JPS58124871A - Four-way change-over valve - Google Patents

Four-way change-over valve

Info

Publication number
JPS58124871A
JPS58124871A JP57005980A JP598082A JPS58124871A JP S58124871 A JPS58124871 A JP S58124871A JP 57005980 A JP57005980 A JP 57005980A JP 598082 A JP598082 A JP 598082A JP S58124871 A JPS58124871 A JP S58124871A
Authority
JP
Japan
Prior art keywords
fluid
pressure
passage
valve
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57005980A
Other languages
Japanese (ja)
Inventor
Akira Sugiyama
杉山 旭
Teruaki Kojima
小島 輝昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57005980A priority Critical patent/JPS58124871A/en
Publication of JPS58124871A publication Critical patent/JPS58124871A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves

Abstract

PURPOSE:To provide a four-way change-over valve with a simple construction and high reliability by using a generally-used ordinary two-way solenoid valve in a valve used for reversible refrigerating cycle in an air conditioner or the like. CONSTITUTION:A two-way solenoid valve 13 controls the connection of a first fluid chamber 6 and a low pressure fluid outlet connecting pipe 12. When the valve 13 is closed, a portion of high pressure gas entering a high pressure fluid inlet connecting pipe 9 flows into a first fluid chamber 6 through a high pressure fluid conduit 21 to move pistons 3, 4 left as shown in the drawing. Also, when the two-way solenoid valve 13 is opened, a portion of the high pressure gas entering said connecting pipe 9 flows into the first fluid chamber 6. However, since the two-way solenoid valve 13 is opened, it flows to said outlet connecting pipe 12. Thus, the pistons 3, 4 are moved right to change over the valve by high pressure gas flowing into a second fluid chamber 7.

Description

【発明の詳細な説明】 本発明は空気調和機等の可逆冷凍サイクルに使用される
四方切換弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a four-way switching valve used in a reversible refrigeration cycle of an air conditioner or the like.

従来、制圧流体の出入口通路と低圧流体の出入口通路を
備え、密閉室内にピストン機構と連結した切換弁を摺動
自在に収納し、該切換弁によって上記制圧流体の出口通
路および低圧流体の人口通路を切換えるようにした四方
切換弁においては、切換弁を摺動させる高低圧流体の切
換えを別に接続した三方vL−弁を作動させ”C行ない
、上記ピストンを駆動させることにより該ピストンと連
結されている切換弁を摺動させて高圧流体の出口通路お
↓ひ低圧流体の入口通路を切換えるようにしたものもあ
る。
Conventionally, a switching valve is slidably housed in a closed chamber and is provided with an inlet/outlet passage for a suppressed fluid and an inlet/outlet passage for a low-pressure fluid, and is connected to a piston mechanism. In a four-way switching valve designed to switch the switching valve, a separately connected three-way VL-valve is operated to switch the high and low pressure fluid that slides the switching valve, and the piston is connected by driving the piston. Some devices have a switching valve that slides to switch between the outlet passage for high-pressure fluid and the inlet passage for low-pressure fluid.

上記した従来の四方切換弁は、三方弁という特殊な専用
の操作弁を用いるものが多く。また、弁+:俸内部の構
造も複雑で部品点数が多く、組立工数を多く必要とし、
そのため製造コストが高くなるなどの欠点を有し、更に
部品点数の多いことから信頼性に欠けるなどの欠点を有
していた。
Most of the conventional four-way switching valves mentioned above use a special dedicated operation valve called a three-way valve. In addition, the internal structure of the valve + valve is complex and has many parts, requiring a large number of assembly man-hours.
Therefore, it has drawbacks such as high manufacturing cost, and also has drawbacks such as lack of reliability due to the large number of parts.

不発明は上記の点に鑑みてなされたもので、構造が簡単
で部品点数が少なく、信頼性の高い、また、特殊な三方
弁尋を使用せずコスト的にも有利な四方切換弁を提供す
ることを第1の目的とするものである。第2の目的は過
負荷条件による圧縮機の過熱運転を防止するための液バ
イパス回路を併用でさる四方切換弁を提供することであ
る。
The invention was made in view of the above points, and provides a four-way switching valve that is simple in structure, has a small number of parts, is highly reliable, and is cost-effective without using a special three-way valve. The primary purpose is to A second object is to provide a four-way switching valve that is combined with a liquid bypass circuit to prevent overheating of the compressor due to overload conditions.

本発明は上記の目的を達成する六めに、切換弁・を摺動
させる流体力を受ける面積が異なる複数のピストン機構
手段と、該ピストン機構手段にょうて区画さnる第1の
流体圧力室と第2の流体圧力室と第3の流体圧力室を1
つの密閉容器の中に区画形成し、上記ピストン機構手段
を連結し通路切換室を有する弁部と、そして、第2の流
体圧力室に開口する高圧流体入口通路と低圧流体出口通
路と、2つの切換通路と、第1の流体圧力室と流体通路
によって低圧流体出口通路と連結する二方弁と、上記第
3の流体圧力室と低圧流体出口側に連通ずる通路と、上
記第1の流体圧力室に開口する筒圧流体導入通路と、上
記弁部に内装さ几たライナーと、上記弁部の廻動防止手
段とによって弁本体の一体構造化を計9、信頼性の向上
とコストの低減を計ることを特徴とするものである。
Sixthly, the present invention provides a plurality of piston mechanism means having different areas receiving fluid force for sliding the switching valve, and a first fluid pressure partitioned by the piston mechanism means. a chamber, a second fluid pressure chamber, and a third fluid pressure chamber.
a valve section formed in a sealed container, connecting the piston mechanism means and having a passage switching chamber; and a high-pressure fluid inlet passage and a low-pressure fluid outlet passage opening into a second fluid pressure chamber; a switching passage, a two-way valve connecting the first fluid pressure chamber and the low pressure fluid outlet passage via the fluid passage, a passage communicating with the third fluid pressure chamber to the low pressure fluid outlet side, and the first fluid pressure The valve body has a total of 9 integrated structures, including a cylindrical pressure fluid introduction passage that opens into the chamber, a liner installed inside the valve section, and a means for preventing rotation of the valve section, improving reliability and reducing costs. It is characterized by measuring.

本発明は従来、三方弁を別に用意して四方切換弁に接続
し、2個のピストンの頭部に高低圧のガスを切換えて供
給するのに対し、本発明の四方切換弁は三方弁ではなく
汎用性のある普通の三方電磁弁を使用しているから、四
方切換弁本体と三方弁との配管接続が簡単である。また
、ピストン頭部の受圧面積が異なる大小2個のピスト/
を組合せているから、大きいピストンに高圧カスを供給
することによって大きな荷重が作用することになって作
動がスムースに行なわれる。また、通路を切換えるライ
ナーは樹脂材であると多くの摺動動作を繰返しても摩擦
抵抗が小さいため通路切換えがスムースに行なわnる。
Conventionally, the present invention prepares a three-way valve separately and connects it to the four-way switching valve to selectively supply high and low pressure gas to the heads of the two pistons, but the four-way switching valve of the present invention is not a three-way valve. Since it uses an ordinary three-way solenoid valve, which is extremely versatile, piping connections between the four-way switching valve body and the three-way valve are easy. In addition, two large and small pistons with different pressure receiving areas on the piston head/
Because of this combination, a large load is applied by supplying high-pressure waste to a large piston, resulting in smooth operation. Furthermore, if the liner for switching the passage is made of a resin material, the frictional resistance will be small even after many sliding movements are repeated, so that the passage can be switched smoothly.

そして、金属のライナー等に比較して弾力性があるので
弁本体内壁に圧力差で押し付けられるので気密性は充分
である。
Since the liner has more elasticity than a metal liner or the like, it is pressed against the inner wall of the valve body by a pressure difference, so airtightness is sufficient.

また、大きいピストンに供給する尚圧流体に液冷媒を利
用することによって、I@1の流体圧力室に流入した液
冷媒は二方弁を経て通路により低圧流体出口通路に導ひ
かれ、圧縮機に吸入される低圧ガスと混合して過熱ガス
を冷却し過熱運転を防止することができる。
In addition, by using liquid refrigerant as the still-pressure fluid supplied to the large piston, the liquid refrigerant that has flowed into the fluid pressure chamber of I@1 is guided to the low-pressure fluid outlet passage through the two-way valve and into the compressor. The superheated gas can be mixed with the inhaled low-pressure gas to cool the superheated gas and prevent overheated operation.

過熱運転が比較的多い暖房運転サイクルになったとき上
記二方弁を開いて高圧液冷媒が低圧側に流れるように上
記四方切換弁を利用することが好ましい。逆に暖房運転
時は二方弁を閉じ、冷房運転時に開くようにすnば冷房
運転時の過熱運転の防止を行なうことができる。
It is preferable to use the four-way switching valve so that the two-way valve is opened and the high-pressure liquid refrigerant flows to the low-pressure side when a heating operation cycle in which overheating is relatively frequent occurs. Conversely, by closing the two-way valve during heating operation and opening it during cooling operation, overheating during cooling operation can be prevented.

身重、不発明を第1図乃至第4図に示す一実施例により
詳細に説明する。
The weight and non-invention will be explained in detail with reference to an example shown in FIGS. 1 to 4.

1は胴体で、ピストン外径の小さい方は胴体1に嵌入し
fc)i14部1aと外径の大きい胴部1bとからなり
、端部の片方は胴部1aと一体に形成したカバ部により
封塞さnており、他方はエンドカバ2によって密閉状に
塞がれている。該胴体1は圧力にも充分耐える圧力容器
でもある。3は外径の大きいピスト/、4は外径の小さ
いピストンで高圧流体力を受ける面積が異なっている。
1 is a body, the piston with a smaller outer diameter is fitted into the body 1, and consists of a part 1a with a larger outer diameter and a body part 1b with a larger outer diameter, and one end is formed by a cover part integrally formed with the body part 1a. The other end is hermetically closed by an end cover 2. The body 1 is also a pressure vessel that can withstand pressure sufficiently. 3 is a piston with a large outer diameter, and 4 is a piston with a small outer diameter, which have different areas that receive high-pressure fluid force.

該両大小のピストンはブラケット5によって連結されて
いる。そして、外径の小さいピストン4は外径の小さい
胴部1a内に摺動可能に挿入さ1tており、外径の大き
いピストン3は外径の大きいpp4部1b内に摺動可能
に挿入さnている。上記の大小のピストンは胴体1内に
挿入されることによって第1の流体圧力室6と第2のf
L体圧力室7と第3の流体圧力室8を形成している。9
は高圧流体入口接続′gで、1v凍サイクルの圧縮機の
吐出側の高圧配管に接続さrLる。10は切換通路接続
管で、冷凍サイクルの凝縮器に接続されている。11は
他の切換通路接続管で、蒸発器に接続されている。12
は低圧流体出口接続管で、圧縮機の低圧配管に接続され
ている。13は三方電磁弁で、1つの流体通路は配管1
4により低圧流体出口接続管12に接続している。もう
1つの流体通路は配管15により第1の流体圧力室6に
接続さnている。16はライナーで、切換通路11と低
圧流体出口接続管12の両方に同時に導通する通路17
を有している。材料は*m抵抗の低い樹脂性のものが好
ましい。該ライナー16は上記胴部1の内壁1Cに密着
しながら上面は切換弁18に保持さ庇ている。19は筒
状体の廻り止めで上記高圧流体人口接続管9の内壁に固
定し、瑠面+9aが切換弁18の上面に当接している。
The two large and small pistons are connected by a bracket 5. The piston 4 with a small outer diameter is slidably inserted into the body portion 1a with a small outer diameter, and the piston 3 with a large outer diameter is slidably inserted into the pp4 portion 1b with a large outer diameter. There are n. The above-mentioned large and small pistons are inserted into the body 1 to form a first fluid pressure chamber 6 and a second fluid pressure chamber 6.
An L body pressure chamber 7 and a third fluid pressure chamber 8 are formed. 9
is a high-pressure fluid inlet connection 'g, which is connected to the high-pressure piping on the discharge side of the compressor of the 1V refrigeration cycle. 10 is a switching passage connecting pipe connected to a condenser of the refrigeration cycle. 11 is another switching passage connection pipe connected to the evaporator. 12
is the low pressure fluid outlet connection pipe, which is connected to the low pressure piping of the compressor. 13 is a three-way solenoid valve, and one fluid passage is connected to piping 1.
4 to a low pressure fluid outlet connection pipe 12. Another fluid passage is connected to the first fluid pressure chamber 6 by a pipe 15. 16 is a liner, and a passage 17 is connected to both the switching passage 11 and the low pressure fluid outlet connection pipe 12 at the same time.
have. The material is preferably a resin material with low resistance. The liner 16 is in close contact with the inner wall 1C of the body 1, and its upper surface is held and sheltered by the switching valve 18. Reference numeral 19 is a cylindrical body that is fixed to the inner wall of the high-pressure fluid artificial connection pipe 9 with a rotation stopper, and the ground surface +9a is in contact with the upper surface of the switching valve 18.

また、切換弁18はピストン3.4に連接されており、
ピストンと一緒に移動する。20は第3の流体圧力室と
低圧流体出口接続管12を連通する配管である。21は
itの流体圧力室6に開口する高圧流体導入管で、他端
は上記高圧流体入口接続f9に接続さnている。+ga
、tabは切換弁18に設けた通路である。22は均圧
孔で、切換弁18を貫通してランナー16の上面に達し
ており、切換弁18とランナー160間に閉じ込めたガ
スを抜くように構成さnている。23は筒状体の廻り止
めを係止するビンで、高圧流体供給通路24をビン23
と一体に形成している。まり、廻り止め19は自体が切
欠部25を有するバネ体に形成さルている。第4図の一
点鎖線は挿入された状態を表わす。
Further, the switching valve 18 is connected to the piston 3.4,
move with the piston. 20 is a pipe that communicates the third fluid pressure chamber with the low pressure fluid outlet connection pipe 12. Reference numeral 21 denotes a high-pressure fluid introduction pipe that opens into the fluid pressure chamber 6 of IT, and the other end is connected to the high-pressure fluid inlet connection f9. +ga
, tab are passages provided in the switching valve 18. Reference numeral 22 denotes a pressure equalizing hole that passes through the switching valve 18 and reaches the upper surface of the runner 16, and is configured to vent gas trapped between the switching valve 18 and the runner 160. Reference numeral 23 is a bottle that locks the rotation of the cylindrical body, and the high pressure fluid supply passage 24 is connected to the bottle 23.
It is formed integrally with the In other words, the rotation stopper 19 itself is formed as a spring body having a notch 25. The dashed line in FIG. 4 represents the inserted state.

次にその作用を述べる。Next, its effect will be described.

圧縮機により圧縮された高圧ガスは高圧配管を経て高圧
流体人口接続管9から四方切換弁の第2の流体圧力室7
内に流入する。三方電磁弁は図示されていない別の指示
により制御さnるが通電すると弁は開さ通電しないと閉
じた状態となる。第2の流体圧力室7内に流入した高圧
ガスはピストン3.4の背面部を押し圧する。一方、上
記三方電磁弁13は閉じており、5g3の流体圧力室8
は配f20を通じて低圧流体出口接続管11内の低圧側
に導通しているから、高圧流体導入管21を通って第1
の流体圧力室6に流入した高圧ガスがピストン3の頭部
を押し圧することによってピストン4、および3は図に
おいて左側に移動するから、ピストン3.4と連結され
ている切換弁18はライナー16と共に左側にスライド
し、ライナー16の通路17は低圧流体出口接続管12
と切換通路11を連通ずる。そうすると、第2の流体圧
力室7内の高圧ガスは切換通路1υ内を流通して凝縮器
円に流入し、例えば空気等と熱交換し凝縮液化する。次
に凝縮液は配管により膨張弁により減圧膨張さnた後蒸
発器内に流入し、例えば室内の空気を冷却し冷房を行な
う。熱交換作用を終えた低圧の冷媒カスは配管により切
換通路11から四方切換弁内に流入し、通路17から低
圧流体出口接続管12に切換えられ流出し、配管によっ
−C圧縮機に戻される。切換弁18はスラづドするとき
−9止め19によって一動を防止さ几ておジ、また、う
1ナー16のみが胴部1の内*tcに接触して第2の流
体圧力室7と通路17とを遮断しながらスジ1ドする。
The high-pressure gas compressed by the compressor passes through high-pressure piping and is transferred from the high-pressure fluid connection pipe 9 to the second fluid pressure chamber 7 of the four-way switching valve.
flow inside. The three-way solenoid valve is controlled by another instruction (not shown); when energized, the valve opens and when not energized, it remains closed. The high pressure gas flowing into the second fluid pressure chamber 7 presses against the rear side of the piston 3.4. On the other hand, the three-way solenoid valve 13 is closed, and the 5g3 fluid pressure chamber 8
is connected to the low pressure side in the low pressure fluid outlet connection pipe 11 through the distribution f20, so the first
The high-pressure gas that has flowed into the fluid pressure chamber 6 presses the head of the piston 3, causing the piston 4 and the piston 3 to move to the left in the figure. and the passage 17 of the liner 16 connects to the low pressure fluid outlet connection pipe 12.
and the switching passage 11 are communicated with each other. Then, the high-pressure gas in the second fluid pressure chamber 7 flows through the switching passage 1υ, flows into the condenser circle, exchanges heat with, for example, air, and is condensed and liquefied. Next, the condensed liquid is depressurized and expanded by an expansion valve through piping, and then flows into the evaporator to cool, for example, indoor air. The low-pressure refrigerant scum that has completed its heat exchange action flows into the four-way switching valve from the switching passage 11 through the piping, is switched to the low-pressure fluid outlet connection pipe 12 from the passage 17, flows out, and is returned to the -C compressor through the piping. . When the switching valve 18 slides, it is prevented from moving by the -9 stop 19, and only the inner valve 16 contacts the inner part *tc of the body 1 and the second fluid pressure chamber 7. A stripe is created while blocking the passage 17.

次にニガ電磁弁13に通電すると第2図に示すように配
管14と15の通路は連通される。そして、高圧カスは
高圧流体導入管21から第1の流体圧力室6内に流入し
、配管15、二方弁13、配管14を経て低圧流体出口
接続管12の低圧側に逃げているから、第1の流体圧力
室6と第3の流体圧力室8内の圧力は低圧側圧力と等し
くなる。そしてピストン径の相異により背圧Vこよって
ピ夏トンを押す力に差が生じ、ピスト/機構全体は図に
おいて右方向に移動する。ピストン機構の移動によって
切換弁18も移動するから、ライナー16の通路17は
接続通路を切換え、低圧流体出口12と切換通路10を
連絡する。そうすると、高圧カスは第2の流体圧力室1
から通路18bを通って切換通路11の方に流れ、蒸発
器に向って流lt 、6oまた、切換通路10からは低
圧ガスが流入し、通路17を経て低圧流体出口接続管1
2から圧縮機に戻る。
Next, when the electromagnetic valve 13 is energized, the passages of the pipes 14 and 15 are brought into communication as shown in FIG. The high-pressure waste flows into the first fluid pressure chamber 6 from the high-pressure fluid introduction pipe 21, passes through the pipe 15, the two-way valve 13, and the pipe 14, and escapes to the low-pressure side of the low-pressure fluid outlet connection pipe 12. The pressures in the first fluid pressure chamber 6 and the third fluid pressure chamber 8 become equal to the low pressure side pressure. Then, due to the difference in the piston diameter, a difference occurs in the force pushing the piston due to the back pressure V, and the piston/mechanism as a whole moves to the right in the figure. As the piston mechanism moves, the switching valve 18 also moves, so that the passage 17 of the liner 16 switches the connecting passage and communicates the low pressure fluid outlet 12 with the switching passage 10. Then, the high-pressure waste is transferred to the second fluid pressure chamber 1.
The low pressure gas flows from the switching passage 10 to the switching passage 11 through the passage 18b, and flows towards the evaporator.
Return to the compressor from 2.

第5図は他の実施例で、本発明の四方切換弁を冷凍サイ
クルの過熱防止装置として使用した冷凍サイクル系統図
を示し、冷房運転または暖房運転時において、高圧冷媒
の一部を圧m機吸入管に戻し\その気化によって圧縮機
の過熱を防止する圧縮機過熱防止装置を併用した四方切
換弁を示す。
FIG. 5 shows another embodiment of the refrigeration cycle system in which the four-way switching valve of the present invention is used as an overheating prevention device for the refrigeration cycle. This shows a four-way switching valve combined with a compressor overheat prevention device that prevents the compressor from overheating by returning it to the suction pipe and vaporizing it.

100は圧縮機で、四方切換弁101を介して配管10
2.103により凝縮器1t)4に接続されており、更
に逆止弁10コ、暖房時のキャピラリチ襲−プ106の
並列回路を経て配管107により蒸発器108に接続さ
nる。10jは冷房運転用キャビラリアーープ、110
は逆止弁である。そして、配管111により上記四方切
換弁101を介して配管112により上記圧縮機100
に接続されている。そして、冷房運転のときは実線矢印
の方向に冷媒が流n1暖房運転のときは点線朱印の方向
に冷媒が流nて冷凍サイクルを形成する。
100 is a compressor, which is connected to piping 10 via a four-way switching valve 101.
2.103 to the condenser 1t) 4, and further connected to the evaporator 108 by a pipe 107 through a parallel circuit of 10 check valves and a capillary pump 106 during heating. 10j is a cabillary rear loop for cooling operation, 110
is a check valve. Then, the compressor 100 is connected to the compressor 100 via the piping 111 via the four-way switching valve 101 and through the piping 112.
It is connected to the. During the cooling operation, the refrigerant flows in the direction of the solid line arrow. During the heating operation, the refrigerant flows in the direction of the dotted red stamp, forming a refrigeration cycle.

113は二方弁で、片端の通路は配f114により配f
112に接続されており、他端の通路は配管115によ
り上記四方弁の5g1の流体圧力室6に接続さnている
。116は高圧流体導入管で、片14i1μ上記四方切
換弁の第1の流体圧力室に接続されており、他端は上記
配管107に接続されている、該配f107は冷房運転
のときも、また、暖房運転のときも共に高圧の液冷媒が
流nている配管である。
113 is a two-way valve, and the passage at one end is arranged by f114.
112, and the passage at the other end is connected to the fluid pressure chamber 6 of the four-way valve 5g1 through a pipe 115. Reference numeral 116 designates a high-pressure fluid introduction pipe, one end of which is connected to the first fluid pressure chamber of the four-way switching valve 14i1μ, and the other end connected to the pipe 107. This is a pipe through which high-pressure liquid refrigerant flows even during heating operation.

したがって、上記二方弁113を閉じて運転したときは
、高圧液冷媒は上記四方切換弁の第1の流体圧力室6内
に流入してピストン3を押圧する力となり、上記二方弁
を開いて運転したときは、高圧液冷媒は配管116から
上記四方切換弁101のi@1の流体圧力室6を経て、
配f115、二方弁113、配管114内を流通し、圧
縮機100の吸入側配管である低圧の配管112内に気
化しながら流入する。このとき圧縮機100に戻る主冷
媒ガスが過熱気味であれば配管114から流入した冷媒
によって冷却されるので、主冷媒は冷却さn圧−磯10
0の過熱防止を行なうことができる。
Therefore, when operating with the two-way valve 113 closed, the high-pressure liquid refrigerant flows into the first fluid pressure chamber 6 of the four-way switching valve and becomes a force that presses the piston 3, causing the two-way valve to open. During operation, the high-pressure liquid refrigerant passes from the pipe 116 to the i@1 fluid pressure chamber 6 of the four-way switching valve 101.
It flows through the distribution pipe 115, the two-way valve 113, and the pipe 114, and flows into the low-pressure pipe 112, which is the suction side pipe of the compressor 100, while being vaporized. At this time, if the main refrigerant gas returning to the compressor 100 is slightly overheated, it is cooled by the refrigerant flowing in from the pipe 114, so the main refrigerant is cooled down to n pressure - Iso 10.
0 overheating can be prevented.

上記し六方法を用いるのは過熱運転が比較的多い暖房運
転のときに効果が大きい。しかし、冷房運転のときに用
いても良いことは勿論である。
Using the six methods described above is most effective during heating operations that involve relatively many overheating operations. However, it goes without saying that it may also be used during cooling operation.

本発明は上mlのpo@構成にしたから、汎用さnてい
る普通の三方電磁弁を使用した簡単な構造の信頼性の高
い四方切換弁を得ることができる。
Since the present invention has an upper ml po@ structure, it is possible to obtain a highly reliable four-way switching valve with a simple structure using a general-purpose ordinary three-way solenoid valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の四方切換弁の断面図、第2図は別の作
動状態図、第3図は第1図の八−A断面図、第4図は−
り止めの平面図、第0図は他の実施例のサイクル図であ
る。 1・・・胴体  2・・・エンドカバ  3・・・外径
の大きいピストン  4・・・外径の小さいピストン6
・・・第1の流体圧力室  7・・・第2の流体圧力室
8・・・第3の流体圧力室  9・・・高圧流体人口接
続管  10・・・切換通路接続管  11・・・切換
通路接続管  12・・・低圧流体出口接続管  13
孔  24・・・高圧流体供給  107 、114 
。 115.116・・・配管  113・・・三方升代理
へ 弁理士 薄 1)利 #”:’+礫別l
Fig. 1 is a sectional view of the four-way switching valve of the present invention, Fig. 2 is a diagram of another operating state, Fig. 3 is a sectional view taken along line 8-A in Fig. 1, and Fig. 4 is -
The plan view of the stopper, FIG. 0, is a cycle diagram of another embodiment. 1...Body 2...End cover 3...Piston with large outer diameter 4...Piston 6 with small outer diameter
...First fluid pressure chamber 7...Second fluid pressure chamber 8...Third fluid pressure chamber 9...High pressure fluid artificial connection pipe 10...Switching passage connection pipe 11... Switching passage connection pipe 12...Low pressure fluid outlet connection pipe 13
Hole 24...High pressure fluid supply 107, 114
. 115.116...Piping 113...To Mikamasa's representative Patent attorney Usui 1) Tori #”:'+Rekibetsu l

Claims (1)

【特許請求の範囲】 1、高圧流体の出入口通路と低圧流体の出入口通路を備
え、密閉室内にピストン機構と連結した切換弁を摺動自
在に収納し、該切換弁によって上記高圧流体の出口通路
および低圧流体の入口通路を切換えるようにしに四方切
換弁において、切換弁を摺動させる流体力を受ける面積
が異なる複数のピストン機構手段と、該ピストン機構手
段によって区画される第1の流体圧力室と第2の流体圧
力室と第3の流体圧力室と、上記ピストン機構手段を連
結し通路切換室を有する弁部と、第1の流体圧力室に開
口する高圧流体導入通路と、上記第2の流体圧力室に開
口する2つの切換通路と、蚊切洟通路の1つと切換えに
より導通する低圧流体出口m鮎と、上記第1の流体圧力
室と流体通路によって上記低圧流体出口通路と連結する
二方弁と、上記dX3の流体圧力室と低圧流体出口11
1に連通する通路と、上記第2の流体圧力室に開口する
高圧流体入口通路と、上記弁部に内装さ几たライナーと
、上記弁部の廻動防止手段とからなることを特徴とする
四方切換弁。 2、高圧流体力を受ける面積が大きいピストン機構手段
が第1と第2の流体圧力室を区画するように収納さn、
低圧流体力を受ける面積が上記ピストン機構手段より小
さいピストン機構手段で上記第2と第3の流体圧力室を
区画するように収納され、両ピストン機構が連結されて
いる特許請求の範囲第1項記載の四方切換テ。 3、 ライナーが樹脂材であり2個の低圧流体の出入口
を導通する通路を有し、切換弁内壁と第2の流体圧力室
内壁面に圧力差により押付は気密性を保持する特許請求
の範囲第1項記載の四方切換弁。 4、二方弁が′−磁弁である%許請求の範囲第1項記載
の四方切換弁。 5、第1の流体圧力室に開口する高圧流体導入通路の他
端が高圧ガス通路に接続されている特許請求の範囲第1
項記載の四方切換弁。   −6、第1の流体圧力室に
開口する高圧流体導入通路の他層が高圧液通路に接続さ
れている特許請求の範囲第1項記載の四方切換弁。 ン 7、切換弁がう4ナ一上部に達する均圧孔をする特許請
求の範囲m1項記載の四方切換弁。 8、切換弁の廻動防止手段が切欠部を有する筒状体であ
り、該筒状体の先端が弁部上面に当接し、他端部が高圧
流体人口通路に挿入さn、か]該挿入部を係止する部材
からなる特許請求の範囲第1項記載の四方切換弁。
[Scope of Claims] 1. A switching valve is slidably housed in a sealed chamber and is provided with an inlet/outlet passage for high-pressure fluid and an inlet/outlet passage for low-pressure fluid, and is connected to a piston mechanism by the switching valve. and a four-way switching valve for switching the inlet passage of low-pressure fluid, including a plurality of piston mechanism means having different areas receiving fluid force for sliding the switching valve, and a first fluid pressure chamber defined by the piston mechanism means. a second fluid pressure chamber, a third fluid pressure chamber, a valve portion connecting the piston mechanism means and having a passage switching chamber, a high pressure fluid introduction passage opening into the first fluid pressure chamber, and the second fluid pressure chamber. two switching passages that open to the fluid pressure chamber of the first fluid pressure chamber, a low pressure fluid outlet mAyu that is connected to one of the mosquito cutting passages by switching, and a low pressure fluid outlet mAyu that is connected to the first fluid pressure chamber and the low pressure fluid outlet passage by the fluid passage. Two-way valve, fluid pressure chamber of dX3 and low pressure fluid outlet 11
1; a high-pressure fluid inlet passage opening to the second fluid pressure chamber; a liner disposed inside the valve portion; and means for preventing rotation of the valve portion. Four-way switching valve. 2. A piston mechanism means having a large area receiving high-pressure fluid force is housed so as to partition the first and second fluid pressure chambers,
Claim 1, wherein the second and third fluid pressure chambers are partitioned by piston mechanism means having a smaller area than the piston mechanism means for receiving low-pressure fluid force, and both piston mechanisms are connected. Four-way switching as described. 3. The liner is made of a resin material and has a passage connecting two low-pressure fluid inlets and outlets, and maintains airtightness when pressed against the inner wall of the switching valve and the inner wall surface of the second fluid pressure chamber due to a pressure difference. The four-way switching valve described in item 1. 4. The four-way switching valve according to claim 1, wherein the two-way valve is a '-magnetic valve. 5. Claim 1, wherein the other end of the high-pressure fluid introduction passage that opens into the first fluid pressure chamber is connected to the high-pressure gas passage.
Four-way switching valve as described in section. -6. The four-way switching valve according to claim 1, wherein the other layer of the high-pressure fluid introduction passage that opens into the first fluid pressure chamber is connected to the high-pressure liquid passage. 7. The four-way switching valve according to claim m1, wherein the switching valve has a pressure equalizing hole reaching the top of the housing. 8. The rotation prevention means of the switching valve is a cylindrical body having a notch, the tip of the cylindrical body abuts the upper surface of the valve part, and the other end is inserted into the high-pressure fluid artificial passage. The four-way switching valve according to claim 1, comprising a member that locks the insertion portion.
JP57005980A 1982-01-20 1982-01-20 Four-way change-over valve Pending JPS58124871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005980A JPS58124871A (en) 1982-01-20 1982-01-20 Four-way change-over valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005980A JPS58124871A (en) 1982-01-20 1982-01-20 Four-way change-over valve

Publications (1)

Publication Number Publication Date
JPS58124871A true JPS58124871A (en) 1983-07-25

Family

ID=11625969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005980A Pending JPS58124871A (en) 1982-01-20 1982-01-20 Four-way change-over valve

Country Status (1)

Country Link
JP (1) JPS58124871A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114272U (en) * 1984-12-28 1986-07-19
CN104514897A (en) * 2013-09-27 2015-04-15 浙江三花制冷集团有限公司 Four-way directional valve and main valve thereof
JP2016114133A (en) * 2014-12-12 2016-06-23 株式会社不二工機 Flow path selector valve
JP2019044976A (en) * 2018-12-26 2019-03-22 株式会社不二工機 Flow passage switching valve
WO2021009850A1 (en) * 2019-07-16 2021-01-21 三菱電機株式会社 Refrigeration cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114272U (en) * 1984-12-28 1986-07-19
JPH0419407Y2 (en) * 1984-12-28 1992-05-01
CN104514897A (en) * 2013-09-27 2015-04-15 浙江三花制冷集团有限公司 Four-way directional valve and main valve thereof
JP2016114133A (en) * 2014-12-12 2016-06-23 株式会社不二工機 Flow path selector valve
JP2019044976A (en) * 2018-12-26 2019-03-22 株式会社不二工機 Flow passage switching valve
WO2021009850A1 (en) * 2019-07-16 2021-01-21 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US4311020A (en) Combination reversing valve and expansion device for a reversible refrigeration circuit
JPH071128B2 (en) Refrigeration cycle for refrigerator
JPS58124871A (en) Four-way change-over valve
US2867237A (en) Valve constructions
CA2436089C (en) Refrigeration manifold
US2723537A (en) Reversing valve for refrigeration system
US5131240A (en) Air conditioning apparatus
CN213119316U (en) Air conditioning unit adopting throttle valve
US7165569B2 (en) Safety shut-off device
US6668574B2 (en) Refrigeration manifold
JPH01155163A (en) Four-way valve for refrigeration cycle
CN112066458A (en) Air conditioning unit adopting throttle valve and control method thereof
JP4109042B2 (en) 3-way selector valve
JPH0531489Y2 (en)
JPH01150081A (en) Solenoid valve
KR200193914Y1 (en) Refrigerator with solenoid valve assembly for controlling refrigerant
JPS6234202Y2 (en)
JPH04316778A (en) Solenoid valve device
JPH0144796Y2 (en)
KR100691232B1 (en) Air conditioner
JPS5934907B2 (en) flow path switching valve
JPH0354277B2 (en)
JPH0334613Y2 (en)
JPS6343083A (en) Pilot type solenoid operated valve
KR100416705B1 (en) solenoid valve for food storage