JPS5812444B2 - Steam turbine pressure change control device - Google Patents

Steam turbine pressure change control device

Info

Publication number
JPS5812444B2
JPS5812444B2 JP4962675A JP4962675A JPS5812444B2 JP S5812444 B2 JPS5812444 B2 JP S5812444B2 JP 4962675 A JP4962675 A JP 4962675A JP 4962675 A JP4962675 A JP 4962675A JP S5812444 B2 JPS5812444 B2 JP S5812444B2
Authority
JP
Japan
Prior art keywords
load
pressure
steam turbine
steam
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4962675A
Other languages
Japanese (ja)
Other versions
JPS51124706A (en
Inventor
松本弘
斉藤忠良
中村昭三
内山好弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4962675A priority Critical patent/JPS5812444B2/en
Publication of JPS51124706A publication Critical patent/JPS51124706A/en
Publication of JPS5812444B2 publication Critical patent/JPS5812444B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、蒸気タービンの変圧制御装置に係り特に、蒸
気タービンの安定な負荷追従を行ない得るように加減弁
前圧力設定値を変更できるようにした蒸気タービンの変
圧制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure change control device for a steam turbine, and more particularly, to a pressure change control device for a steam turbine that is capable of changing a pressure setting value before a regulating valve so as to stably follow the load of the steam turbine. Regarding equipment.

従来、火力発電プラントにおいては、蒸気圧力を一定の
条件で運転する定圧運転方式が採用されてきた。
BACKGROUND ART Conventionally, thermal power plants have adopted a constant-pressure operation system in which steam pressure is maintained at constant conditions.

しかし、近年に至り、原子カプラントにベース負荷帯を
受け持たせ、火力プラントにはミドル負荷帯を分担させ
るようになった。
However, in recent years, nuclear power plants have been assigned to handle the base load range, and thermal power plants have been assigned to handle the middle load range.

このような運用形態では、蒸気圧力を負荷レベルに応じ
て変更する変圧運転方式は、次の点について特に高く評
価されるようになってきた。
In this type of operation, the variable pressure operation method, which changes the steam pressure according to the load level, has come to be particularly highly evaluated for the following points.

(イ)加減弁開度を全開付近で運転できるため絞り損失
が少ない。
(a) Since the adjustment valve opening can be operated near fully open, there is less throttling loss.

(口)主蒸気温度がほぼ一定なため、負荷変動に対する
熱応力上の問題が少ない。
(Note) Because the main steam temperature is almost constant, there are fewer problems with thermal stress due to load fluctuations.

(ハ)体積流量がほぼ一定のため、タービンの効率が高
い。
(c) Since the volumetric flow rate is almost constant, the efficiency of the turbine is high.

(ニ)突変負荷変化時にはボイラ保有熱を有効に利用で
きるため、負荷追従性が高い。
(d) The heat retained in the boiler can be effectively used during sudden load changes, resulting in high load followability.

(ホ)給水ポンプ駆動用タービンの動力節減が大きい。(E) The power saving of the turbine for driving the water supply pump is large.

以上のような特徴を持った蒸気タービンの変圧制御装置
の1例が第1図に示すものである。
An example of a steam turbine pressure change control device having the above-mentioned characteristics is shown in FIG.

第1図において、蒸気タービン1は発電機2と直結され
復水器3は蒸気タービン1よりの蒸気を復水し、給水ポ
ンプ4は復水をボイラ5に送る。
In FIG. 1, a steam turbine 1 is directly connected to a generator 2, a condenser 3 condenses steam from the steam turbine 1, and a feed water pump 4 sends the condensed water to a boiler 5.

燃料弁6はボイラ5への燃料調整用、加減弁7は蒸気タ
ービン1への蒸気圧調整用、負荷検出器8は発電機2の
負荷状態検出用、加減弁前圧力検出器9は加減弁7に入
る前の蒸気圧の検出用のものである。
The fuel valve 6 is for regulating fuel to the boiler 5, the regulating valve 7 is for regulating steam pressure to the steam turbine 1, the load detector 8 is for detecting the load condition of the generator 2, and the regulating valve front pressure detector 9 is for regulating the regulating valve. This is for detecting vapor pressure before entering 7.

関数発生器10は負荷検出器8よりの出力に応じて、加
減弁7の調節のための設定信号を出し、加減弁操作器1
1は関数発生器10の出力pRと加減弁前圧力検出器9
の出力PCVとの差に応じて加減弁7を操作させる。
The function generator 10 outputs a setting signal for adjusting the regulator valve 7 according to the output from the load detector 8, and controls the regulator valve operator 1.
1 is the output pR of the function generator 10 and the pressure detector 9 in front of the regulating valve.
The control valve 7 is operated according to the difference between the output PCV and the output PCV.

上記構成における蒸気タービンの変圧制御装置の動作を
第1図に基いて説明すると、蒸気タービン1の負荷Ls
Tに応じて、関数発生器10が蒸気タービン1の加減弁
7の前圧力PCVの設定値PRを変更し、加減弁前圧力
PCVとの偏差に応じて、加減弁操作器11で弁開度を
調整する。
The operation of the steam turbine pressure change control device in the above configuration will be explained based on FIG. 1. The steam turbine 1 load Ls
In response to T, the function generator 10 changes the set value PR of the prepressure PCV of the regulator valve 7 of the steam turbine 1, and the regulator valve operator 11 changes the valve opening depending on the deviation from the regulator valve prepressure PCV. Adjust.

蒸気の循環系については当業者において周知のものであ
るので説明を省略する。
The steam circulation system is well known to those skilled in the art, so a description thereof will be omitted.

前記した如《の方式による運転において、特に問題とな
るのは、加減弁前圧力設定値PRをいかにして変更する
かであり、従来においては、第2図Aに示すように、蒸
気タービン1の負荷Lstに応じて加減弁前圧力設定値
PRを変更していた。
In the operation according to the method described above, a particular problem is how to change the pre-regulator pressure setting value PR. Conventionally, as shown in FIG. 2A, the steam turbine 1 The pre-regulator pressure setting value PR was changed in accordance with the load Lst.

第2図Aは弁前圧力設定値PRを極力一定にしようとす
る考えのものであり、負荷上昇時には、負荷が0−LU
1,LU1−LU2,LU2−Lu3,LU3−Lma
xの範囲にあるとき、PRを夫々PL,PM1,PM2
,PHに設定する。
Figure 2 A is designed to keep the pre-valve pressure set value PR as constant as possible, and when the load increases, the load is 0-LU.
1, LU1-LU2, LU2-Lu3, LU3-Lma
When in the range of x, PR is PL, PM1, PM2, respectively.
, PH.

同様に負荷減少時には、LmaX−Ll3のときPHt
Lls Ll2のときPM2) Ll2 Lltの
ときPMt y Lls 以下のときPLとする。
Similarly, when the load decreases, PHt when LmaX-Ll3
When Lls Ll2, PM2) When Ll2 Llt, PMt y Lls When below, it is PL.

また同図aにおいて、ALLは加減弁開度の下限値、A
LU は上限値であり、加減弁の絞り稿失が過大となら
ないこの範囲で可変とすることにより弁のスティック現
象を防止する。
In addition, in the same figure a, ALL is the lower limit value of the adjustment valve opening, and A
LU is an upper limit value, and by making it variable within this range in which the throttle error of the adjusting valve does not become excessive, the sticking phenomenon of the valve is prevented.

この図のように階段状に圧力設定値PRを変更する方式
には下記の問題がある。
The method of changing the pressure set value PR stepwise as shown in this figure has the following problems.

第2図B,Cに基いて、負荷要求LDに対する蒸気ター
ビン1の負荷Lst及び、加減弁開度ACVの応答につ
いて説明をする。
Based on FIGS. 2B and 2C, the response of the load Lst of the steam turbine 1 and the control valve opening ACV to the load request LD will be explained.

第2図Bにおいてt。t in FIG. 2B.

の時点で負荷要求LDがLUoから増加しはじめると、
これに応じてボイラ5への投入燃料量も増加されるが、
ボイラ5の発生蒸気量の応答遅れにより、蒸気タービン
1の負荷LsTも遅れてt1時点から立上がる。
When the load request LD starts to increase from LUo at the point in time,
Accordingly, the amount of fuel input to boiler 5 is also increased,
Due to the response delay in the amount of steam generated by the boiler 5, the load LsT of the steam turbine 1 also starts up from time t1 with a delay.

この時点ではLST=LUOであり、加減弁前圧力設定
値PRは第2図Aに示すように九に固定しているが、ボ
イラ発生蒸気量の増加に伴なって加減弁7の前圧力PC
Vが上昇するため、圧力上昇を仰えPLに一定にしよう
と加減弁開度ACVは開方向に動作する。
At this point, LST=LUO, and the pre-regulator pressure setting value PR is fixed at 9 as shown in FIG.
Since V increases, the adjusting valve opening ACV operates in the opening direction in order to increase the pressure and keep it constant at PL.

従って、蒸気タービン1の負荷LST も加減弁開度
A。
Therefore, the load LST of the steam turbine 1 is also equal to the adjustment valve opening A.

■に惧って上昇する。第2図Cのように可減弁開度AC
Vが開度上限値AULに達したt2の時点で、加減弁前
圧力設定値PRがPLからPM1に変更されると加減弁
開度ACVは急激に閉方向に作動し、第2図Cのように
Amlに下降する。
■It will rise due to fear. Adjustable valve opening AC as shown in Figure 2 C
At time t2 when V reaches the opening upper limit value AUL, the pressure setting value PR in front of the regulating valve is changed from PL to PM1, and the regulating valve opening ACV suddenly operates in the closing direction, as shown in Fig. 2C. As in, it descends to Aml.

このため、蒸気タービン1の負荷LsT も第2図Bの
ように低下する。
Therefore, the load LsT of the steam turbine 1 also decreases as shown in FIG. 2B.

加減弁開度ACVがAm1に達した時点はボイラ発生蒸
気エネルギと蒸気タービン負荷エネルギとがバランスし
た状態である。
When the adjustment valve opening degree ACV reaches Am1, the steam energy generated by the boiler and the steam turbine load energy are in a balanced state.

以後、第2図AのようにPMtの定圧状態で運転し、ボ
イラ発生蒸気量の増加に伴ない加減弁7の前圧力PCV
が上昇するため、加減弁開度A。
Thereafter, as shown in FIG. 2A, the operation is performed at a constant pressure of PMt, and as the amount of steam generated by the boiler increases, the pressure PCV before the control valve 7 increases.
increases, so the adjustment valve opening degree A.

Vが開方向に動作し、蒸気タービン1の負荷LsT も
上昇する。
V operates in the opening direction, and the load LsT of the steam turbine 1 also increases.

次いでt3時点では加減弁前圧力設定値PRがPMIか
らPM2へ変更されて、t2からt3までと同様な加減
弁開度AcV及び、蒸気タービン1の負荷Lstの応答
となる。
Next, at time t3, the pre-regulator pressure setting value PR is changed from PMI to PM2, and the response to the regulator valve opening AcV and the load Lst of the steam turbine 1 is the same as from t2 to t3.

t5時点に至り負荷追従は完了するが、加減弁前圧力設
定値PRはPM2にあり、加減弁開度ACVは第2図C
に示すように開度上限値AULよりも低いAm2に整定
される。
At time t5, load tracking is completed, but the pressure setting value PR before the adjustment valve is at PM2, and the adjustment valve opening ACV is at C in Figure 2.
As shown in the figure, the opening degree is set to Am2, which is lower than the upper limit value AUL.

この第2図の説明から明らかなように、負荷上昇過程に
おいて負荷LUI , LU2 2 LU3に達つする
と加減弁開度ACVを絞り込む。
As is clear from the explanation of FIG. 2, when the load reaches LUI, LU2 2 LU3 in the load increasing process, the adjustment valve opening degree ACV is narrowed down.

そしてこのことが過渡的負荷減少を引起す。This in turn causes a transient load reduction.

詳しい説明は省略するが、同様に負荷減少時にも第2図
Aの実線に沿って運転され、負荷LU3 z ”U2
s Lglのときに加減弁開度ACVを開放するために
過渡的負荷増加を引起す。
Although a detailed explanation is omitted, the operation is similarly carried out along the solid line in FIG. 2A even when the load is reduced, and the load LU3
s At Lgl, a transient load increase is caused in order to open the adjusting valve opening ACV.

このように、従来方式では負荷上昇時に加減弁開度AC
Vを絞り負荷減少時に加減弁開度Acvを開くといった
動作を行なわせるものであるために安定な負荷運転ので
きないものであった。
In this way, in the conventional method, when the load increases, the control valve opening AC
Since the control valve throttles V and opens the adjustment valve opening Acv when the load decreases, stable load operation cannot be achieved.

このような負荷変動の生じることは簡単には次のように
説明できる。
The occurrence of such load fluctuations can be easily explained as follows.

つまり、加減弁開度ACVに対する加減弁前圧力pcv
(負荷LstはPCVに応じて定まる。
In other words, the pressure in front of the control valve pcv with respect to the control valve opening degree ACV
(Load Lst is determined according to PCV.

)の応答は数分もの時定数を有する一次遅れとして表わ
されるに対し、タービン負荷Lstの応答はほぼ微分特
性を示す。
) is expressed as a first-order lag with a time constant of several minutes, whereas the response of the turbine load Lst exhibits substantially differential characteristics.

従って負荷増大を目的として、加減弁開度ACV を絞
ると、その直後には前記微分特性により負荷LsTが減
少し、その数分後に一次遅れ特性により加減弁前圧力P
CVが上昇し負荷Lsrが増加する。
Therefore, when the adjustment valve opening degree ACV is reduced for the purpose of increasing the load, immediately after that, the load LsT decreases due to the above-mentioned differential characteristic, and a few minutes later, the pressure in front of the adjustment valve P is reduced due to the first-order lag characteristic.
CV rises and load Lsr increases.

これにより最終的には負荷増加するが過渡的負荷変動を
生じることになる。
Although this ultimately increases the load, it also causes transient load fluctuations.

尚、負荷LUI , LU2 , LU3のときの加減
弁前圧力PCVの変更を緩速度とし加減弁開度ACVを
ゆっくり変化させるのであれば、負荷変動巾を縮少可能
ではあるが、これを採用すると加減弁前圧力P の変
化も遅れ、総体的には負荷追従が遅れることとなり、本
質的な解決策とはならない。
It should be noted that if the change in the pressure in front of the adjustment valve PCV at loads LUI, LU2, and LU3 is made at a slow rate and the adjustment valve opening degree ACV is changed slowly, it is possible to reduce the load fluctuation range, but if this is adopted, The change in the pressure P in front of the adjustment valve is also delayed, and overall load follow-up is delayed, so this is not an essential solution.

以上のことから本発明においては、前記過渡的負荷変動
を生じず高速応答とできる蒸気タービンの変圧制御装置
を提供することを目的とする。
In view of the above, it is an object of the present invention to provide a pressure change control device for a steam turbine that can provide high-speed response without causing the above-mentioned transient load fluctuations.

本発明ではタービン負荷を入力して、負荷上昇時には加
減弁前圧力PCVを一定とし、もしくは加減弁開度AC
Vを第1の一定値とすべく加減弁前圧力を設定し、負荷
減少時には加減弁前圧力PCVを一定とし、もしくは加
減弁開度ACVを第2の一定値とすべく設定する。
In the present invention, the turbine load is input, and when the load increases, the pressure PCV in front of the regulator is kept constant, or the regulator valve opening AC is kept constant.
The pressure before the control valve is set so that V is a first constant value, and when the load decreases, the pressure before the control valve PCV is set to be constant, or the control valve opening degree ACV is set to be a second constant value.

これにより、負荷増加時に加減弁開度を絞り、あるいは
負荷減少時に加減弁開度を開くことはなく、過渡的負荷
変動を生じない。
As a result, the opening degree of the adjusting valve is not reduced when the load increases, or the opening degree of the adjusting valve is not increased when the load decreases, and transient load fluctuations do not occur.

第3図A,B,Cに示すものは本発明による蒸気タービ
ンの変圧制御方式の説明図である。
FIGS. 3A, 3B, and 3C are explanatory diagrams of a pressure change control system for a steam turbine according to the present invention.

同図Aのように負荷増加時には加減弁開度ACVの開度
上限値AULに固定し、負荷減少時には、開度下限値A
LLとする。
As shown in A in the same figure, when the load increases, the adjustment valve opening ACV is fixed at the opening upper limit value AUL, and when the load decreases, the opening lower limit value AUL is fixed.
Let's call it LL.

この結果蒸気タービン1の負荷L8Tに応じて加減弁前
圧力設定値PRは比例的に連続しセ変更される。
As a result, the pre-regulator pressure setting value PR is proportionally and continuously changed according to the load L8T of the steam turbine 1.

尚、開度変化を伴なう負荷変更のときは圧力PRを一定
とする。
Note that when the load is changed with a change in opening degree, the pressure PR is kept constant.

負荷LsTのヒステリシス幅LHは負荷L8Tに応じて
開度下限値ALL以下にならないように変更される。
The hysteresis width LH of the load LsT is changed according to the load L8T so that it does not become less than the opening lower limit value ALL.

次に、第3図B,Cに基いて、負荷Lst並びに、加減
弁開度ACVの応答について説明する。
Next, the response of the load Lst and the adjusting valve opening ACV will be explained based on FIGS. 3B and 3C.

第3図Bは第2図Bと同様、負荷上昇過程における負荷
LsT、可減弁開度ACVの応答を示すもので相違点に
ついて説明する。
Similar to FIG. 2B, FIG. 3B shows the response of the load LsT and the adjustable valve opening ACV during the load increase process, and the differences will be explained below.

増加方向の負荷要求LDに対して、まず、ボイラ発生蒸
気量が増加され、これに伴ない加減弁Tの前圧力PCV
が上昇する。
In response to the load request LD in the increasing direction, first, the amount of steam generated by the boiler is increased, and the prepressure PCV of the control valve T is accordingly increased.
rises.

加減弁操作器11はpcvをP2一定とすべく除々に弁
7を開放しt2時点で加減弁開度ACVがAULに達す
る。
The adjusting valve operating device 11 gradually opens the valve 7 in order to keep the pcv constant at P2, and at time t2, the adjusting valve opening ACV reaches AUL.

その後、加減弁前圧力設定値PRは蒸気タービン1の負
荷Lstに応じて比例的に変更され、ボイラ発生蒸気エ
ネルギと蒸気タービン負荷はバランスした状態が持続さ
れるため加減弁開度ACVはAULに維持され、第3図
Bに示されるように負荷要求LDに対し、安定な負荷L
stの追従ができる。
Thereafter, the pressure setting value PR before the regulating valve is changed proportionally according to the load Lst of the steam turbine 1, and since the boiler generated steam energy and the steam turbine load are maintained in a balanced state, the regulating valve opening ACV is changed to AUL. The stable load L is maintained and the load request LD is maintained as shown in FIG. 3B.
It is possible to follow st.

第3図Cは負荷降下過程における負荷Lst並びに、加
減弁開度ACVの応答を示すものである。
FIG. 3C shows the response of the load Lst and the adjusting valve opening ACV during the load lowering process.

負荷要求LDに対し、t2時点までは加減弁前圧力設定
値pRはPH定圧状態で負荷降下が行われるため加減弁
開度ACVは開度下限値ALLまでボイラ発生蒸気量の
減少に沿って低下する。
In response to the load request LD, until time t2, the pressure setting value pR before the regulator valve is lowered with the PH constant pressure state and the load is lowered, so the regulator valve opening ACV decreases to the opening lower limit value ALL as the amount of steam generated by the boiler decreases. do.

t2時点以降は加減弁前圧力設定値PRがPHからPL
へ負荷に比例して変更され、t3時点まで加減弁開度A
CVはALLに維持されるため、上記の負荷上昇過程に
おけると同様に安定な蒸気タービン1の負荷L’s’r
の降下が行える。
After time t2, the pressure setting value PR before the regulating valve changes from PH to PL.
The adjustment valve opening A is changed in proportion to the load until time t3.
Since the CV is maintained at ALL, the load L's'r of the steam turbine 1 is stable as in the above load increase process.
can be lowered.

尚、説明にあたっては、負荷要求LDをランプ状に与え
たが、通常の負荷運転状態においては、負荷要求LDは
電力系統の経済的な運用を考慮して系統内の各プラント
に送られる中央給電指令に相当するものであり時々刻々
に増減するものである。
In addition, in the explanation, the load request LD is given in the form of a ramp, but in normal load operation conditions, the load request LD is a central power supply that is sent to each plant in the power system in consideration of economical operation of the power system. It corresponds to a directive and changes from time to time.

従って、このような負荷要求LDの増減に対する本発明
による蒸気タービンの変圧制御方式では前記した説明か
ら判るように、ヒステリシス幅L,Hを設けてあるため
、加減弁開度ACVの変化は変圧過程では開度上限値A
ULもしくは下限値ALL、定圧過程においては上限値
AULと下限値ALL間で開、閉動作となり、弁スティ
ック現象は生じない。
Therefore, as can be seen from the above explanation, in the steam turbine pressure transformation control system according to the present invention in response to increases and decreases in the load request LD, since the hysteresis widths L and H are provided, the change in the adjustment valve opening ACV is caused by the pressure transformation process. Then, the opening upper limit value A
UL or the lower limit value ALL, and in a constant pressure process, the valve will open and close between the upper limit value AUL and the lower limit value ALL, and the valve sticking phenomenon will not occur.

次に、本発明による蒸気タービンの変圧制御装置の一実
施例を第4図に示す。
Next, FIG. 4 shows an embodiment of a steam turbine pressure change control device according to the present invention.

第4図に隅いて、乗算器21はヒステリシス幅LHを蒸
気タービンの負荷Lstに応じて変更するためのもので
あり、ヒステリシス設定値S の調節により、加減弁7
の絞り損失及び弁スティック現象を考慮した最適なヒス
テリシス幅LHに設定できる。
A multiplier 21 in the corner of FIG. 4 is for changing the hysteresis width LH according to the load Lst of the steam turbine.
The optimum hysteresis width LH can be set in consideration of the throttle loss and valve sticking phenomenon.

切替器22は比較器25の出力信号CAが“0”のとき
にヒステリシス信号LHを出力し、減算器23は負荷L
stと切替器22出力との減算、加算器24は負荷Ls
tと切替器22出力との加算を行なう。
The switch 22 outputs the hysteresis signal LH when the output signal CA of the comparator 25 is "0", and the subtracter 23 outputs the hysteresis signal LH when the output signal CA of the comparator 25 is "0".
Subtraction of st and the output of the switch 22, the adder 24 is the load Ls
t and the output of the switch 22 are added.

比較器25は減算器23の出力LAとアナログメモリ2
7の出力Lcとを比較し、LA>Lcのときその出力C
Aを“1″とする。
The comparator 25 connects the output LA of the subtracter 23 and the analog memory 2.
7's output Lc, and when LA>Lc, the output C
Let A be "1".

比較器26は加算器24の出力しBとアナログメモリ2
7の出力Lcとを比較し、LB≦Lcのとき、その出力
CBを゛1”とする。
The comparator 26 outputs the output B of the adder 24 and the analog memory 2.
7, and when LB≦Lc, the output CB is set to ``1''.

アナログメモリ27は比較器25の出力CAが゛1″の
ときには、出力増加されてLc−LA=LsTとなり、
比較器26の出力CBが“1”のときには、出力減少さ
せてLc=LB=LsT=LsT+LHとなり、CA=
cB=“0”のときには出力が保持状態となる。
When the output CA of the comparator 25 is "1", the output of the analog memory 27 is increased so that Lc-LA=LsT,
When the output CB of the comparator 26 is "1", the output is decreased to become Lc=LB=LsT=LsT+LH, and CA=
When cB="0", the output is held.

係数設定器28は定格負荷LmaXのときに開度上限値
AULになるように係数が設定され、高値選択器29は
加減弁前圧力設定値の下限PLを設定するものである。
The coefficient setter 28 sets a coefficient so that the opening degree upper limit value AUL is reached when the rated load LmaX, and the high value selector 29 sets the lower limit PL of the pre-regulator pressure setting value.

以上の構成による本発明の実施例の動作を第3図Aに基
いて説明する。
The operation of the embodiment of the present invention having the above configuration will be explained based on FIG. 3A.

蒸気タービン1の負荷LSTがLU1以下ではPR=P
Lとなっているが、Lst>Lu1の負荷上昇過程では
LA>LCとなり、CA=“1”の状態でアナログメモ
リ27の出力Loは負荷LsTに追従する。
When the load LST of the steam turbine 1 is less than LU1, PR=P
However, in the load increasing process where Lst>Lu1, LA>LC, and in the state of CA="1", the output Lo of the analog memory 27 follows the load LsT.

この状態ではLR>LcのためcB=“0”となってい
る。
In this state, cB="0" because LR>Lc.

例えば、負荷LsTがLmaxで整定するとLsT=L
o(すなわち、PR−PH)となり、CA=”0”にな
るため,LA=LsT−LH<Lc,LB=LST+L
H>LcでCA=”0”、CB=“0”となり、出力t
,c (すなわち、PH)は保持状態に入る。
For example, if the load LsT is settled at Lmax, LsT=L
o (that is, PR-PH), and CA="0", so LA=LsT-LH<Lc, LB=LST+L
When H>Lc, CA="0" and CB="0", output t
,c (i.e., PH) enters the holding state.

次いで、この状態から負荷降下に入ると、Lst=Ll
2に達するまでは、CA=“0″、CB=“0”になっ
ているため、Pr=PHである。
Next, when the load drops from this state, Lst=Ll
Until reaching 2, CA="0" and CB="0", so Pr=PH.

そして、LST<Ll2になると、cA=”o”、LB
〈LCとなって、出力L。
Then, when LST<Ll2, cA="o", LB
<Becomes LC, output L.

はL88=LsT+LHに追従し、PR=PLに整定す
る。
follows L88=LsT+LH and settles to PR=PL.

以上のことから知られるように、本発明によれば次のよ
うな効果が得られる。
As is known from the above, according to the present invention, the following effects can be obtained.

(イ)蒸気タービン負荷追従運転時における蒸気タービ
ン負荷は加減弁前圧力設定値の変更に影響されることな
く、安定な負荷追従が行える。
(a) During steam turbine load following operation, the steam turbine load can be stably followed without being affected by changes in the pre-regulator pressure setting value.

(ロ)広範な負荷レベルに亘って加減弁開度を大きな状
態で変圧運転ができるため弁の絞り損失を小さくでき、
かつ効率のよい運転ができる。
(b) Variable pressure operation is possible with a wide range of load levels and a large opening of the regulator, reducing valve throttling loss.
And it can be operated efficiently.

(ハ)負荷の増減に対し、ヒステリシス幅を設けてある
ため、弁のスティック現象を防止できる。
(c) Since a hysteresis width is provided for changes in load, it is possible to prevent the valve from sticking.

(ニ)本発明の蒸気タービンの変圧制御方式は従来より
用いられている演算モジュールにより容易に構成でき、
なんら問題はない。
(d) The steam turbine pressure change control system of the present invention can be easily configured using conventionally used calculation modules;
There's no problem.

第5図Aに示すものは、本発明による蒸気タービンの変
圧制御方式の変形例である。
What is shown in FIG. 5A is a modification of the variable pressure control system for a steam turbine according to the present invention.

ヒステリシス幅LHを蒸気タービンの負荷I’s’rに
無関係に一定にするようにしたものであり、第4図での
乗算器21を除去すれば、SR−LH とすることがで
き容易に実現が可能である。
The hysteresis width LH is made constant regardless of the load I's'r of the steam turbine, and if the multiplier 21 in Fig. 4 is removed, it can be made SR-LH and easily realized. is possible.

第5図Bは本発明の変形例を用いた際の負荷降下過程に
おける加減弁開度ACV及び負荷L’s’rの応答を示
すものである。
FIG. 5B shows the response of the adjusting valve opening ACV and the load L's'r during the load lowering process when using a modification of the present invention.

負荷降下とともに加減弁前圧力設定値も変更され、同時
に加減弁開度ACVも開度下限値ALLまで徐徐に絞り
込まれる。
As the load decreases, the pre-adjustment valve pressure set value is also changed, and at the same time, the adjustment valve opening degree ACV is also gradually narrowed down to the opening degree lower limit value ALL.

また、高い負荷レベルテハ加減弁開度変化幅が小さくな
る。
In addition, when the load level is high, the variation range of the adjustment valve opening becomes smaller.

第3図Aに比し、このような差異はあるが所期の目的は
達成できる。
Although there is such a difference compared to FIG. 3A, the intended purpose can be achieved.

以上の説明においては、蒸気タービン1の負荷I’s’
rにより加減弁前圧力設定値PRを変更しているが、負
荷L’s’r の代りに、これとほぼ比例関係にあるタ
ービン流入蒸気流量を用いることも可能である。
In the above explanation, the load I's' of the steam turbine 1
Although the pre-regulator pressure setting value PR is changed by r, it is also possible to use the turbine inflow steam flow rate, which is approximately proportional to the load L's'r, instead of the load L's'r.

実際には、タービン第1段後圧力がタービン流入蒸気流
量相当信号として用いられる。
Actually, the pressure after the first stage of the turbine is used as a signal corresponding to the turbine inflow steam flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蒸気タービンの変圧運転方式の説明図、第2図
Aは従来の変圧制御方式の加減弁前圧力設定値と負荷の
関係を示す図、第2図B,Cは該方式における負荷上昇
過程での負荷及び加減弁開度の応答を示す図、第3図A
は本発明による蒸気タービンの変圧制御方式の加減弁前
圧力設定値と負荷の関係を示す図、第3図Bは該方式に
おける負荷上昇過程での負荷及び可減弁開度の応答を示
す図、第3図Cは該方式における負荷降下過程での負荷
及び加減弁開度の応答を示す図、第4図は該方式の実施
例を示す構成図、第5図Aは本発明による蒸気タービン
の変圧制御方式の変形例、第5図Bは該変形例の負荷降
下過程における負荷及び加減弁開度の応答を示す図であ
る。 1……蒸気タービン、2……発電機、3……復水器、4
……給水ポンプ、5……ボイラ、6……燃料弁、7……
加減弁、8……負荷検出器、9……加減弁前圧力検出器
、10……関数発生器、11……加減弁操作器、Lst
……蒸気タービン負荷、PR……加減弁前圧力設定値、
PCV……加減弁前圧力、21……乗算器、22……切
替器、23……減算器、24……加算器、25 , 2
6……比較器、27……アナログメモリ、28……係数
器、29……高値選択器、SH……ヒステリシス設定値
Fig. 1 is an explanatory diagram of the variable pressure operation method of a steam turbine, Fig. 2 A is a diagram showing the relationship between the pressure setting value before the regulating valve and the load in the conventional variable pressure control method, and Fig. 2 B and C are the loads in this method. A diagram showing the response of load and adjustment valve opening during the rising process, Figure 3A
3B is a diagram showing the relationship between the pressure setting value before the regulating valve and the load in the variable pressure control method of the steam turbine according to the present invention, and FIG. 3B is a diagram showing the response of the load and the variable valve opening in the load increase process in this method , FIG. 3C is a diagram showing the response of the load and control valve opening during the load drop process in this method, FIG. 4 is a configuration diagram showing an embodiment of this method, and FIG. 5A is a diagram showing a steam turbine according to the present invention. FIG. 5B is a diagram showing the response of the load and the opening degree of the adjusting valve in the load lowering process of the modified example of the pressure change control method. 1... Steam turbine, 2... Generator, 3... Condenser, 4
...Water pump, 5...Boiler, 6...Fuel valve, 7...
Regulating valve, 8...Load detector, 9...Pressure detector in front of regulating valve, 10...Function generator, 11...Adjusting valve operator, Lst
...Steam turbine load, PR...Pressure setting value before regulating valve,
PCV...pressure before regulating valve, 21...multiplier, 22...switcher, 23...subtractor, 24...adder, 25, 2
6... Comparator, 27... Analog memory, 28... Coefficient unit, 29... High value selector, SH... Hysteresis setting value.

Claims (1)

【特許請求の範囲】 1 蒸気を発生させる蒸気発生源と;該発生源からの蒸
気によって駆動される蒸気タービンと:該タービンと上
記蒸気発生源との間に設けられ蒸気の流量を調節する加
減弁と:該加減弁の前圧力を変更させる加減弁操作器と
;該加減弁と上記蒸気発生源との間に設けられ、加減弁
の前圧力を検出し上記加減弁操作器に信号を出力する加
減弁前圧力検出器と;上記蒸気タービンの負荷に相当す
る信号を入力とし、該入力に比例してなる加減弁前圧力
設定値を設定出力し、該出力を上記操作器に与える関数
発生器と:を備えてなる蒸気タービンの変圧制御装置。 2 特許請求の範囲第1項記載における蒸気タービンの
変圧制御装置において、加減弁前圧力設定値の設定に際
し、加減弁前圧力設定値と蒸気タービン負荷もしくは該
タービンへの流入蒸気流量との間にヒステリシス幅をも
たせたことを特徴とする蒸気タービンの変圧制御装置。
[Claims] 1. A steam generation source that generates steam; a steam turbine driven by the steam from the generation source; and a control device provided between the turbine and the steam generation source to adjust the flow rate of steam. Valve: A control valve operator that changes the pressure in front of the control valve; Provided between the control valve and the steam generation source, detects the pressure in front of the control valve and outputs a signal to the control valve operator. a pressure detector in front of the regulating valve; which receives a signal corresponding to the load of the steam turbine as input, sets and outputs a pressure setting value in front of the regulating valve proportional to the input, and generates a function that provides the output to the operating device; A steam turbine pressure transformation control device comprising: 2. In the pressure change control device for a steam turbine according to claim 1, when setting the pressure setting value before the regulating valve, there is a difference between the pressure setting value before the regulating valve and the steam turbine load or the flow rate of steam flowing into the turbine. A steam turbine pressure transformation control device characterized by having a hysteresis width.
JP4962675A 1975-04-25 1975-04-25 Steam turbine pressure change control device Expired JPS5812444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4962675A JPS5812444B2 (en) 1975-04-25 1975-04-25 Steam turbine pressure change control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4962675A JPS5812444B2 (en) 1975-04-25 1975-04-25 Steam turbine pressure change control device

Publications (2)

Publication Number Publication Date
JPS51124706A JPS51124706A (en) 1976-10-30
JPS5812444B2 true JPS5812444B2 (en) 1983-03-08

Family

ID=12836426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4962675A Expired JPS5812444B2 (en) 1975-04-25 1975-04-25 Steam turbine pressure change control device

Country Status (1)

Country Link
JP (1) JPS5812444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924334U (en) * 1982-06-03 1984-02-15 ハイデルベルガ−・ドルツクマシ−ネン・アクチエンゲゼルシヤフト Dampening device for offset printing presses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924334U (en) * 1982-06-03 1984-02-15 ハイデルベルガ−・ドルツクマシ−ネン・アクチエンゲゼルシヤフト Dampening device for offset printing presses

Also Published As

Publication number Publication date
JPS51124706A (en) 1976-10-30

Similar Documents

Publication Publication Date Title
CN111462925A (en) Nuclear reactor power adjusting method and system based on operation data
CN110107489B (en) Control method, system and unit for condensate water pump
JPS6239919B2 (en)
JPS5812444B2 (en) Steam turbine pressure change control device
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPS639638B2 (en)
CN111472852B (en) Intermediate point enthalpy value frequency modulation based logical optimization method for generator set
JP2668143B2 (en) Steam turbine control device and control method therefor
JPS586306A (en) Controller for temperature of steam
JPH10159705A (en) Water level regulating device for water tank in run-off-river hydraulic power plant
JPH0435602B2 (en)
JPH10332106A (en) Heating steam pressure controlling method for steam air preheater
CN117553289A (en) Supercritical unit depth peak shaving water-coal coordination dynamic optimization control method and system
JPS5820362B2 (en) load control device
CN117784588A (en) Control method and system of cogeneration unit based on energy balance and electronic equipment
JP4622063B2 (en) Generator control device and generator control method
JPH08189993A (en) Turbine speed controller
JP2642999B2 (en) Load control device for combined cycle plant
JP2931152B2 (en) Boiler reheat steam temperature control method
JPH0241720B2 (en)
CN115857572A (en) Deaerator water level control method, deaerator water level control system and deaerator medium suitable for quick variable load of thermal power generating unit
CN118008583A (en) Fuel heating temperature control method for gas turbine
CN114447962A (en) CCS instruction blocking load adjusting method based on primary frequency modulation effect
JPH01269093A (en) Feed water controller for nuclear reactor