JPS5812537B2 - Ondo Profiler - Yousoshi - Google Patents

Ondo Profiler - Yousoshi

Info

Publication number
JPS5812537B2
JPS5812537B2 JP9752775A JP9752775A JPS5812537B2 JP S5812537 B2 JPS5812537 B2 JP S5812537B2 JP 9752775 A JP9752775 A JP 9752775A JP 9752775 A JP9752775 A JP 9752775A JP S5812537 B2 JPS5812537 B2 JP S5812537B2
Authority
JP
Japan
Prior art keywords
resistance
temperature
profiler
measurement
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9752775A
Other languages
Japanese (ja)
Other versions
JPS5221882A (en
Inventor
大野勲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EREBAMU SEIKI KK
Original Assignee
EREBAMU SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EREBAMU SEIKI KK filed Critical EREBAMU SEIKI KK
Priority to JP9752775A priority Critical patent/JPS5812537B2/en
Publication of JPS5221882A publication Critical patent/JPS5221882A/en
Publication of JPS5812537B2 publication Critical patent/JPS5812537B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明は、例えば管状電気炉の軸方向に沿った温度分布
の迅速な測定を可能にする温度プロファイラー用素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element for a temperature profiler, which allows rapid measurement of the temperature distribution along the axial direction of, for example, a tubular electric furnace.

従来、電気炉等の温度分布を測定する場合、一つの熱電
対を測定点に沿ってずらしつつ各測定点の温度を計って
いた。
Conventionally, when measuring the temperature distribution of an electric furnace or the like, one thermocouple was shifted along the measurement points and the temperature at each measurement point was measured.

従って、ある測定点から次の測定点へ熱電対を移動させ
たとき、熱電対が熱平衡状態に達するまでのタイムラグ
があるため、測定点の数が多い場合には、測定時間に長
時間を要するばかりでなく、作業も煩しかった。
Therefore, when moving a thermocouple from one measurement point to the next, there is a time lag for the thermocouple to reach a thermal equilibrium state, so if there are many measurement points, the measurement time will take a long time. Not only that, but the work was also cumbersome.

そこで本発明は、感温素子を移動させる必要がなく、迅
速な温度分布測定を可能にする温度プロファイラー用素
子を提供するもので、その特徴とするところは、二つ折
りにした複数の抵抗線を、平行に且つその折り返し点を
順次長手方向にずらせて並べると共に、これら抵抗線を
互に絶縁が保たれた状態で束ねたことにある。
Therefore, the present invention provides a temperature profiler element that enables rapid temperature distribution measurement without the need to move the temperature sensing element. The resistance wires are arranged parallel to each other with their folding points sequentially shifted in the longitudinal direction, and the resistance wires are bundled while being insulated from each other.

以下本発明素子を用いた温度測定原理について図面を参
照しつつ説明する。
The principle of temperature measurement using the device of the present invention will be explained below with reference to the drawings.

第1図は例えば電気炉及びこれに隣接して設けた恒温槽
内の仮想温度分布を示したものである。
FIG. 1 shows, for example, a fictive temperature distribution in an electric furnace and a constant temperature bath provided adjacent to the electric furnace.

第2図は温度測定用の抵抗線群を示したものである。FIG. 2 shows a group of resistance wires for temperature measurement.

第2図において、R1,R2,R3・・・は抵抗線で、
夫々その中点XljX2 , X3・・・で二つ折りに
してあり、又これら抵抗線は互に平行に且つ折り返し点
XI + X2 y X3・−・を順次長手方向にずら
せてある。
In Figure 2, R1, R2, R3... are resistance lines,
They are each folded in half at their midpoints XljX2, X3, . . . , and these resistance lines are parallel to each other, and the folding points XI+X2 y

更にこれら抵抗線の先端(折り返し点)を炉内に、両端
を恒温槽内に位置させてある。
Further, the ends (folding points) of these resistance wires are placed in a furnace, and both ends are placed in a constant temperature oven.

さて、n番目の抵抗線の抵抗値をR。Now, let the resistance value of the nth resistance wire be R.

、隣り合う二つの抵抗線R。,Ro,の夫々の中点XL
Xn−1の位置fie△dn +n− 1 ,とのへd
n,n ]による抵抗線RnとRn−1の長さの差を
△ln r n − i (”2△dntrl−1)、
n番目の抵抗線の恒湿槽内の長さを18n,n番目とn
一盾目の抵抗線の恒温槽内の長さの差を△Sn,n−1
とヒ炉、恒温槽及び抵抗線が熱平衡に達しているものと
すれば、抵抗線Rnの抵抗値は次のように表わせる。
, two adjacent resistance lines R. , Ro, each midpoint XL
Xn-1 position fie△dn +n- 1, tonohe d
The difference in length between the resistance lines Rn and Rn-1 due to
The length of the nth resistance wire in the humidity chamber is 18n, and the length between the nth and nth resistance wires is 18n.
The difference in length of the first resistance wire in the thermostatic chamber is △Sn, n-1
Assuming that the oven, constant temperature bath, and resistance wire have reached thermal equilibrium, the resistance value of the resistance wire Rn can be expressed as follows.

この式で右辺の各項は夫々n番目の抵抗線における恒温
槽外(炉内)及び恒温槽内の抵抗率の線積分を意味して
いる。
In this equation, each term on the right side means the line integral of the resistivity outside the thermostatic chamber (inside the furnace) and inside the thermostatic chamber at the n-th resistance line, respectively.

このn番目の抵抗線の抵抗値とn−1番目の抵抗線の抵
抗値との差は、△do,n−1が小さいとすれば と近似できる。
The difference between the resistance value of the n-th resistance wire and the resistance value of the n-1th resistance wire can be approximated by assuming that Δdo,n-1 is small.

ここで、7 (T )は区間△dn,。一、における抵
抗率の平均値、T はその場所の平均温度、ρ8は恒温
槽内の抵抗率である。
Here, 7 (T) is the interval Δdn,. 1, T is the average temperature at that location, and ρ8 is the resistivity in the thermostatic chamber.

但しこの式が有効であるためには、抵抗線の素材が同一
で且つその抵抗率が均等でなければならないと共に恒温
槽内の温度も均一である必要がある。
However, in order for this formula to be effective, the resistance wires must be made of the same material and have uniform resistivity, and the temperature within the thermostatic chamber must also be uniform.

一般に抵抗線の抵抗率は ρ一ρ。Generally, the resistivity of resistance wire is ρ1ρ.

+αT ・・・(3)なる関係で
表わされる。
+αT...It is expressed by the relationship (3).

ここにρ。は零度Cのときの抵抗率、αは温度係数であ
る。
ρ here. is the resistivity at zero degree C, and α is the temperature coefficient.

従って、(2)式は次のように書ける。Therefore, equation (2) can be written as follows.

ここにα。α here.

,α8はTn,Ts における抵抗率の温度係数である
, α8 are the temperature coefficients of resistivity at Tn and Ts.

もしに取っておけば、(4)式は となる。If we keep it, equation (4) becomes becomes.

α。=α3なる抵抗線材を選べば、が得られる。α. If you choose a resistance wire material with =α3, you can obtain.

そこで恒温槽を適当な寒剤で冷しておくと、 よりT。Therefore, if you cool the constant temperature bath with an appropriate cryogen, More T.

なる温度を求めることができる。すなわち、α,△1,
Tsは予め判っているから、抵抗値の差(△R )を
測定すれば良い。
It is possible to find the temperature. That is, α, △1,
Since Ts is known in advance, it is sufficient to measure the difference in resistance value (ΔR).

具体的には抵抗値の差を電気信号として取り出し、温度
に換算する。
Specifically, the difference in resistance value is extracted as an electrical signal and converted into temperature.

なお、(7)式から明らかなように、T8を下げれば下
げる程、△Rn,n−1 は大きくなる。
Note that, as is clear from equation (7), the lower T8 is, the larger ΔRn,n-1 becomes.

従って恒温槽温度は低い方が望ましい。Therefore, it is desirable that the temperature of the constant temperature bath is low.

一方αは、温度によっていかなる素材においても多少変
わるので、精密測定には(6)式を基礎にする方が良い
On the other hand, since α changes somewhat in any material depending on the temperature, it is better to use equation (6) as the basis for precise measurement.

回路的には、αs,Ts’△lを記憶させさらにTn温
度付近のα。
In terms of the circuit, αs and Ts'Δl are stored, and α near the Tn temperature is stored.

を補償しておかなくてはならない。must be compensated for.

T,の確度を高めるためには、△lを小さくすることが
望ましいが、そうとすると△Ro,n−1な?信号が弱
められるので、適正値を抵抗体に応じて求めておくこと
が望1しい。
In order to increase the accuracy of T, it is desirable to make △l small, but if that is the case, △Ro,n-1? Since the signal is weakened, it is desirable to find an appropriate value depending on the resistor.

△’nun 1−△Sn,n−t−へIを満すように設
計し、△1が充分大きく、△1o,。
Designed to satisfy I to Δ'nun 1-ΔSn,nt-, Δ1 is sufficiently large, Δ1o,.

−1,△Sn,。−以外の部分の抵抗率が無視できるよ
うにしておくと、抵抗線材の△dn,。
−1, ΔSn,. If the resistivity of the parts other than - can be ignored, then △dn of the resistance wire.

−1での温度差によるRnとRo−1の変化が小さくと
も測定できる。
Measurements can be made even if the changes in Rn and Ro-1 due to the temperature difference at -1 are small.

本発明の好ましい実施例としては、二つ折りにした長さ
の等しい抵抗線を、平行に且つその折り返し点を一定間
隔(△d)で長手方向にずらせて並べると共に、これら
抵抗線を互に電気的に絶縁して束ね、被測定温度で保持
できる物質により棒状に固めたものが挙げられる。
In a preferred embodiment of the present invention, resistance wires of equal length are folded in half and arranged in parallel with the folding points shifted at a constant interval (△d) in the longitudinal direction, and these resistance wires are electrically connected to each other. Examples include those that are insulated, bundled, and solidified into a rod shape with a substance that can be maintained at the temperature to be measured.

なお、これら抵抗線の恒温槽内に相当する部分は任意の
形状で良い。
Note that the portion of these resistance wires corresponding to the inside of the thermostatic oven may have any shape.

又上記間隔(△d)及び抵抗線素材は上記説明した注意
に沿って選定することが望ましい。
Further, it is desirable to select the above-mentioned interval (Δd) and resistance wire material in accordance with the above-mentioned precautions.

本発明素子は、複数の抵抗線を順次ずらせて束ねてある
から、従来の如く感温素子を移動させる煩しさやその移
動の度に生ずるタイムラグがない。
In the device of the present invention, a plurality of resistance wires are sequentially shifted and bundled, so there is no need for the trouble of moving the temperature sensing device or the time lag that occurs each time the temperature sensing device is moved.

従って、温度分布測定が迅速に行い得る。Therefore, temperature distribution measurement can be performed quickly.

特に、隣接する任意の二つの抵抗線の選択及びその抵抗
値の差の検出を自動的に行なう装置との組合せに都合が
良い。
In particular, it is convenient in combination with a device that automatically selects any two adjacent resistance lines and detects the difference in their resistance values.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気炉及びこれに隣接して設けた恒温槽内の仮
想温度分布を示す図、第2図は本発明素?の構成を説明
する原理図である。 R,,R2,R3・・・抵抗線、XI + X2 tx
3・・・各抵抗線の中点、Δd1,2・・・抵抗線R1
とR2と中点の位置の差、ls・・・抵抗線R,の恒温
槽内の長さ、△S1,2・・・抵抗線R1とR2の恒淵
槽内の長さの差。
Fig. 1 is a diagram showing the fictive temperature distribution in the electric furnace and a constant temperature chamber installed adjacent to it, and Fig. 2 is a diagram showing the fictive temperature distribution in the electric furnace and the constant temperature chamber installed adjacent to it. FIG. R,,R2,R3...Resistance line, XI + X2 tx
3...Midpoint of each resistance line, Δd1, 2...Resistance line R1
and R2 and the midpoint position difference, ls...the length of the resistance wire R in the constant temperature chamber, ΔS1,2...the difference in the length of the resistance wires R1 and R2 in the constant temperature bath.

Claims (1)

【特許請求の範囲】[Claims] 1 二つ折りにした複数の同じ長さの抵抗線を、平行に
且つその折り返し点を順次長手方向にずらせて並べると
共に、これら抵抗線を互に絶縁が保たれた状態で束ねて
なる温度プロファイラー用素子。
1. For temperature profiler use, a plurality of resistance wires of the same length are folded in half and arranged in parallel with their folding points sequentially shifted in the longitudinal direction, and these resistance wires are bundled while maintaining insulation from each other. element.
JP9752775A 1975-08-13 1975-08-13 Ondo Profiler - Yousoshi Expired JPS5812537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9752775A JPS5812537B2 (en) 1975-08-13 1975-08-13 Ondo Profiler - Yousoshi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9752775A JPS5812537B2 (en) 1975-08-13 1975-08-13 Ondo Profiler - Yousoshi

Publications (2)

Publication Number Publication Date
JPS5221882A JPS5221882A (en) 1977-02-18
JPS5812537B2 true JPS5812537B2 (en) 1983-03-09

Family

ID=14194710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9752775A Expired JPS5812537B2 (en) 1975-08-13 1975-08-13 Ondo Profiler - Yousoshi

Country Status (1)

Country Link
JP (1) JPS5812537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189335U (en) * 1986-05-21 1987-12-02

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551738B2 (en) * 1974-05-27 1980-01-16
US5165794A (en) * 1991-08-02 1992-11-24 The United States Of America As Represented By The United States Department Of Energy Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures
JPH0631536A (en) * 1992-07-21 1994-02-08 Fanuc Ltd Measurement of temperature of wire on wire electric discharge machine
US5346307A (en) * 1993-06-03 1994-09-13 Regents Of The University Of California Using electrical resistance tomography to map subsurface temperatures
WO2009047838A1 (en) 2007-10-09 2009-04-16 Fujitsu Limited Fastening structure and fastening method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189335U (en) * 1986-05-21 1987-12-02

Also Published As

Publication number Publication date
JPS5221882A (en) 1977-02-18

Similar Documents

Publication Publication Date Title
US4242907A (en) Apparatus for monitoring and controlling a flat zone in a furnace
US3307401A (en) Element for measurement of furnace wall thickness and temperature
US3321974A (en) Surface temperature measuring device
US5044764A (en) Method and apparatus for fluid state determination
US4627744A (en) Temperature sensor utilizing thermal noise and thermal couple elements, and associated connecting cable
US3513432A (en) Shielded thermoelectric transducer/conductor construction
JPS5812537B2 (en) Ondo Profiler - Yousoshi
US4654623A (en) Thermometer probe for measuring the temperature in low-convection media
US3956936A (en) Temperature-measuring system
US1411396A (en) Electrical-resistance thermometer
US1837853A (en) Pyrometric device
US2337202A (en) Resistor
US3186227A (en) Thermoelectric sensing apparatus
JPS6145462Y2 (en)
US1766148A (en) Flow meter
US3287976A (en) Compensation radiation pyrometer
Davis Determination of the thermal conductivity of Refractory Insulating Materials by the Hot-Wire Method
Claggett et al. Resistance Temperature Detectors (RTDs)
SU972262A2 (en) Device for measuring loose material temperature
SU1531041A1 (en) Probe for measuring temperature stability of magnetic induction
SU1024747A1 (en) Resistance thermometer
JPH0738834Y2 (en) Temperature detector
SU1603272A1 (en) Device for measuring coefficient of thermo-emf of minerals
SU685965A1 (en) Thermal probe
US3908459A (en) Temperature sensing device