JPS58124393A - Speaker device - Google Patents

Speaker device

Info

Publication number
JPS58124393A
JPS58124393A JP706982A JP706982A JPS58124393A JP S58124393 A JPS58124393 A JP S58124393A JP 706982 A JP706982 A JP 706982A JP 706982 A JP706982 A JP 706982A JP S58124393 A JPS58124393 A JP S58124393A
Authority
JP
Japan
Prior art keywords
cabinet
compliance
gas
liquid
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP706982A
Other languages
Japanese (ja)
Inventor
Tsuneo Tanaka
恒雄 田中
Katsumasa Sato
克昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP706982A priority Critical patent/JPS58124393A/en
Publication of JPS58124393A publication Critical patent/JPS58124393A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers

Abstract

PURPOSE:To obtain a speaker device which can considerably improve the reproduction of low frequency sound, by forming a speaker cabinet having a large compliance. CONSTITUTION:In sealing a solution representing a negative shift in accordance with the Raoult's low in an enclosed cabinet to realize the coexistence of gas and liquid two phases and in keeping the pressure in the cabinet to 1atm., the pressure change caused by a diaphragm is absorbed with the phase change between the gas and liquid and the cabinet having a considerably high compliance is made. Thus, a speaker device which improves the reproduction of low frequency sound considerably is obtained.

Description

【発明の詳細な説明】 本発明はスピーカ装置に関し、その目的とするところは
コンプライアンスの大きなスピーカキャビネットを構成
し、低音再生を飛躍的に改善することのできるスピーカ
装置を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speaker device, and an object of the present invention is to provide a speaker device that can configure a speaker cabinet with high compliance and dramatically improve bass reproduction.

一般に、密閉型キャビネットを有するスピーカ装置の低
域限界は主として振動系質量とキャビネットのコンプラ
イアンスで決捷っている。キャビネットコンプライアン
スは、箱の中の空気パイ・の柔かさを表わすもので、振
動板の振動による体積変化の結果、生じるギヤビイ・ッ
ト内圧力の変化の逆数に対応する。即ち、 V P ここで、Cはコンプライアンス、■は体積、Pは圧力で
ある。
Generally, the low frequency limit of a speaker device having a closed cabinet is determined mainly by the mass of the vibration system and the compliance of the cabinet. Cabinet compliance is a measure of the softness of the air inside the box, and corresponds to the reciprocal of the change in pressure inside the gear box as a result of volume changes due to vibration of the diaphragm. That is, V P where C is compliance, ■ is volume, and P is pressure.

今、断熱変化と仮定すると、気体では、PVγ−4(K
は定数、γは比熱比) であるから、 P=1 (atm) 、 V= 1 、空気ではγ=1
.4を代入してC,=−□−二0.714 a1γ 1.4 又、気体の熱膨張率αは理想気体では、となる。、とこ
ろで、キA・ヒイ・ソト内に気液2相1F衡を実現し、
圧力を1気川に保ったとすると、振動板の振動によって
生ずる圧力変化に1気液の相変態によって吸収され、極
めてハイコンプライアンス々キャビイ・ツトを作ること
ができる。−力、熱膨張率は気体の場合と異なり温度と
蒸気圧の関係によって決する。1成分2相イ衡の場合K
に1、内部のLトカを1気圧に保つ為には常に系を当該
成分の沸点に保つ必要があり、精密な温度コントロール
を必要とする。成分の数を増し、2成分2相’F−衡に
すると、自由度が増え、温度が少々変化しても気液の組
成比が変わることにより、圧力を一定に保つことが可能
となり低精度の温度コントロールでもハイコンプライア
ンスなキャビイ・ットを安定に実現できる。又成分の組
み合わせについては、コンプライアンスができるだけ大
きく、かつ熱膨張率ができるだけ小さい組合わせを選ぶ
必要がある。なぜならば熱膨張率か大きいと圧力づヱ−
“定に保つために大きな体積変化を性力とし2相平衡の
容器を極めて柔軟で体積変化可能なものにしなければな
らないかしである。、ところか−ト貨己の9求をAMす
るためには、との様な組み合わせがよいかについでは知
られていなかった、。
Now, assuming an adiabatic change, in a gas, PVγ-4(K
is a constant and γ is the specific heat ratio), so P = 1 (atm), V = 1, and γ = 1 in air
.. By substituting 4, we get C,=-□-20.714 a1γ 1.4 Also, the coefficient of thermal expansion α of gas is as follows for an ideal gas. By the way, we realized gas-liquid two-phase 1F equilibrium in KiA, Hii, Soto,
Assuming that the pressure is maintained at one level, the pressure change caused by the vibration of the diaphragm is absorbed by the phase transformation of the gas and liquid, making it possible to create an extremely high compliance cavity. -The force and coefficient of thermal expansion are determined by the relationship between temperature and vapor pressure, unlike in the case of gases. In the case of one-component two-phase equilibrium, K
1. In order to maintain the internal L-toca at 1 atm, it is necessary to maintain the system at the boiling point of the component at all times, which requires precise temperature control. Increasing the number of components and creating a two-component, two-phase 'F-equilibrium' increases the degree of freedom, and even if the temperature changes slightly, the gas-liquid composition ratio changes, making it possible to keep the pressure constant, reducing accuracy. Even with temperature control, high compliance cavities can be stably achieved. Regarding the combination of components, it is necessary to select a combination that has the highest possible compliance and the lowest possible coefficient of thermal expansion. This is because the higher the coefficient of thermal expansion, the higher the pressure.
“In order to maintain a constant volume, a large volume change is a force, and a container with two-phase equilibrium must be made extremely flexible and capable of changing volume.However, in order to AM the 9th equation of the It was not known that combinations such as and were good for .

本発明(性このような要求に鑑みなさhたものであり、
Raoultの法則から負のすれを示す溶液を密閉さオ
したキャヒイ・ツト内VC封入して気液2相共存状態を
実現し、キャビネット内外の圧力を平衡するように構成
したものである。
The present invention has been made in view of these requirements,
According to Raoult's law, a solution exhibiting a negative slip is sealed in a sealed cabinet with VC to realize a gas-liquid two-phase coexistence state, and is configured to balance the pressure inside and outside the cabinet.

理想溶液では然気圧はRaoultの法則に従かう。In an ideal solution, the natural pressure follows Raoult's law.

令弟1の成分をAモル、第2の成分をBモル混合すると
それぞれの蒸気圧は Xk、XRはそれぞれの液体のセル分率、i、r’4は
それぞれの純液体の蒸気圧である。又全圧にPo−p、
+pB=xi4+a−xi)琢           
   t2)従って 気相のモル分率はそれぞれ 一方A、Bの液相、気相におけるモル数をそれぞれ、A
L 、 B L 、 Ay 、 Byとすると、(5)
 1 (6)式からAL、AV、BL を消去して又A
V−BVXA/xB(8) 全体の体積■は液相の体積を無視するとそれぞれの気相
の体積の和で表わされる。
When A mol of the first component and B mol of the second component are mixed, the vapor pressure of each is Xk, XR is the cell fraction of each liquid, and i and r'4 are the vapor pressures of each pure liquid. . Also, the total pressure is Pop-P,
+pB=xi4+a-xi) Taku
t2) Therefore, the mole fraction in the gas phase is the number of moles of A and B in the liquid phase and gas phase, respectively.
Assuming L, BL, Ay, By, (5)
1 Eliminate AL, AV, BL from equation (6) and return A
V-BVXA/xB (8) The total volume (2) is expressed by the sum of the volumes of each gas phase, ignoring the volume of the liquid phase.

f3) 、 (4)式を(7) 、 (8)式に代入し
、更に(9)式に代入することによってP、V、T(温
度)、X(組成)の関係がわかる。
f3) By substituting equations (7) and (4) into equations (7) and (8), and further substituting into equation (9), the relationship among P, V, T (temperature), and X (composition) can be found.

根や棒の計算にはAntoine  の式1式%) を用いる。(9)式から −−−−と−を求めれば2d
P     cLT 相平衡におけるコンプライアンスと熱膨張率の関係がわ
かる。具体的に色々の溶液について、Raoultの法
則に従うとして計算を行った結果を図Aに示す。
Antoine's formula 1 (%) is used to calculate roots and bars. If we find −--- and − from equation (9), we get 2d.
The relationship between compliance and thermal expansion coefficient in P cLT phase equilibrium can be seen. Specifically, Figure A shows the results of calculations performed for various solutions assuming that Raoult's law is followed.

次にRaoultの法則からのずれがある場合を考える
。簡単のために正のずれとして(1)式のがわりに次式
を仮定する。
Next, consider a case where there is a deviation from Raoult's law. For simplicity, the following equation is assumed instead of equation (1) as a positive shift.

p −Hp’  p−F■〕01 A    A、  B     B 全圧P。は po= pA十PB=Ri+ r −1”、     
        αすXk について解くと x”@  = i  −x”、;          
                         
   (141xB−1−xAQQ (助〜Q6)式を(7) 、 (8)式に代入し更に(
9)式に代入して正のずれの場合のP 、V 、T 、
Xの関係がわかる。
p -Hp' p-F■]01 A A, B B Total pressure P. is po= pA×PB=Ri+ r −1”,
Solving for αsXk, x”@=i −x”;

(141xB-1-xAQQ Substituting equations (auxiliary to Q6) into equations (7) and (8), and further (
9) Substitute into the equation to find P, V, T, in case of positive deviation.
Understand the relationship between X.

これからRaoultの法則に従う時と同様の割算によ
りコンプライアンスと熱膨張率の関係を求めると図Bを
得る。
From this, the relationship between compliance and thermal expansion coefficient is determined by the same division as when following Raoult's law, and Figure B is obtained.

次に負のずれがある場合を考える。(1)式のかわりに
次式を仮定する。
Next, consider the case where there is a negative shift. Assume the following equation instead of equation (1).

P−X■2P0.  PB=(1−X:)2P3   
  Q乃A    AA Po= PA十PB=X’A2PX +(1−Xi)2
Pi            08)Xk  について
解くと 又 χ七二1−X火                αす
XX= j −XX            (22)
以F同様の手段によって負のずれの場合のコンプライア
ンスと熱膨張率の関係を計算すると図Cを得た。図でわ
かることは、 1 コンプライアンスと熱膨張率どの関係は直線関係に
あり、コンプライアンスが大きい8M膨張率も大きい。
P-X■2P0. PB=(1-X:)2P3
QnoA AA Po= PA0PB=X'A2PX + (1-Xi)2
Pi 08) Solving for Xk also gives χ721-X fire
Figure C was obtained by calculating the relationship between compliance and thermal expansion coefficient in the case of negative deviation using the same method as in F. What can be seen from the figure is: 1. The relationship between compliance and thermal expansion coefficient is a linear relationship, and the 8M expansion coefficient where compliance is large is also large.

又熱膨張率が○では、コンプライアンスは空気の値に等
しくなり気相のみの場合と矛盾しない。
Moreover, when the coefficient of thermal expansion is ○, the compliance is equal to the value of air, which is consistent with the case of only the gas phase.

2 溶液としての性質が同じ、即ちRaoultの法則
からのずれの程度が同じであれば組成や成分によらずほ
とんど同一1M線上にある。
2. If the properties as a solution are the same, that is, the degree of deviation from Raoult's law is the same, then they will almost be on the same 1M line regardless of the composition or components.

3 同一成分2組成であれば温度が低い程コンプライア
ンスが高い。
3 If the two compositions are the same, the lower the temperature, the higher the compliance.

4 先述しだハイコンプライアンスキャビイ・ノドの要
求にはRaoultの法則から負のずれを示す成分の組
みあわせが好ましい。
4. In order to meet the above-mentioned requirements for high compliance cavities and throats, it is preferable to use a combination of components that exhibit a negative deviation from Raoult's law.

以上簡単なモデルによって理想溶液及び、それからのず
れを考慮した場合のコンプライアンスと熱膨張率との関
係を示したが、一般に理想溶液からのずれは、濃度によ
って決まる活量aを用いての様に表わされそれぞれの系
の活量によって直線の傾きが決まるものである。従って
一般的に3成分系以上の多成分系についても2成分系の
時と全く同様に考えることができる。よって(24)式
のαは負のずれが大きい程大きくなり、/・イコンプラ
イアンスキャビネットにとって有利である。
The relationship between compliance and thermal expansion coefficient when considering the ideal solution and the deviation from it was shown above using a simple model, but in general, the deviation from the ideal solution can be calculated using the activity a determined by the concentration. The slope of the line is determined by the activity of each system. Therefore, in general, multi-component systems of three or more components can be considered in exactly the same way as two-component systems. Therefore, α in equation (24) increases as the negative deviation becomes larger, which is advantageous for the /· compliance cabinet.

以」二、詳述したように本発明によれば、多成分2相平
衡を利用したスピーカキャビネットにおいて、最も重要
である溶液の性質がコンプリアンスと熱膨張率との関係
に与える影響を明らかにし、ハイコンプライアンスでか
つ、熱膨張率の小さい2成分の組合わせを提供すること
ができる。
As described in detail below, the present invention clarifies the influence of the most important solution properties on the relationship between compliance and thermal expansion coefficient in speaker cabinets that utilize multi-component two-phase equilibrium. , it is possible to provide a combination of two components with high compliance and a small coefficient of thermal expansion.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のスピーカ装置のコンプリアンスと熱膨張率
との関係を示す図である。
The figure is a diagram showing the relationship between compliance and thermal expansion coefficient of the speaker device of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)密閉されたキャビネットにスピーカを取す付け、
キャビネット内部に少々くとも2成分よりなる溶液を封
入して気液2相共存状態を実現し、ギヤビイ・ソト内外
の圧力を平衡するように構成すると共に、上記キャビネ
ット内に封入した溶液がRaoultの法則から負荷の
ずれを示すように構成したことを特徴とするスピーカ装
置。 に))封入した溶液が、1気圧の下で20〜了O℃又は
その一部の温度範囲において気液2相平衛が成立するこ
とを特徴とする特許請求の範囲第1項記載のスピーカ装
置。
(1) Installing the speaker in a sealed cabinet,
A solution consisting of at least two components is sealed inside the cabinet to realize a gas-liquid two-phase coexistence state, and the pressure inside and outside of the Gearby Soto is balanced. A speaker device characterized in that it is configured to indicate a load deviation from a law. (b)) The speaker according to claim 1, wherein the sealed solution exhibits a gas-liquid two-phase state in a temperature range of 20°C to 20°C or a part thereof under 1 atm. Device.
JP706982A 1982-01-19 1982-01-19 Speaker device Pending JPS58124393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP706982A JPS58124393A (en) 1982-01-19 1982-01-19 Speaker device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP706982A JPS58124393A (en) 1982-01-19 1982-01-19 Speaker device

Publications (1)

Publication Number Publication Date
JPS58124393A true JPS58124393A (en) 1983-07-23

Family

ID=11655782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP706982A Pending JPS58124393A (en) 1982-01-19 1982-01-19 Speaker device

Country Status (1)

Country Link
JP (1) JPS58124393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003600A1 (en) * 1983-03-02 1984-09-13 Brian Douglas Ward Constant pressure device
KR100323794B1 (en) * 1993-03-02 2002-06-20 에스알티인코포레이티드 Fluid Attenuated Acoustic Enclosure System

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003600A1 (en) * 1983-03-02 1984-09-13 Brian Douglas Ward Constant pressure device
GB2146871A (en) * 1983-03-02 1985-04-24 Brian Douglas Ward Constant pressure device
KR100323794B1 (en) * 1993-03-02 2002-06-20 에스알티인코포레이티드 Fluid Attenuated Acoustic Enclosure System

Similar Documents

Publication Publication Date Title
Appelgate et al. Distributive laws
Kell Precise representation of volume properties of water at one atmosphere
Hanner On the uniform convexity of L p and l p
Dormand et al. New Runge-Kutta algorithms for numerical simulation in dynamical astronomy
Wilson et al. Evaluation of orthogonal damping matrices
Nerlove et al. On the optimality of adaptive forecasting
Bhatia et al. Thermodynamic properties of compound forming molten alloys in a weak interaction approximation
Duncan et al. XV. Matrices applied to the motions of damped systems
JPS58124393A (en) Speaker device
Pople LI. The communal entropy of dense systems
Fitzgerel et al. The law of Dulong and Petit
Clifford et al. Thermal conductivity of some mixtures of monatomic gases at room temperature and at pressures up to 15 MPa
Vardya Hydrogen-helium adiabats for late-type stars
Flannery et al. Some Finite Groups Which Are Rarely Automorphism Groups: I
Jones et al. Electron population analysis of accurate diffraction data. IV. Evaluation of two-center formalisms in least-squares refinement
Sornette Steric interaction between wandering walls. Study of the strong deviation from mean-field theory
Lewis et al. Effect of Very High Pressure on the Compressibilities of NH4Cl, TlCl, CdO, and CdS
Okada Free boundary value problems for equations of one-dimensional motion of compressible viscous fluids
Rossi et al. Partition functions and related quantities of astrophysically significant molecules
Carter et al. The Raman spectra of crystalline Na2CrO4 and Na2CrO4· 4H2O
Carlitz The class number of an imaginary quadratic field
Holleran Correlation of compressed liquid densities
Albert A note on normal division algebras of order sixteen
Sastry et al. A simplified CFE method for large-scale systems modelling about s= 0 and s= a
Tripp Groups of Order P3q2...