JPS5812500A - Hearing aid - Google Patents

Hearing aid

Info

Publication number
JPS5812500A
JPS5812500A JP11056081A JP11056081A JPS5812500A JP S5812500 A JPS5812500 A JP S5812500A JP 11056081 A JP11056081 A JP 11056081A JP 11056081 A JP11056081 A JP 11056081A JP S5812500 A JPS5812500 A JP S5812500A
Authority
JP
Japan
Prior art keywords
sound
hearing aid
octave
range
sounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11056081A
Other languages
Japanese (ja)
Inventor
Yasuo Sato
佐藤 保郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11056081A priority Critical patent/JPS5812500A/en
Publication of JPS5812500A publication Critical patent/JPS5812500A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)

Abstract

PURPOSE:To obtain a hearing aid which is corrected so that a user hears a sound as close to an original sound as possible, by eliminating such a metallic sound that an ear is stuck, or its frequency range and other sounds which cause pain through a BEF, a trap, etc. CONSTITUTION:One graphic equalizer 3 which is variable by + or -12dB per octave and uses a fundamental wave set to +10dB, one graphic equalizer 4 adjusted to a +1/3 octave, and one graphic equalizer 5 adjusted to a -1/3 octave are put in parallel operation by resistance mixing. A BEF6 is coupled with them, and then an amplifier 7 and headphones or an earphone 8 are connected, forming a hearing aid. Thus, while heating sense correction which corresponds to a user and correction based upon the Fletcher-Munson contour are performed, correction of disadvantages of an order-made hearing aid is performed corresponding to the user, obtaining a sound as close to an original sound as possible.

Description

【発明の詳細な説明】 この発明は、使用者に区痛感を与える音、または音域を
削除された補聴器と、別の補助装置を増巾器に連結して
、なるべく原音に近く聞かれるようほせいされた補聴器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to connect a hearing aid that eliminates the sound or sound range that gives the user a sensation of pain in the ear and another auxiliary device to an amplification device so that the user can hear the sound as close to the original sound as possible. Concerning damaged hearing aids.

従来の補聴器は、原音に比して音色がひどく変わること
と、使用者にどのように感じとられているかを、特に配
慮したものがなく、例えば既製服のようなものであって
、苦痛を与える音域を削除した、注文服に例え得る補聴
器は皆無であった。
Conventional hearing aids do not take into account the fact that the tone changes significantly compared to the original sound, and how the user perceives it. There were no hearing aids that could be compared to custom-made clothing that had a reduced range of sound.

また、同じ大きさの音に聞かれるように、周波数を変更
しつ丶レベルを調節してプロットし、次に総レベルを少
し下げて同胞にプロットし、更にレベルを少し下げて同
様にプロットしたものは、フレッチャ−マンソン曲線(
イ)として広く知られ、これを補正する手段として、ラ
ウドネスコントロ−ルのあることもよく知られている。
I also plotted by changing the frequency and adjusting the level so that it would be heard by sounds of the same loudness, then I lowered the total level a little and plotted it against my compatriots, then I lowered the level a little and plotted the same thing. The Fletcher-Munson curve (
(a) is widely known, and it is also well known that there is a loudness control as a means of correcting this.

また騒音測定などにより、複数の聴感補正曲線のあるこ
とも広区知られ、このうちA曲線(ロ)は、機器のカタ
ログなどによく見られるところである。即ち、健康人を
対象とする場合であっても、使用される機器の周波数特
性は、平坦であればよいというものではなく、最大公約
数としての、補正をされていることは上記のとおりであ
る。ところが補聴器は、使用者の耳の特性が一様でなく
、試験者の側でこれをとらえにくいせいもあって、ハイ
フィデリティとは、およそ円の内特性のものが一般に使
われている。また共同通信社刊のオ−ディオABCにお
いて、数十〜百数十HZはブンブンウンウンとうなる音
、その上の音域は、ボンボンドンドンと腹にこたえる音
、数百〜2千数百HZは音が張り出すとか,ひっこむな
どに影響があり、数百HZの音域に、カンカンコンコン
と頭や額を叩かれる感じの音があり,2千HZより少し
高い音域に、キンキンと耳を刺す幹事の音があり、それ
より高い音域には,華やかさとかきらびやかさ,および
鋭い音があり,それより高い音域には、シンシンシャン
シャンと、浮き上がるような軽い感じがあると、著者で
ある瀬川氏はうまく表現されている.またスピ−カ−の
カタログによく見られるように、正面から来た音に比し
て、30゜側方(ハ)とか、60゜側方か(ニ)から来
た音は,周波数の高い音域において、減衰の多いことが
よく知られている。またレイモンドクック著、浅野氏焼
くによりと、スピ−カ−(1)に対する、測定マイク(
2)の位置を一定にして、周波数を連続的に変化しつゝ
、出力音圧レベルをプロットすると、指向特性は、音の
出る方向の変化よりも、周波数の変化による影響の方が
大きく、引例によると、15゜側方よりくる音(ホ)は
、2千数百〜3千HZのところで焼く20dzディップ
し、30°側方より来る音(ト)は、2千HZより少し
高いところで約20ディップし、45°側方より来る音
(チ)は、約2千HZにおいて30db以上ディップし
ているから、先記したキンキンと耳刺す感じの音も、3
0°側方から来る状態にあれば、人に非常な苦痛を与え
る状態にはならぬということになる。なおレイモンドク
ックによりと、正面から来た音に比して,側方から来た
音が10db以上減衰するのは、13KHZをこしてか
ら徐々にであり、先記の如くディップする状態にはなら
ず、その他の音域では数dbの差であるところをみると
、2千HZ位より少し高い音域には、何か運命的なもの
を感じるのである。即ち通常は、真正面から音が来る場
合は少ないので、一般の人は救われているのであり、イ
ヤホンを利用する障害者は、本人がどちらを向いてみて
も、鼓膜に対し真正面から音が来るため,救われるとこ
ろが全くk内のである。老人の多くが,折角の補聴器を
持っていながら,耳が痛くなるとか、頭が痛くなると云
って、日常使用するのをきらい、交通事故の原因になっ
たりしているのも、実はこの辺りに、かくれた原因があ
るのではないか、と気づいたのである。
Furthermore, it is widely known that there are a plurality of hearing correction curves based on noise measurements and the like, and among these curves, curve A (b) is often seen in equipment catalogs. In other words, even when targeting healthy people, the frequency characteristics of the equipment used do not just have to be flat; as mentioned above, they must be corrected as the greatest common divisor. be. However, with hearing aids, the characteristics of the user's ears are not uniform and it is difficult for the tester to detect this, so high fidelity hearing aids are generally used that have characteristics within a circle. In addition, in the audio ABC published by Kyodo News, the range from several tens to hundreds of Hz is a buzzing sound, the range above that is a pounding sound, and the range from several hundred to 2,000 Hz is no sound. It affects things like pushing out or retracting, and in the range of several hundred Hz, there is a sound that feels like being hit on the head or forehead, and in the range slightly higher than 2,000 Hz, there is the sound of the secretary that stings the ears. The author, Mr. Segawa, skillfully expresses that there is a brilliance, sparkle, and sharp sound in the higher range, and that there is a shinshinshanshan, a floating, light feeling in the higher range. ing. Also, as often seen in speaker catalogs, sounds coming from 30 degrees to the side (C) or 60 degrees to the sides (D) have higher frequencies than sounds coming from the front. It is well known that there is a lot of attenuation in the sound range. Also, as written by Raymond Cook and written by Mr. Asano, there is a measurement microphone (1) for the speaker (1).
2) If we plot the output sound pressure level while keeping the position constant and changing the frequency continuously, we can see that the directional characteristics are more affected by the change in frequency than the change in the direction of the sound. According to the cited example, the sound (E) coming from the side of 15 degrees is 20dz dip at a temperature of 2,000 to 3,000 Hz, and the sound (G) coming from the side of 30 degrees is fired at a temperature slightly higher than 2,000 Hz. The sound (chi) with a dip of about 20 degrees and coming from the side at 45 degrees has a dip of more than 30 db at about 2,000 Hz.
If it comes from the 0° side, it will not cause extreme pain to the person. Furthermore, according to Raymond Cook, the sound coming from the side is attenuated by more than 10 db compared to the sound coming from the front, but only after passing through 13KHZ, and the sound does not dip as mentioned above. Considering that there is a difference of several db in other ranges, I feel that there is something fateful about the range slightly higher than about 2,000 Hz. In other words, normal people are saved because the sound rarely comes directly in front of them, and for people with disabilities who use earphones, the sound comes directly in front of their eardrums, no matter which way they turn. Therefore, the only place that can be saved is within k. This is actually the reason why many elderly people who own hearing aids do not want to use them on a daily basis because they complain that they hurt their ears or give them headaches, which can lead to traffic accidents. I realized that there might be a hidden cause.

そこでラフな実験であるが,センターにトゥイ−タ−を
有する38cmのスピ−カ−により、老人に対し正面か
ら音が来るようにして、CRオシレ−タ−の音をきかせ
るものとし、2KHZを中心に1オクタ−ブ位のあいだ
を、逆山形に約10db(アンプ付属のメ−タ−による
)減衰するよう調節してみたのである。すると周波数が
ずれてはいたが、減衰すると耳の痛くない音域のあるこ
とを確認できた。そこでヘッドホンにより聞かせたとこ
ろ、どうもはっきりしないが、8KHZの辺り(ル)に
出一夫させるとよい部分があり、それより高域を、ト−
ンコントロ−ルにより少し減衰させたところ、16KH
Zにおいても耳の痛くなる様子はなかった。そこで同じ
ようにして、他の数人を試験してみたが、煮た結果より
なく、くつがえす傾向は何もなかった.そこでこの結果
により、即断するのは甚だ危険であるが大略として、キ
ンキンと耳を刺す感じのする音または音域(ヌ)を底に
、数db〜20数dbを逆山形に減衰させる(中心周波
数と減衰量には個人差がある)とよく、その他に、個人
特有の減衰させるとよい音域があることと、そのバンド
巾は狭い方がよいようであり、数百HZの音域(ヲ)(
その必要性には強い個人差がある)と、数千KHZの辺
り(ル)にあるようであり、老人にとっても、ラウドネ
スコントロ−ルの並用は有効であった。即ちラウドネス
コントロ−ルを作動させ、ト−ンコントロ−ルの低音域
を1目盛り上げ、5KHZより上を、1目盛り下げ、2
0KHZ以下をカットして周波数特性をうねらせたとこ
ろ、歌曲などは,昔聞いた音色によく似ていると云うか
ら、これまた個人差があり、測定に時間と工夫を要する
が、オ−ダ−メイドの補聴器を作り得ることになる。
So, as a rough experiment, we used a 38cm speaker with a tweeter in the center to make the sound come from in front of the elderly person, and played the CR oscillator sound at 2KHZ. I tried adjusting the attenuation to about 10 db (according to the meter attached to the amplifier) in an inverted chevron shape over an octave in the center. Although the frequency was off, I was able to confirm that there is a range of sounds that does not hurt the ears when attenuated. So when I listened to it through headphones, I found that although it wasn't very clear, there was a part that would be good to have it output around 8KHZ.
When I attenuated it a little with the control, it was 16KH.
There were no signs of ear pain with the Z. So I tested several other people in the same way, but the results were not as good as they were, and there was no tendency to overturn it. Therefore, based on this result, it is extremely dangerous to make a quick judgment, but as a general rule, the sound or range (nu) that feels like it stings the ears is attenuated in an inverted mountain shape from several db to 20-odd db (center frequency There are individual differences in the amount of attenuation), and in addition, there are individual ranges that are best attenuated, and the narrower the band width, the better.
There are strong individual differences in the need for loudness control), and it seems to be around several thousand kilohertz, so even for elderly people, the simultaneous use of loudness control was effective. That is, activate the loudness control, raise the bass range of the tone control by 1 scale, lower the range above 5KHz by 1 scale, and lower the tone control by 1 scale.
When we cut below 0KHZ to make the frequency response undulate, we heard that the tone of a song was very similar to the tone we had heard in the past.There are also individual differences, and it takes time and effort to measure, but it is customizable. -It will be possible to make made-in-house hearing aids.

そこで、オクタ−ブ当り■12db可変のグラフィック
イコライザにより、全部を■10dbの位置(即ち必要
により各レバ‐を22db下げ得る)とし、基本波によ
り1台(3)と、■1/3オクタ−ブにずらせた1台(
4)と、■1/3オクタ−ブにずらせた1台(5)を、
低抗ミクシングにより並列運転し、これにバンドエリミ
ネ−ションフィルタ(BEF)(6)を連結し、接続さ
れたアンプ(7)とヘッドホン、またはイヤホン(8)
により被検者に聞かせるものとし、当初数百HZの音を
きかせてレベルを決め、次いで合成音や、本人の記憶に
ある音楽や話し声を聞かせてイコライザを調節し、キン
キンと耳を刺す感じのする部分を数〜20数db下げ、
必要があれば数百HZの部分を数db下げバンドエリミ
ネ−ションフィルタ(6)により、苦痛を感じる音を削
除するのである。するとオ−ダ‐の状態になるから、イ
コライザの部分(A)を、基本波または、■1/3オク
タ−ブ、または■1/3オクタ−ブの1回により、前記
テスト結果に代替できる状態にする(3台並列運転時の
特性を、例えば50HZごと、レバー1目盛りごとに調
べて数表をグラフにすると、それはもはや、デジタル化
したのと同じものとなり、位相歪の問題は残るものの、
1/3オクタ−ブ巾で、20数バンドにわたり調節する
ようにされた、A社のグラフィックイコライザ1台によ
るより複雑な特性曲線を得られやすく、代替するとき、
3台のうちどれにするとよいかゞすぐわかる)のである
。そしてこのような実地試験を相当数こなすと、可変に
しなければならぬ部分と、数値固定でよい部分の,最大
公約数が知られるから、若干の外づけ部分(9)を残し
て,I.C化、またはLSI化できるのである。
Therefore, by using a graphic equalizer that is variable by 12 db per octave, we set all of them to the 10 db position (that is, each lever can be lowered by 22 db if necessary), and by the fundamental wave, one (3) and one third octave. One unit shifted to the rear (
4) and ■ one (5) shifted by 1/3 octave,
Parallel operation with low resistance mixing, connected to band elimination filter (BEF) (6), connected amplifier (7) and headphones or earphones (8)
Initially, a sound of several hundred Hz is played to determine the level, and then a synthesized sound, music or speaking voice from the patient's memory is played, and the equalizer is adjusted to create a sound that stings the patient's ears. Lower the area where the image is applied by several to 20 db,
If necessary, the range of hundreds of Hz is lowered by several db and a band elimination filter (6) is used to eliminate the painful sounds. Then, since it becomes an order state, the equalizer part (A) can be replaced by the fundamental wave, ■1/3 octave, or ■1/3 octave once for the above test result. (If you examine the characteristics when three units are operated in parallel, for example, at every 50 Hz or every lever scale, and make a graph of the numerical table, it will be the same as digitized, and although the problem of phase distortion remains) ,
It is easy to obtain a more complex characteristic curve using one graphic equalizer from Company A, which has a width of 1/3 octave and can be adjusted over 20 bands, so when replacing it,
You can immediately know which one of the three to choose. After completing a considerable number of such practical tests, you will know the greatest common divisor of the parts that need to be made variable and the parts that can be fixed, so leaving some external parts (9) aside, I. It can be converted into C or LSI.

即ち,従来より知られるところによれば、31.5HZ
辺りを6db下げ、160HZ辺りを2db上げると、
低音域のもやつきがなくなるから、このところは固定化
できるし、高い周波数は,歪を減ずるためもあって、な
だらかに下がりつゝ、なるべく他界周波数まで再生でき
るのがよく、キンキンと耳を刺す感じのする音または音
域(ヌ)と、数百HZの所(ヲ)と、数千HZのところ
(ル)を減衰できればよく、可変を要するのは2〜数ヶ
所となる。そしてこの可変装置を除く部分は、CR多数
を含む回路として固体化が容易であり、これに前置用の
増巾器(10)(グラフィックイコライザの初期のもの
は、増巾器を内蔵しないため、挿入損失が12db位あ
った点に注意を要する)と、低出力のアンプ(ll)を
同居させて、LSI(12)をつくルことは容易とみら
れる。そして、かたちの大きくなるのを許されるならば
、1増巾系統にステレオ用のヘッドホン(13)を接続
して、両耳により均等に聞かれるものとすると、情緒の
安定化に極めて有効であり、マイクと増巾器を2系統に
してステレオ化すると、方向感を得られるため更に具合
がよく、苦痛を与える部分を削除されており、その他の
部分は、音色を補うかたちにされているから、これを持
って旅や寄席へ出かけたり、良質のステレオマイク(1
4)を持って、音楽回へ出かけ得るようになるのも、そ
う遠い先のことではない。
That is, according to what is conventionally known, 31.5Hz
If you lower the area by 6db and raise the area around 160Hz by 2db,
This eliminates the dullness in the bass range, so this part can be fixed, and the high frequencies should be played down gently to reduce distortion, and play as far as possible to other frequencies, making the sound crisp and clear to the ears. It is only necessary to attenuate the sound or sound range that gives a piercing feeling (nu), the area of several hundred Hz (wo), and the area of several thousand Hz (ru), and only two to several areas need to be varied. The parts other than this variable device can be easily solidified as a circuit including a large number of CRs, and a preamplifier (10) (early graphic equalizers do not have a built-in amplifier, so It should be noted that the insertion loss was about 12 db) and a low-output amplifier (ll) together to create an LSI (12). If the size is allowed to increase, connecting stereo headphones (13) to the 1-amplification system so that the sound can be heard equally by both ears is extremely effective in stabilizing emotions. If you use two systems of microphones and amplifiers to make it stereo, it will be even better because you will get a sense of direction, and the parts that cause pain will be deleted, and the other parts will be shaped to supplement the tone. , you can take this with you on a trip or go to a vaudeville show, or use a high-quality stereo microphone (1
It won't be long before you'll be able to take your 4) with you to a music concert.

なお上記したところは、グラフィックイコライザとバン
ドエリミネ−ションフィルタ(6)により例であるが、
フィルタの組み合わせ、または似た作用をする装置(例
えばチャンネルドライバなど)またはトラップの組み合
わせに変えてもよく、複数の外づけ部品(9)を数種類
の複合回路とし、その1種をつけて目的を達するものと
してもよく、レベルを下げた回路を並設して、スイッチ
切り換えにより、聞き流しできる状態(同じ出願人の洗
願あり)をつくると更によく、超音波のように作用する
音域を、カットするようにすると更によい。
The above is an example using the graphic equalizer and band elimination filter (6), but
It is also possible to change to a combination of filters, devices with similar functions (such as channel drivers), or traps.The multiple external components (9) can be made into several types of composite circuits, and one type of them can be attached to achieve the purpose. However, it is even better to create a state in which you can listen without listening by switching a switch by installing circuits that lower the level (with the request of the same applicant). It is even better if you do this.

なお上記のための試験には、江原氏によるモデル信号の
発生方法に関する発表と、NHK技研とK社による、番
組音モデル信号発生装置に関する説明が参考になり、別
の資料と先記したレイモンドクックの意見によりと、一
般に実施されているような、ピンクノイズとバ−スト波
による試験のみでなく、混合液と変調波、および複変調
波による試験が、さらに必要であることがよく知られる
For the above test, the presentation by Mr. Ebara on the model signal generation method and the explanation about the program sound model signal generation device by NHK Giken and K Company were used as references, and other materials and the above-mentioned Raymond Cook According to his opinion, it is well known that not only tests using pink noise and burst waves as generally practiced, but also tests using mixed liquids, modulated waves, and double modulated waves are necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図を第5図と第6図は周波数特性曲線であ
り、第4図は平面図であり、第7図〜第10図は略接続
図である。 (1)...スピ−カ−、(2)...測定マイク、(
2a)...15°側方にそなえたマイク、(2b).
..30°側方に備えたマイク、(3)...基本波に
よる1台、(4)...■1/3オクターブにずらせた
1台、(5)...■1/3オクターブにずらせた1台
、(6)...バンドエリミネーションフィルタ、(7
)...アンプ、(8)...イヤホン、(9)...
外づけ部品、(10)...増巾器、(11)...低
出力のアンプ、(12)と(12a)...LSI,(
13)...ヘッドホン、(14)...ステレオマイ
ク、(A)...イコライザの部分、(イ)...フレ
ッチャ−マンソン曲線、(ロ)...A曲線、(ハ).
..30°側方、(ニ)...60°側方、(ホ)..
.15°側方より来る音、(ト)...30°側方より
来る音、(チ)...45°側方より来る音、(ヌ).
..キンキンと耳を刺す感じのする音または音域、(ル
)...数千HZ(8千HZ位)の辺り、(ヲ)...
数百HZのところ(音域)。 特許出願人 佐藤 保郎 zッ位
1 to 3, FIGS. 5 and 6 are frequency characteristic curves, FIG. 4 is a plan view, and FIGS. 7 to 10 are schematic connection diagrams. (1). .. .. Speaker, (2). .. .. Measuring microphone, (
2a). .. .. Microphone placed 15 degrees laterally (2b).
.. .. Microphone provided at 30° side (3). .. .. One unit based on the fundamental wave, (4). .. .. ■One unit shifted by 1/3 octave, (5). .. .. ■One unit shifted by 1/3 octave, (6). .. .. Band elimination filter, (7
). .. .. Amplifier, (8). .. .. Earphones, (9). .. ..
External parts, (10). .. .. Amplifier, (11). .. .. Low power amplifiers, (12) and (12a). .. .. LSI, (
13). .. .. Headphones, (14). .. .. Stereo microphone (A). .. .. Equalizer part, (a). .. .. Fletcher-Munson curve, (b). .. .. A curve, (c).
.. .. 30° lateral, (d). .. .. 60° lateral, (e). ..
.. Sound coming from 15 degrees side (G). .. .. Sound coming from 30 degrees side (chi). .. .. Sound coming from 45 degrees side (nu).
.. .. A sound or range of sounds that feels like it stings the ears (ru). .. .. Around several thousand HZ (around 8,000 HZ), (wo). .. ..
At several hundred Hz (sound range). Patent applicant: Yasuro Sato

Claims (1)

【特許請求の範囲】[Claims] 1.キンキンと耳を刺す感じのする音(健康人に)おい
ては1.5〜2KHZより高い音域にあるとみられる)
またはその音域とその他の苦痛感を与える音をバンドエ
リミネ−ションフィルタ(BEF)またはトラップなど
により削除された補聴器2.健康人における複数の聴感
補正とフレッチャ−マンソン曲線に対する補正を勘案さ
れ耳の特性を補うことにより原音に近く聞かれるように
するため、フィルタの組み合わせまたはグラフィックイ
コライザまたは似た作用をする装置などを増巾器に連結
された特許請求範囲の1記載の補聴器
1. Sounds that feel like they sting the ears (for healthy people) are likely to be in a higher range than 1.5 to 2 KHZ)
Hearing aids in which that range and other distressing sounds are removed using a band elimination filter (BEF) or trap 2. In order to hear the original sound closer to the original sound by taking into account multiple auditory corrections in healthy people and corrections for the Fletcher-Munson curve, and by supplementing the characteristics of the ear, a combination of filters, a graphic equalizer, or a device with a similar effect is added. A hearing aid according to claim 1 connected to a hearing aid.
JP11056081A 1981-07-15 1981-07-15 Hearing aid Pending JPS5812500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11056081A JPS5812500A (en) 1981-07-15 1981-07-15 Hearing aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11056081A JPS5812500A (en) 1981-07-15 1981-07-15 Hearing aid

Publications (1)

Publication Number Publication Date
JPS5812500A true JPS5812500A (en) 1983-01-24

Family

ID=14538921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11056081A Pending JPS5812500A (en) 1981-07-15 1981-07-15 Hearing aid

Country Status (1)

Country Link
JP (1) JPS5812500A (en)

Similar Documents

Publication Publication Date Title
US9943253B2 (en) System and method for improved audio perception
Pralong et al. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space
Stone et al. Tolerable hearing aid delays. I. Estimation of limits imposed by the auditory path alone using simulated hearing losses
US7564979B2 (en) Listener specific audio reproduction system
CN104254049B (en) Headphone response measurement and equilibrium
Stone et al. Tolerable hearing aid delays. III. Effects on speech production and perception of across-frequency variation in delay
JPH077799A (en) Stereoreinforced sound recording medium
Moore et al. Comparison of the CAM2 and NAL-NL2 hearing aid fitting methods
US9769575B2 (en) Magnitude and phase correction of a hearing device
US20100303249A1 (en) System and method of improving audio signals for the hearing impaired
JP4904461B2 (en) Voice frequency response processing system
US11405723B2 (en) Method and apparatus for processing an audio signal based on equalization filter
Franks Judgments of hearing aid processed music
Keidser et al. Relative loudness perception of low and high frequency sounds in the open and occluded ear
Lundberg et al. Perceived sound quality in a hearing aid with vented and closed earmould equalized in frequency response
Patel et al. Compression Fitting of Hearing Aids and Implementation
Flanagan et al. Discrimination of group delay in clicklike signals presented via headphones and loudspeakers
JPS5812500A (en) Hearing aid
Zakis et al. Preferred delay and phase-frequency response of open-canal hearing aids with music at low insertion gain
Francart et al. Amplification of interaural level differences improves sound localization in acoustic simulations of bimodal hearing
US3050583A (en) Controllable stereophonic electroacoustic network
JPH06269097A (en) Acoustic equipment
CN114286252B (en) Method for calibrating frequency response of playing equipment
Dobrucki et al. Various aspects of auditory fatigue caused by listening to loud music
US20170078793A1 (en) Inversion Speaker and Headphone for Music Production