介して車体を台車上に支持した軌道上を
走行する車両において、咳車両が走行する軌道の1纏デ
ータを出力する曲線情報装置と、重連を検出し出力する
速度検出装置と、前記曲線情報装置からの曲線データと
前記速度検出装置からの車速によ)必簀最大車体傾斜角
に比例した一定値を演算し、予見信号として出力する予
見装置と、該予見装置の出力によ勤前記流体圧作動機構
へ圧力流体の供給を制御する制御弁と、該制御弁から流
体圧作動機構へ供給される圧力流体をカント量によりて
制御する切換弁とから成る車体予見傾斜装置。 3.41許請求の範囲第1項または第冨項において、車
体の傾斜角を検出する傾斜角検出器と、咳傾斜角検出器
の出力によ)前記予見装置から出力される予見(1勺を
チェックし補正する傾斜角チェック装置とからなる車体
予見傾斜装置。 4、特許請求の範囲第3項において、傾斜角検出器の出
力と、必要車体傾斜角の偏差が貯容偏差以上になっ九場
合のみ、予見信号を補正する間欠補正装置から成る傾斜
角チェック装置としたことを特徴とする車体予見傾斜装
置。 !L41許請求の範囲第3項において、必要重体傾斜角
の微分に比例した値と必畳車体傾斜角に比例した値の和
を予見信号として出力する予見装置とし、該予見装置の
予見信号に車体傾斜角に比例した値をフィードバックす
るフィードバフ6.4I許請求の範囲W11項または第
2項または第3項において、必要最大重体傾斜角に比例
した一定の値を入口緩和曲線から円am終点まで予見信
号として出力する予見装置と、フィードバフ 特許請求
の範S第1項または第2項において、特定の地上定点を
検知する定点検知装置、前記速度検出装置の出力を骸定
点検知装置の出力によシ補正して走行距離を算出する距
離カランタ、距離・曲線データを記憶し前記距離カウン
タの出力に応じた曲線データを田方する車上メモリから
成る曲線情報型としたことを特徴とする車体予見傾斜装
置。 8 特許請求の範囲第1項または第2項において、入口
緩和曲線の始点に設仕られ信号を発信する地上子、該地
上子の信号を車上において受信し前記始点を検知する車
上地点検知器、該曲線データを記憶し車上地点検知器の
出力に対応した曲線データを出力する車上メモリからな
る曲線情報装置としたことを特徴とする車体予見傾斜装
置。 9、特許請求の範m第1.!Jtたは第2項において、
曲線と並行して地上に設は曲線データを発信する地上発
信器、該地上発信器の信号を車上で受信し、曲線データ
を予見装置に出力する車上受信器からなる曲線情報装置
としたことを特徴とする車体予見傾斜装置。 10、 4許請求の範囲第1項tたは第2項において、
車体に作用する合力の絶体負を検出し予見装置に出力す
る遠心力角検出装置、軌道の給体傾斜角を検出し予見装
置に出力する軌道傾斜角検出装置からなる曲線情報装置
としたことを特徴とする車体予見傾斜装置。 11 49許請求の範a!l!1項ま友は第2項におい
て、車輪回転速度を検出する速度発電機、腋速度発電機
の出力と車輪径データから走行速度を出力する速度カク
ンタからなる適度検出装置としたことを特徴とする車体
予見傾斜装置。 12、特許請求の範1!III項または第2項において
、前記制御回路が、流体圧作動機構の等価容量と制御弁
の抵抗係数による遅れを補償する位相進みl!素および
皺位相進み要素の時定数よシー小さい時定数を有する位
相遅れ要素を有することを特徴とした車体予見傾斜装置
。 13  特許請求の範囲第1項または第2項において、
前記制御回路が、制御弁の時定数を補償する位相進み要
素および皺時定数よりも小さい時定数を有する位相遅れ
要素を有することを特徴とした本体予見傾斜装置。 14  %許請求の範囲第1項または第2項において、
曲線情報装置から出力する曲線データを、時々刻々の曲
線半径およびカント量としたことを特徴とする単体予見
傾斜装置。 15、%許請求の範囲第1項または[2項において、−
線情報装置から出力する曲線データを、円蘭赫半径9円
曲線カント量、入口緩和曲線長さ。
[Claims] 1. In a vehicle running on a track in which the vehicle body is supported on a bogie via a fluid pressure operating mechanism that controls the inclination of the vehicle body, outputting curve data of the trajectory on which the vehicle runs.
an I information device, a speed detection device that detects and outputs vehicle speed,
According to the curve data from the curve information device and the vehicle speed from the speed detecting device, a prediction fiflt that outputs an fc value as a prediction signal proportional to the differential of the slope angle of the necessary object depending on the curve data from the curve information device and the vehicle speed and the output of the armpit prediction device] A vehicle body predictive tilting device 02 comprising a control valve that controls the supply of pressure fluid to the fluid pressure operation mechanism, and a switching valve that controls the pressure fluid supplied from the control valve to the fluid pressure operation mechanism by a cant amount; In a vehicle running on a track with the vehicle body supported on a bogie via a fluid pressure actuation mechanism that controls inclination, there is a curve information device that outputs a set of data on the track on which the vehicle is traveling, and a curve information device that detects and outputs overlaps. a speed detection device that calculates a constant value proportional to the required maximum vehicle body inclination angle (based on the curve data from the curve information device and the vehicle speed from the speed detection device), and outputs it as a prediction signal; Consisting of a control valve that controls the supply of pressure fluid to the fluid pressure operating mechanism based on the output of the foreseeing device, and a switching valve that controls the pressure fluid supplied from the control valve to the fluid pressure operating mechanism by a cant amount. Vehicle predictive tilting device. 3.41 Claims 1 or 2 may include a tilt angle detector for detecting the tilt angle of the vehicle body, and a prediction output from the prediction device (based on the output of the cough tilt angle detector). and a vehicle body predictive tilting device for checking and correcting the tilt angle. 4. In claim 3, if the deviation between the output of the tilt angle detector and the required vehicle body tilt angle exceeds the storage capacity deviation. A vehicle body predictive tilting device characterized in that the vehicle body predictive tilting device comprises an intermittent correction device that corrects a predictive signal. Feedbuff 6.4I Claim W11 or Claim S Clause 1 or 3 includes a foresight device that outputs a constant value proportional to the necessary maximum heavy body inclination angle as a foresight signal from the entrance transition curve to the end point of the circle am, and a feed buff. In item 2, a fixed point detection device that detects a specific ground fixed point, a distance quanta that calculates the traveling distance by correcting the output of the speed detection device with the output of the skeleton fixed point detection device, and a distance/curve data that is stored and described above. A vehicle body predictive tilting device characterized in that it is a curve information type consisting of an on-board memory that stores curve data corresponding to the output of a distance counter.8. A beacon installed at the starting point to transmit a signal, an on-board point detector that receives the signal from the beacon on the vehicle and detects the starting point, and a point detector that stores the curve data and corresponds to the output of the on-board point detector. A vehicle body predictive tilting device, characterized in that it is a curve information device comprising an on-vehicle memory that outputs curve data.
The curve information device consists of a ground transmitter installed on the ground parallel to the curve that transmits curve data, and an on-board receiver that receives the signal from the ground transmitter on the vehicle and outputs the curve data to a prediction device. A vehicle body predictive tilting device characterized by: 10.4 In claim 1 t or 2,
The curve information device consists of a centrifugal force angle detection device that detects the absolute negative of the resultant force acting on the car body and outputs it to the prediction device, and a track inclination angle detection device that detects the feed body inclination angle of the track and outputs it to the prediction device. A vehicle body predictive tilting device featuring: 11 49 Claims a! l! Paragraph 1 Mayu is characterized in Paragraph 2 as a moderation detection device consisting of a speed generator that detects the wheel rotation speed, a speed kakunta that outputs the running speed from the output of the axillary speed generator and the wheel diameter data. Vehicle predictive tilting device. 12.Claim 1! In term III or term 2, the control circuit provides a phase advance l! that compensates for the delay due to the equivalent capacity of the hydraulically actuated mechanism and the resistance coefficient of the control valve. A vehicle body predictive tilting device characterized by having a phase delay element having a time constant smaller than the time constant of the plain and wrinkle phase advance elements. 13 In claim 1 or 2,
A main body predictive tilting device characterized in that the control circuit has a phase lead element that compensates for a time constant of a control valve and a phase delay element that has a time constant smaller than a wrinkle time constant. 14% In claim 1 or 2,
A single predictive inclination device characterized in that the curve data outputted from the curve information device is a momentary curve radius and cant amount. 15.% In claim 1 or 2, -
The curve data output from the line information device is the radius of 9 circular curves, the cant amount of the circular curve, and the length of the entrance transition curve.
JP57005916A 1982-01-20 1982-01-20 Car-body foreseeing tilt device Granted JPS58126254A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57005916A JPS58126254A (en) 1982-01-20 1982-01-20 Car-body foreseeing tilt device
KR1019830000025A KR880001886B1 (en) 1982-01-20 1983-01-06 Inclination apparatus for railroad car
ZA83343A ZA83343B (en) 1982-01-20 1983-01-19 Prescient car-body tilting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005916A JPS58126254A (en) 1982-01-20 1982-01-20 Car-body foreseeing tilt device

Publications (2)

Publication Number Publication Date
JPS58126254A true JPS58126254A (en) 1983-07-27
JPS6243896B2 JPS6243896B2 (en) 1987-09-17

Family

ID=11624214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005916A Granted JPS58126254A (en) 1982-01-20 1982-01-20 Car-body foreseeing tilt device

Country Status (3)

Country Link
JP (1) JPS58126254A (en)
KR (1) KR880001886B1 (en)
ZA (1) ZA83343B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038256A (en) * 1983-08-12 1985-02-27 財団法人鉄道総合技術研究所 Pendulum device for railway rolling stock and method of controlling said device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038256A (en) * 1983-08-12 1985-02-27 財団法人鉄道総合技術研究所 Pendulum device for railway rolling stock and method of controlling said device

Also Published As

Publication number Publication date
KR880001886B1 (en) 1988-09-27
ZA83343B (en) 1983-10-26
JPS6243896B2 (en) 1987-09-17
KR840003192A (en) 1984-08-20

Similar Documents

Publication Publication Date Title
US7027900B2 (en) Enhanced locomotive adhesion control
TWI380148B (en) Method of and apparatus for controlling steering of a vehicle
CN1326735C (en) Automatic train operation device and train operation auxiliary device
EP0794887B1 (en) Storage of track data in a position-controlled tilt system
EP2177425A1 (en) Vehicle
Alleyne A comparison of alternative intervention strategies for unintended roadway departure (URD) control
JPS6218359A (en) Electric control brake gear for car
CA2708574A1 (en) Device for measuring the movement of a self-guided vehicle
US5170715A (en) Aeromagnetic control of maglev vehicles with turntable mounted hinged control surface having two degrees of motion
EP3241712A1 (en) Speed control device for electric vehicle
EP0290022B1 (en) Automated underground haulage truck
JP5513175B2 (en) Railway vehicle body tilting device
US5295443A (en) Arrangement for tilting a railbound vehicle in track curves
JPS58126254A (en) Car-body foreseeing tilt device
US8275523B2 (en) Commercial vehicle with control means and method for controlling commercial vehicle
Bundorf et al. Vehicle handling response to aerodynamic inputs
JPH07309234A (en) Car body inclination controller of rolling stock
JP2009040078A (en) Vehicle body tilting control system of railway rolling stock
JP3515136B2 (en) Body tilt control device
JP2948806B1 (en) Railcar body tilt control system
JP3391430B2 (en) Railcar with body translation device
RU2087390C1 (en) Method of determination of velocity head of incoming flow on boards space vehicle equipped with system of powered gyroscopes
JPH0363283B2 (en)
JPS60191876A (en) Controlling method of steerage for vehicles
SE509119C2 (en) Steering of wheel axles in railway vehicles depending on position determination