JPS58122313A - Vacuum-scavenged two-cycle engine - Google Patents

Vacuum-scavenged two-cycle engine

Info

Publication number
JPS58122313A
JPS58122313A JP403382A JP403382A JPS58122313A JP S58122313 A JPS58122313 A JP S58122313A JP 403382 A JP403382 A JP 403382A JP 403382 A JP403382 A JP 403382A JP S58122313 A JPS58122313 A JP S58122313A
Authority
JP
Japan
Prior art keywords
exhaust
air
gas
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP403382A
Other languages
Japanese (ja)
Inventor
Matsushige Matsuo
松尾 松茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP403382A priority Critical patent/JPS58122313A/en
Publication of JPS58122313A publication Critical patent/JPS58122313A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/20Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To purify the exhaust gas of a two-cycle engine and prevent its fresh mixture from blowing through it. CONSTITUTION:After ignition and explosion, blowoff is started through an exhaust port 10. A vacuum zone 16 is produced near an exhaust gas discharge chamber 14 and a high vacuum zone 17 is produced in a cylinder 3 as a piston 2 approaches the bottom dead center owing to a sharply discharged gas mass 13. At that time, harmful remaining gas is eliminated. An intake port 9 is opened so that a mixture 40 is supplied into the cylinder 3 by the negative pressure of the high vacuum zone 17. When the mixture 40 is about to blow to a downstream exhaust section through the cylinder 3 and the exhaust port 10, a blocking zone control valve 26 is opened to start producing a blow-through blocking zone 19 in the exhaust gas discharge chamber 14 to prevent the mixture 40 from blowing through the cylinder 3.

Description

【発明の詳細な説明】 壱回転に壱度の爆発を繰返す2サイクル機関と、弐回転
に壱度の爆発によって回転を続ける4サイクル機関との
性能又は得失に関する評価において、同−重量若くは容
積による最大出力ではるかに優れている前者は、気化器
型ガソリン機関等の比較に際して、機構も簡単で軽量且
つ安価な特徴と共に耐久力も頗る良好であるにも係はら
ず、発表以来の永い年月を経た今日も熱効率が低く燃費
そ、の他の数点を克服し得なかった為に、後者の進歩に
追従できず、従って実用的に劣等視され将来性がない、
と語られている。
Detailed Description of the Invention In evaluating the performance or advantages and disadvantages of a two-stroke engine that repeats one explosion per revolution and a four-cycle engine that continues to rotate with one explosion per two revolutions, it was found that The former, which is far superior in terms of maximum output, has a simple mechanism, is lightweight, inexpensive, and has excellent durability when compared to carburetor gasoline engines. Even today, after passing through this period, it has not been able to follow the progress of the latter because it has not been able to overcome several other issues such as low thermal efficiency and fuel consumption, and is therefore considered inferior in practical terms and has no future prospects.
It is said.

而しながら、両者は内燃機関としての基本的機械作動に
起因する種々の特長を有しているから、特定条件用途で
は双方に有利な点があって、単純に′優劣を決定するの
は適当でない。
However, since both have various features due to their basic mechanical operation as internal combustion engines, both have advantages under specific application conditions, and it is inappropriate to simply determine their superiority or inferiority. Not.

従来、不良な燃費等を補足する充分な利点のために実用
され重要視されて来た小型陸上運輸機関の分野に排気ガ
スの清浄化が要求される事となり、火花点火式気化器型
2サイクル機関は、掃気サイクルにおける生ガスの吹き
抜は防止方法が未開発であるため、排出ガス中の有害成
分の減少に失敗し、触媒法を併用しても生ガスによる欠
点が解消せず、技術的に満足できる結果が出ないので、
掃気手段の開発が成功しない限り、負荷率変動の激しい
用途、主として陸上運輸車輌用、農業用移動機関着くは
船用及び軽飛行機用エンヂン等々の分野から撤退の止む
なきに至る運命に対面している。
Exhaust gas purification is now required in the field of small land transportation vehicles, which have traditionally been put into practical use and regarded as important due to their sufficient advantages to compensate for poor fuel efficiency, etc., and spark ignition carburetor type 2-cycle Engines fail to reduce harmful components in exhaust gas because no method has been developed to prevent raw gas from blowing out during the scavenging cycle. Since the results are not satisfactory,
Unless the development of scavenging means is successful, we face the fate of being forced to withdraw from applications where the load factor fluctuates rapidly, mainly for land transportation vehicles, agricultural mobile engines, marine and light aircraft engines, etc. .

オツトー氏による、理論の明快な4サイクル機関は、幸
運の女神に援けられて近年極限までの進歩を遂げ、排気
清浄化の限界にも充分に対応しているがクラーク氏によ
って発表され百年の歴史を有している2サイクル機関は
、手品のような給排気機作解明の困難さに妨げられたの
であろうか、根源的な改良が僅かで、エネルギー効率に
関しても進歩がない。
Mr. Otsuto's four-cycle engine, which has a clear theory, has made great progress in recent years thanks to the blessings of the goddess of fortune, and has fully responded to the limits of exhaust purification. The two-stroke engine, which has a long history, has undergone only a few fundamental improvements, perhaps hampered by the difficulty of elucidating its air supply and exhaust mechanism, which is like a magic trick, and there has been no progress in terms of energy efficiency.

即ち、既に明かな如く、2サイクル機関における欠陥の
重要問題点は、排気吹き出しに際して発生する、新気若
くは燃料ガスの吹き抜は現象であり、この為の掃気ポン
プ駆動力の損失と、火花点火機関における燃費悪化の現
実である。
In other words, as is already clear, the important problem with defects in two-stroke engines is the phenomenon of blowing out fresh air or fuel gas that occurs when exhaust blows out, and the loss of driving force of the scavenging pump due to this, and sparks. This is the reality of deteriorating fuel efficiency in ignition engines.

更にまた、多量の残留気体に起因する、例へば給気効率
低下の欠点であり、同様に掃気ポンプの駆動力は、2サ
イクル機関における出力阻害源として作用し、発生する
吹き抜は損失分については、燃料消耗の欠陥部分である
Furthermore, there is a drawback that a large amount of residual gas causes, for example, a reduction in air supply efficiency. Similarly, the driving force of the scavenging pump acts as a source of output inhibition in a two-stroke engine, and the blowout that occurs is , is the defective part of fuel consumption.

この点が解決される事によって。By resolving this point.

排出ガスの清浄化を含め、飛躍的な出力増強と共に熱効
率が格段に向上するから4サイクル機関よりも優位に立
てる根拠を具へる事となる、秘密の扉を開いて、その本
領を発揮させ、撤退を絶対に防止するため本発明を提案
する。
Including the purification of exhaust gas, the output will be dramatically increased and the thermal efficiency will be significantly improved, so we will be able to open the secret door and demonstrate its true potential, giving us the basis for being superior to 4-stroke engines. , we propose the present invention to absolutely prevent withdrawal.

混合気吸入クランク室予圧型2サイクル機関の給気排気
行程の改良によって生ガスの吹き抜けを屏消し、又は残
留ガスを激減させる方法の開発によって、効率を格段に
向上させる事が出来れば燃料節約は勿論、排出ガスの清
浄化も確立できる。
If efficiency can be dramatically improved by improving the air intake and exhaust stroke of a two-stroke engine with pre-pressure on the crankcase inlet and air-fuel mixture to eliminate raw gas blow-through or by developing a method to drastically reduce residual gas, fuel savings can be achieved. Of course, cleaning of exhaust gas can also be established.

同様に、圧縮点火にサイクルディーゼル機関も、排給気
行程において排気を随伴した新気の吹き抜け、並びに多
量の残留ガスの存在が重大な欠陥であって、根源として
のこの現象を消滅させることで、給気ポンプの小型化並
びに駆動馬力の節約が可能となり燃料節約も達成できる
結果、効率が更に上昇し出力が増大する。
Similarly, in compression ignition cycle diesel engines, the blow-through of fresh air accompanied by exhaust gas in the exhaust stroke and the presence of a large amount of residual gas are serious defects, and it is impossible to eliminate this phenomenon as the root cause. As a result, it is possible to downsize the air supply pump, save drive horsepower, and achieve fuel savings, resulting in a further increase in efficiency and output.

火花点火式ガソリン機関も、圧・縮点火式ディーゼル機
関も、2サイクル方式の機作によって回転する限りにお
いては、吹き抜けによる動力若しくは燃料損失を排除す
る事が不可能とされて来たし、圧縮行程始りの時にシリ
ンダーに充填されている混合気又は新気内に多量に混在
する布置残留ガスの存在が、後述しているような経過に
よって行程容積を挟挿する結果を招来して、出力向上を
阻害する要因となっている重大な問題点の解決について
、現在までに有効な提言がなされた事を知らない。
As long as both spark-ignition gasoline engines and compression-ignition diesel engines operate on a two-cycle system, it has been considered impossible to eliminate power or fuel loss due to blow-through, and The presence of a large amount of residual gas mixed in the air-fuel mixture or fresh air filling the cylinder at the time of combustion causes the stroke volume to be pinched in the process described below, resulting in an increase in output. I am not aware of any effective proposals to date to resolve the serious problems that are hindering this.

吹き抜は掃気以外の給気手段の開発と共に、不燃残留ガ
スの極微量化によって燃費を良好に、従って機関の出力
を格段に向上させる改夷方法が無いのであろうか。
Isn't there a way to improve the atrium by developing air supply means other than scavenging and minimizing the amount of non-flammable residual gas to improve fuel efficiency and, therefore, significantly improve engine output?

問題解決の原点は、給気始りの時点で、シリンダーに残
留している多量の排出し得なかった燃焼終りガスの所理
方法にある事を示唆し繰返し詳述する。
The origin of the solution to the problem lies in the method of handling the large amount of combustion end gas that remains in the cylinder at the beginning of air supply and cannot be discharged, and will be repeatedly explained in detail.

要するに、多量に残留する排出残りガスの!I!影響を
減少する目的を含めた改良に関する着眼点及び方針が正
確でなかったので、気化器式ガソリン機関では、充填効
率のために吹き抜は混合気量を増加させ、且つ低速回転
時替には濃い混合気な充填する必然性が考へられて来た
。従って新型の燃料噴射式ガソリン機関に於ても同様な
欠点の解消に成功していない。
In short, a large amount of residual exhaust gas remains! I! Because the focus and policy regarding improvements including the purpose of reducing the impact were not accurate, in carburetor gasoline engines, the blowhole increases the mixture volume for charging efficiency, and it is not necessary for low-speed rotation time change. The necessity of filling with a rich mixture has been considered. Therefore, similar drawbacks have not been successfully overcome in new fuel injection gasoline engines.

その結果、ディーゼル機関の場合でも同様な原因の為め
に掃気ポンプの大型化から脱皮できない現況である。
As a result, even in the case of diesel engines, due to the same reasons, it is difficult to overcome the problem of increasing the size of the scavenging pump.

2サイクル機関の排気終りは、ピストンカー下死点近く
まで下降した給気始りの直前である、従でピストンが上
死点に位置して隙間容積が最少値にある4+イクル機関
の場合に比較すれば、そのシリンダー空間を占有してい
る残存体積が甚しく相違している。
The end of exhaust for a 2-cycle engine is just before the start of air intake when the piston car has descended to near the bottom dead center.In the case of a 4+ cycle engine, where the piston is at the top dead center and the clearance volume is at its minimum value. By comparison, the residual volume occupying the cylinder space is significantly different.

即ち、仮りに、行程容積、回転数等を同一とし、残存体
積内の負圧真空度が同一である場合の残留気体量に関す
る結論を次に例示する。
That is, assuming that the stroke volume, rotation speed, etc. are the same, and the negative pressure vacuum degree in the remaining volume is the same, the conclusion regarding the amount of residual gas will be exemplified below.

先般、信頼できる公立試験所によって発表された測定結
果で、市販の小型2サイクル機関運転中におけるシリン
ダー内圧は、ピストンの下降によって瞬間的に負圧とな
りその数値は低速時において0.4〜0.6 KG/C
M”であり、高速時で0.8〜0.9KG/CM”  
であったとの事が確認されている。
Measurement results recently announced by a reliable public testing laboratory show that during operation of a commercially available small two-stroke engine, the cylinder internal pressure momentarily becomes negative pressure due to the downward movement of the piston, and the value ranges from 0.4 to 0.0 at low speeds. 6 KG/C
M” and 0.8-0.9KG/CM at high speed
It has been confirmed that it was.

即ちこの事期は給気ボート開きの直前と断定し得るから
、この時におけるシリンダー残存ガスの状況及び発表に
よる低速時測定平均値0.5 KG/CM’の負圧が示
唆している意味を次に詳述する。
In other words, it can be concluded that this event occurred immediately before the opening of the air supply boat, so we can understand the situation of the residual gas in the cylinder at this time and the meaning suggested by the negative pressure of 0.5 KG/CM', the average value measured at low speed according to the announcement. This will be explained in detail next.

排気ブルーダウンに続き更にピストンが下降してその上
端が給気ポートを開く直前に位置した時、従って、ピス
トンの下降によって拡大して来たその時の占有体積が例
へば100 G cc  であるとした場合に、この空
間内に、500 cc  の気体が希薄状態で分散して
いるとき、真空計は0.5KG/α2の負圧を示すので
あるから、従ってこの事は、大気圧即ち1.033 K
G/CM2の500 cc量のカスが残留している事を
意味している、この残留カスはT干の未燃焼成分を含む
燃焼終り酸化法のガス及びそれ等の生成物であり、次回
の爆発作用には未燃焼分のガス以外は出力的に有害な気
体がその大部分である。
For example, when the piston descends following the exhaust blue-down and its upper end is located just before opening the intake port, the occupied volume at that time, which has expanded as the piston descends, is, for example, 100 G cc. When 500 cc of gas is diluted and dispersed in this space, the vacuum gauge shows a negative pressure of 0.5 KG/α2, so this means atmospheric pressure, or 1.033 K.
This means that 500 cc of G/CM2 residue remains. This residual residue is the gas and other products of the combustion end oxidation process, including unburned components of T-drying. Explosive action consists of mostly harmful gases other than the unburned gas.

即ち、これは、別の表現によれば500ccの贅体を混
合させれば大気圧となる事の意味で、従−)て残留ガス
の存在は、排気容積が500 ccに縮少狭搾された意
味に解釈しても、4サイクル機関における吸込ポンプ作
動の状況と比較考察すれは共しい誤りではない。
In other words, this means that if 500 cc of gas is mixed, the pressure will be atmospheric. Therefore, the presence of residual gas means that the exhaust volume is reduced to 500 cc. Even if interpreted in this sense, it is not a common mistake to compare and consider the situation of suction pump operation in a four-stroke engine.

4サイクル機関は、排気行程終りのとき、ピストンは上
死点にあって隙間容積値が最少のときである、即ち前記
例示に従へば残留ガスは100〜120ccの空間に存
在し、僅か50〜60cc 即ち行程容積1000 c
cの機関では5〜6%の微量有害分が残留するのみで、
排気慣性のため、実際には更に高い負圧を発生させ得る
ため極めて微量にできる。
In a 4-stroke engine, at the end of the exhaust stroke, the piston is at the top dead center and the gap volume is at its minimum, that is, according to the example above, the residual gas exists in a space of 100 to 120 cc, and is only 50 cc. ~60cc, i.e. stroke volume 1000c
In the institution c, only 5 to 6% of trace amounts of harmful substances remain,
Due to exhaust inertia, even higher negative pressure can actually be generated, so the amount can be made extremely small.

従って2サイクル機関は、在来の定説には馴染まない全
く異質の排気作動として状態を把握解明しない限り改良
の余地を発見できる筈がない。
Therefore, there is no room for improvement in two-cycle engines unless we understand and clarify the situation as a completely different type of exhaust operation that does not fit into conventional theory.

従来の2サイクル機関の排気に関する理論、若くは機関
測定法の書籍に示されているように、静力学的な考察の
みでは、希望目的を示すことは出来ても、実際運転とは
全く遊離した理論展開で、吾人は、側底首肯できない説
明である。
As shown in conventional theories regarding the exhaust of two-stroke engines, and even books on engine measurement methods, static considerations alone can indicate the desired purpose, but they are completely disconnected from actual operation. In terms of theoretical development, this is an explanation that I cannot fully accept.

例へば、排気ブローダウンに際して膨張するガス圧力と
その逸走速度に対抗する、クランク室予圧若くは掃気ポ
ンプ吐出圧力による気体流速を比較したとき、これは亀
が兎を追いかけるのと同様に絶対に追付く筈もなく従っ
て押し出す可能性がない。
For example, when comparing the gas pressure that expands during exhaust blowdown and the gas flow velocity caused by the crank chamber preload or the scavenging pump discharge pressure, which counteracts the escape velocity, this will definitely catch up to you like a tortoise chasing a rabbit. There's no way it could have happened, so there's no possibility of it being pushed out.

即ち、大部分の爆発ガスが膨張しつ−その保有工子ルギ
ーによって自己排出し且つ潜在圧力波の相対影響力によ
る吸引作用により0.5KG/CM”の負圧に到達して
排出作用が終りζ続いて混合気若くは新気が希薄なガス
状態の残留党内に圧送され相当量が混入する結果、従っ
て圧が上昇する経過の後に、余分の量のガスが吹き抜は
気流として排気ポートから下流に突出するのである。
That is, most of the explosive gas expands and self-exhausts due to its retained energy, and reaches a negative pressure of 0.5 KG/CM due to the suction effect due to the relative influence of the potential pressure waves, and the expulsion process ends. ζSubsequently, the young or fresh air-fuel mixture is pumped into the residual gas in a lean gas state and a considerable amount of it is mixed in, resulting in a rise in pressure.After a period of time, an excess amount of gas is passed through the atrium as an airflow to the exhaust port. It protrudes downstream from.

排気ポート構造による機関では、ピストンの上昇開始が
直ちに圧縮始めとはならない。即ち下死点から排気ポー
ト閉までの上昇行程の間に、開放されているポートを経
て内容ガスが逃げ出すのである。従ってこの事実は疑う
余地もなく給気流の相当量を吹き抜けさせる事を示し且
つ注目すべき点は、クランク室予圧のための吸入行程容
積よりも、圧縮行程容積の方が少さい。従って給気がシ
リンダーに充満した余りの気体は押し出され、且つ排気
逸走エネルギーに吸引され、吹き抜ける。
In an engine with an exhaust port structure, compression does not begin immediately when the piston begins to rise. That is, during the upward stroke from the bottom dead center to the closed exhaust port, the content gas escapes through the open port. Therefore, this fact undoubtedly indicates that a considerable amount of the charge air flow is blown through, and it is noteworthy that the compression stroke volume is smaller than the suction stroke volume for crank chamber prepressure. Therefore, the excess gas that fills the cylinder with the supply air is pushed out, and is attracted by the exhaust escape energy and blows through.

即ち、この限りにおいては有効な機械的掃気作動である
ように見えるが、多量の混合気が燃焼法の不燃性残留ガ
スに混入し且つそれを随伴しっ\吹き抜けるから、従っ
て新しい混合気の多情りが減少する欠陥が宿命であった
That is, although it appears to be an effective mechanical scavenging operation insofar, a large amount of the air-fuel mixture mixes with the non-flammable residual gas of the combustion method and blows through with it, so that the new air-fuel mixture's temperature is reduced. It was destined to be a defect that would lead to a decrease in performance.

圧縮点火一機関の場合も同様に残留ガスを新気流に乗せ
て吹き抜けさせているが、現用機関の如き僅かな掃気量
では、その吹き抜は排出量は頗る少さいから、従って多
量の#11焼済の酸化した気体が混在して残留し、新気
即ち酸素の実質充填率の悪化現象を防止し得ないで今日
に到っている。
In the case of a compression ignition engine, residual gas is similarly carried through the fresh air flow and blown through, but with a small amount of scavenging air such as in the current engine, the amount of gas emitted from the blowout is extremely small, so a large amount of #11 To this day, it has not been possible to prevent the deterioration of the actual filling rate of fresh air, that is, oxygen, due to the presence of burned and oxidized gases.

大型ディーゼル機関では、排気タービン過給機の併用を
含めて、1,15〜1.5KG/(χ1以上の吐出圧を
有する掃気ポンプを具へ、排気容積の25嘔〜3〇−以
上の新気を吹き抜けさせる事によってms終りの不燃性
残留気体を押し出し且つ掃除して良好な新気充填を行ふ
思想が示役されているが、而しながら前述の如く根源の
掃気現象の問題点が解決されなかった為に、排気掃気に
関するボーティング設定について進歩がなく、従って、
運転試験における排気ポート附近の圧力測定例では、負
圧に到達するまで排気吹き出しが進行しない前に掃気圧
が発生している状態が記録されている。
For large diesel engines, including the combined use of an exhaust turbine supercharger, a scavenging pump with a discharge pressure of 1.15 to 1.5 KG/(χ1 or more) and a new engine with an exhaust volume of 25 to 30 kg or more are used. The idea is to push out and clean the nonflammable residual gas at the end of the ms by blowing air out, and to perform good fresh air filling. However, as mentioned above, there is a problem with the original scavenging phenomenon. Since it was not resolved, there has been no progress on the boating settings for exhaust scavenging, and therefore,
In an example of pressure measurement near the exhaust port during a driving test, a state was recorded in which scavenging pressure was generated before exhaust blowing did not proceed until negative pressure was reached.

勿論、設計者は負圧掃気を意識していないから当然の結
果で、この事実から推定できるように、且つ繰返し詳述
しているように、不燃性残留ガスの減少行程を意識しな
い在来理論による押し出し吹き抜は掃気法は、排気吹き
出し現象を#認した結果の理論的に矛盾する不完全な説
明で、その為に残留ガス減少方法を含まない排出機作が
進歩を阻害している。
Of course, this is a natural result because the designer is not aware of negative pressure scavenging, and as can be inferred from this fact, and as has been repeatedly detailed, the conventional theory does not take into account the reduction process of nonflammable residual gas. The scavenging method is a theoretically contradictory and incomplete explanation of the recognized exhaust gas phenomenon, and therefore, the exhaust mechanism that does not include residual gas reduction methods is hindering progress.

即ち、掃気ポンプによって給送された新気は、排気吹き
出しによつて大気圧附近まで降圧したシリンダー内に°
突入する。この時にシリンダー内に充満している気体は
、僅かな未燃焼ガスと、大部分がIIaIjs#Fり酸
化済の不燃性ガスと、更に若干の燃焼生成物である。従
ってこのガスは次の爆発を妨害する布置物としてのみで
なく、その量が吸入を妨害し、従って新気の充填量が減
少する結果を招く。
In other words, the fresh air fed by the scavenging pump enters the cylinder whose pressure has been reduced to near atmospheric pressure by the exhaust blowout.
enter abruptly. The gases filling the cylinder at this time are a small amount of unburned gas, mostly IIaIjs#F oxidized nonflammable gas, and a small amount of combustion products. This gas therefore not only serves as a barrier to the next explosion, but its quantity also impedes inhalation and thus results in a reduction in the fresh air charge.

4tサイクル関はピストンの上昇によるポンプ作用で機
械的に確実な排出が行はれ最少の隙間容積から新気の吸
込が始るが、2サイクル機関は前述のように行程容積の
8〇−程の空間が存在している下死点近くで給気を開始
しなければならぬ絶対条件が存在し、従ってその時の理
想は残留ガス皆無の状態であるにも係わらず、排気プロ
ーダウ−ンによっても排出できないで、例へば若干の負
圧発生があっても尚充満している撫留気体を排出する手
段が講じられていない。
In the 4t cycle engine, the pumping action caused by the rise of the piston ensures mechanical exhaustion, and the suction of fresh air starts from the smallest gap volume, but as mentioned above, in the 2-stroke engine, the 80-degree stroke volume There is an absolute condition that air supply must be started near the bottom dead center where there is a space of For example, even if a small amount of negative pressure is generated, no means has been taken to discharge the trapped gas that is still full.

新気が掃気ポンプでシリンダーに押込まれるとき、層状
若くは部分的完全混合の状態で残留党内に突入し、その
空間の若干の負圧を正圧とし、更に圧を上げつ一排気ポ
ートから残留ガス混入の状態で随伴し排出を続ける、ピ
ストンは更に下降を続け、シリンダー空間は拡大し、下
死点に到達する間も排ガスと共に新気の吹き抜けは続く
、このように、上昇するピストンが給気ポートを閉ぢる
まで給気が続く方式の在来!3.2サイクル機関は、そ
の間に残留ガスと新気は混和状態で排出を続けているこ
とになる。
When fresh air is forced into the cylinder by the scavenging pump, it rushes into the residual air in a stratified or partially completely mixed state, converts the slight negative pressure in that space into positive pressure, and further increases the pressure until it reaches the exhaust port. As the piston continues to descend, the cylinder space expands, and even as it reaches bottom dead center, fresh air continues to blow through along with the exhaust gas.In this way, the piston continues to rise. Conventional method where air continues to be supplied until the air supply port is closed! During this period, the 3.2-cycle engine continues to discharge residual gas and fresh air in a mixed state.

従って、残留ガスの完全排除ができずその悪影響から脱
出不可能で、大量の吹き抜けを目的に掃気を圧入しても
不燃性ガス成分は希薄化するだけで多量に残存している
。例へば、7前記の大型機関のように、負圧発生前に掃
気が始れば、掃気量が150−以上になっても有効な新
気は7o−以下に過ぎず、掃気量30091を費しても
残留気体を消滅できない、従って掃気動力が極端に増加
するとの概略論が成立する。
Therefore, it is impossible to completely eliminate the residual gas and it is impossible to escape from its harmful effects, and even if scavenging air is pressurized for the purpose of blowing through a large amount, the nonflammable gas components remain in large amounts only by being diluted. For example, if scavenging starts before negative pressure is generated, as in the case of the large engine mentioned above, even if the amount of scavenged air is 150 or more, the effective fresh air is only 7 or less, and the amount of scavenged air is 30,091. The general theory is that the residual gas cannot be eliminated even if the scavenging power is increased extremely.

この事は、前述したガソリン機関の場合と同様に排気容
積の挟挿と同一結果を招来していると考へ得るのである
This can be thought of as causing the same result as the pinching of the exhaust volume as in the case of the gasoline engine mentioned above.

排気吹き出しに続き、更にピストンが下死点に向って移
動している間における排出ガスの流動逸走に乗せ、且つ
その関連機作若くは機械化によって負圧を高め給気ポー
ト開き以前に例へば0.2〜0、1 KG/CM”  
以下の高真空状態を誘導しない限り、2サイクル機関の
進歩はない。
Following the exhaust blowout, the negative pressure is increased by the flow escape of the exhaust gas while the piston is moving toward the bottom dead center, and the related mechanism or mechanization is used to increase the negative pressure, for example, before the air intake port is opened. 2~0,1 KG/CM”
There will be no progress in two-stroke engines unless the following high vacuum conditions are induced.

気化器方式によるガソリン機関と違って、ディーゼル機
関等の燃料噴射方式では、燃料の吹き抜けによる損失は
発生しないが残留ガスを完全に解消するには莫大な空気
量が必要である。実用範囲の掃気であっても出力向上を
企図すればその損失動力は頗る大きいのである。
Unlike a gasoline engine using a carburetor system, a fuel injection system such as a diesel engine does not cause loss due to fuel blow-through, but a huge amount of air is required to completely eliminate residual gas. Even if the scavenging is within the practical range, the loss of power will be significant if an attempt is made to improve the output.

従って残留気障書に関連して先輩諸氏による多くの発見
と提案によって研究結果が蓄積されて来たが、いまだ適
確な対応策が確立しなかった根源は、押し出し吹き抜は
掃気法の見直しに着眼されなかった事による。
Therefore, although research results have been accumulated based on many discoveries and proposals made by senior researchers regarding the residual air disorder report, the root cause of the fact that no appropriate countermeasures have been established yet is that the push-out atrium requires a review of the scavenging method. This is due to the fact that it was not paid attention to.

特開昭51−144820号又は特開昭52−3762
7号及び970211号の発明が公示されている。前者
は米国籍の有名な船外機メーカーであり後者は日本国立
の技術研究所の出頭に係はり従って、現時点における最
高権威者集団の提案である。しかしながら内容について
検討すると矢[9詳述して来たように、充満している残
留ガスの障害例へば行程容積の挟挿に関する対応が欠落
している。
JP-A-51-144820 or JP-A-52-3762
The inventions of No. 7 and No. 970211 have been disclosed. The former is a famous American outboard motor manufacturer, and the latter is a proposal from the highest authority group at the moment, as it is related to the appearance of the Japanese National Institute of Technology. However, when considering the content, as described in detail above, there is a lack of response regarding the insertion of the stroke volume in the case of failure due to the residual gas being filled.

これらの提案の主体は、排気吹き出しのシリンダーに混
合気と空気を別途に分離して吹き込む発想によって空気
流を先行せしめて吹き抜けさせる新規な手段を軸として
生ガスの吹き抜けを防ぎ燃費を向上し、排出ガスの清浄
化に寄与させる方法で、この点について異論はないが、
而しその機作の根源には残留ガスの低減に対する配慮が
ない。
The main focus of these proposals is to improve fuel efficiency by preventing raw gas from blowing through, based on a new method that allows air to advance and blow through by separating the air-fuel mixture and air into the exhaust blowing cylinder. There is no objection to this point as it is a method that contributes to the purification of exhaust gas, but
However, the origin of this mechanism is that there is no consideration given to reducing residual gas.

従って多量に存在している不燃性ガスをシリンダー内に
封じ込める有害な可能性と出力低下が示唆されているの
である。
Therefore, it has been suggested that large amounts of nonflammable gas may be trapped within the cylinder, causing harmful effects and reducing output.

但し後者においては、定量のクランク室予圧混合気を濃
くする手法も含め過給方法として充填率を向上できる点
が優れている。而しながら、最新知識による研究提案に
おいて、残留ガスの低減に対する配慮が欠落している事
実即ち、この問題点は、ディーゼル機関においても同様
に、残留ガスの存在によって新気の多情りが妨害される
。従って掃除排出を含む効率上昇のために、掃気ポンプ
大型化の必然性が更に排ガス浄化装置採用によって拍車
がかへる悪循環から脱皮し得す、従って排気タービンに
よる高圧過給もその効果が減殺される結果となっている
However, the latter method is superior in that it can improve the filling rate as a supercharging method, including the method of enriching a fixed amount of pre-pressure mixture in the crank chamber. However, research proposals based on the latest knowledge lack consideration for the reduction of residual gas.This problem also occurs in diesel engines, where the presence of residual gas obstructs the flow of fresh air. Ru. Therefore, in order to improve efficiency, including cleaning and exhaust, it is possible to escape from the vicious cycle in which the necessity of increasing the size of the scavenging pump is further exacerbated by the adoption of exhaust gas purification equipment, and the effect of high-pressure supercharging using the exhaust turbine is therefore reduced. This is the result.

本発明は、先に提案した特願昭53−129964号に
示した、減圧方式による高真空掃気方法その他に基く排
出手段によって減量し、若くはしない残留ガスを更に微
量とし解消する目的を以って新規な高真空排気法並びに
装置を提供して残留ガスの悪影響を絶滅し、熱効率並び
に充填効率等を向上して出力の増強を図って4サイクル
機関の性能に追付き、追越すことを目的としている。
The purpose of the present invention is to reduce the amount of residual gas that does not rejuvenate by reducing the amount of residual gas by using a high vacuum scavenging method using a depressurization method or other exhaust means, as shown in Japanese Patent Application No. 129964/1985, which was previously proposed. The purpose is to provide a new high vacuum evacuation method and equipment to eliminate the negative effects of residual gas, improve thermal efficiency and charging efficiency, and increase output to catch up with and surpass the performance of 4-stroke engines. It is said that

火花点火式2サイクル機関の機作解説と共に、本発明と
の関連作用の要点を次に詳述する。
The main points of the functions related to the present invention will be explained in detail below along with an explanation of the mechanism of the spark ignition type two-cycle engine.

機関の圧縮行程が進展し、ピストンが上死点に達する直
前、火花点火によって混合気の燃焼が始まるから、シリ
ンダー内は瞬時に燃焼ガス温度が上昇t、テ、 50K
G/CM”以上の高圧高温度の爆発状態となってピスト
ンを押下げ膨張を始める。
As the compression stroke of the engine progresses and just before the piston reaches top dead center, combustion of the air-fuel mixture begins with spark ignition, so the combustion gas temperature inside the cylinder instantly rises to 50K.
It becomes an explosive state with high pressure and temperature exceeding ``G/CM'', pushing down the piston and starting to expand.

膨張する爆発火炎流は、ピストンの下降によって開口し
始める排気ポートから自発噴出してポートに連設されて
いる排気系を下流に逸走し始めるのである。
The expanding explosion flame stream spontaneously ejects from the exhaust port, which begins to open as the piston descends, and begins to escape downstream through the exhaust system connected to the port.

自発噴出直前のシリンダー内部の爆発ガス団塊は、膨張
のため当然に圧力が低下しているが、併し5〜10 K
G/CM”  の高圧、高温度を保持しているから、従
って、噴流するガス団塊は極めて激甚なエネルギーを保
持した状態で排気系を下流に突出逸走すると共に、発生
した圧力波は噴流ガス団塊を突き抜けて、例へば音速に
達し波動して行く。
The pressure of the explosive gas lump inside the cylinder just before spontaneous eruption naturally decreases due to expansion, but the pressure still decreases by 5 to 10 K.
G/CM" maintains a high pressure and high temperature, therefore, the jetting gas lumps escape downstream through the exhaust system while retaining extremely intense energy, and the generated pressure waves For example, it reaches the speed of sound and vibrates.

噴流するガス団塊は、排気パイプ系を良好に逸走する限
りは圧力波と相対関係を保ち、その潜在影響力に関連す
る強い連繋作用をガス団塊に及ぼす。
As long as the jetting gas nodules successfully escape through the exhaust pipe system, they maintain a relative relationship with the pressure waves and exert a strong coupling effect on the gas nodules, which is related to their potential influence.

これ等一連の作動は、噴流ガス団塊が高温高圧、従って
高速度で排気パイプのように直径方向を制限され突進す
る方向を開放した空間を固体ピストン様に逸走している
限り連続している。
These series of operations continue as long as the jet gas lump escapes like a solid piston at high temperature and high pressure, and therefore at high speed, through a space that is restricted in its diametrical direction and open in its forward direction, like an exhaust pipe.

即ち、排気吹き出しが終りシリンダー内圧が大気圧に降
下しても、強い背圧の妨害を受けない間はJl続して排
出ガス団塊が固体ピストン様に排気系を逸走し、後述し
ているような機作によって、シリンダーを含・む空間を
拡大する結果によって、高い負圧上発生しつ\排気系下
流へ突進する。
In other words, even if the cylinder internal pressure drops to atmospheric pressure at the end of exhaust blowing, as long as it is not interfered with by strong back pressure, the exhaust gas lumps will continue to escape from the exhaust system like a solid piston, and as will be described later. As a result of expanding the space containing the cylinder, a high negative pressure is generated and it rushes downstream of the exhaust system.

即ち、噴出ガス流の高温高圧、高速の運動エネルギーに
よって発生する慣性抵抗の作動によって励発する吸引力
を顕現するために、シリンダーを含む排気パイプ下流、
特に調整され且つ拡大させた排気ポートに続く適切な減
圧室構成を具へた空間によって高い負圧を発生する機能
を附与せしめる発惣を本発明の根源としているっ この現象について大切な事は、ポートに触接した排気管
系即ち減圧室構成部に発生する背圧を、給気ポート開ま
での間、極度に抑制し減少させ、若くは遅延させるため
の配慮である。
That is, in order to realize the suction force excited by the actuation of inertial resistance generated by the high temperature, high pressure, and high speed kinetic energy of the ejected gas flow, the exhaust pipe downstream including the cylinder,
What is important about this phenomenon, which is the origin of the present invention, is that the invention is based on the function of generating a high negative pressure by a space equipped with an appropriate vacuum chamber configuration following a specially adjusted and enlarged exhaust port. This is a consideration to extremely suppress and reduce the back pressure generated in the exhaust pipe system, that is, the decompression chamber component that comes into contact with the port, until the air supply port opens, or to delay it.

従って、減圧室構成部の長さ並びに続いて連設される消
音器までの距離の設定は、排出ガスの逸走速度と回転数
に関連する価によって定まるから、実用回転数の決定と
共に可能な限り長く選定する事が必要である。
Therefore, the length of the decompression chamber component and the distance to the subsequent silencer are determined by the escape velocity of the exhaust gas and the value related to the rotational speed, so as well as determining the practical rotational speed, It is necessary to make a long selection.

2サイクル機関の高速化に際して、ボーティング設定の
観念が低速時代の数値に固定化し、排気ポート開から給
気始めまでのクランク角度が、約15度附近に定まって
いた理由は、燃焼終りの排気ガスを給気流で押し出す考
へのもとで、その不完全さに留意且つ着眼できず、従っ
て長い年代に渉ってその見直しがなかったものと推定で
きる。
When the speed of two-stroke engines increased, the concept of boating settings was fixed to the values of the low-speed era, and the crank angle from the opening of the exhaust port to the beginning of air intake was fixed at around 15 degrees.The reason is that the exhaust at the end of combustion It can be assumed that the incompleteness of the concept of pushing out gas by air supply was not taken into consideration and attention was not taken into consideration, and therefore there was no reconsideration for a long time.

吹き抜は制限のためと、高速運転に関連して、背圧発生
を主眼とした排気系を有し、且つこのように狭まいクラ
ンク角度の現用機関の高速時の排気行程では、排気吹き
出しのガス団塊の最後尾がポートを飛び出す瞬間、jj
lち大気圧若しくは、弱い負圧状態のシリンダーに給気
流が圧入される結果となっている。
Due to the restriction on the number of blowholes and related to high-speed operation, the exhaust system has an exhaust system that focuses on generating back pressure, and in the exhaust stroke at high speeds of modern engines with such narrow crank angles, the exhaust blowout is limited. At the moment when the tail end of the gas nodules leaves the port, jj
This results in the supply air being forced into the cylinder at atmospheric pressure or a weak negative pressure.

併しながら、従来はこの状態が頗る良好な排気行程完了
と考へられて来たのである。
However, in the past, this state was considered to be a very good completion of the exhaust stroke.

従来このような排気手段を守る限り、残留ガスの悪影響
から絶対に脱出できず、従って4サイクルS関に逼付く
ことは不可能であろう 給気流が圧入される給気ポート開直前までに減圧して、
例へば0,2〜0.1KG/CM”以下の高真中にする
事を目的とした負圧発生のための減圧行程を、排気吹き
出しと給気始めとの間に介在させる為に排気ポートに触
設して減圧室又は機械ポンプ室等の装置を設けて、所望
の高真空値を得て有害な残留ガスを解消することが本発
明の根源である。
Conventionally, as long as such evacuation methods are followed, it is absolutely impossible to escape from the negative effects of residual gas, and therefore it is impossible to reach the 4-cycle S barrier. do,
For example, in order to perform a decompression stroke to generate negative pressure with the aim of creating a high center pressure of 0.2 to 0.1 KG/CM, the exhaust port is touched to intervene between the exhaust blowout and the beginning of air supply. The origin of the invention is to provide devices such as vacuum chambers or mechanical pump chambers to obtain the desired high vacuum value and eliminate harmful residual gases.

詳述した、排気行程中における橋々の機作によって結論
し得る負圧発生のメカニズムと、本発明に関連する要点
を次に説明する。
The detailed mechanism of negative pressure generation that can be concluded by the bridge mechanism during the exhaust stroke and the main points related to the present invention will be explained below.

負圧発生は、直径方向を制限されている減圧室構成の排
気系を噴流逸走する排気ガス団塊が、保有圧力のエネル
ギーと共に固体ピストン様に機能する結果による気体流
れの機械的作動に従ふ。即ち負圧はシリンダーを含む排
気系空間を拡大しつ\固体ピストン様に突進するガス団
塊の速度による慣性抵抗に関連し、且つその瞬時の空間
容積値に比例した真空値を示すのである。従って瞬間の
突出ガス量及びエネルギーを多量に集結し影響力を強め
る為に、ボートの吹き出し面積を可能な限り拡大して、
吹き出し抵抗を減少させる必要があり、之に続いてはボ
ートを突出して減圧室に達するまでの排出ガス集合通路
並びに減圧室入口を過ぎる間の断面を漸次拡大し曲折部
を避ける等の配慮によって流速妨害を極力防止する事が
大切であるから従って、噴流ガスの圧力低下を最少に押
へる構造装置に含まれる保温断熱手段、着しくけ更に団
塊の圧を高める等の方法、または、機械的手段によって
、発生しつ−ある負圧を更に高真空にする装置を具へる
ことを含む適正容積の減圧構造空間を排気ポートに触設
して排気系を構成する事も、所望の高真空に到達させる
為めの補完手段として有効な方法である。
The negative pressure generation follows the mechanical actuation of the gas flow as a result of the exhaust gas mass escaping the exhaust system of the diametrically restricted vacuum chamber configuration, acting like a solid piston with the energy of the retained pressure. That is, the negative pressure expands the exhaust system space including the cylinder, is related to the inertial resistance due to the speed of the gas lump rushing forward like a solid piston, and exhibits a vacuum value proportional to the instantaneous volume value of the space. Therefore, in order to concentrate a large amount of the instantaneous amount of gas and energy and strengthen its influence, the blowout area of the boat should be expanded as much as possible.
It is necessary to reduce the blowout resistance, and then the flow velocity can be reduced by gradually enlarging the cross section of the exhaust gas collection passage from when the boat protrudes to reach the decompression chamber, as well as the cross section between the entrance of the decompression chamber and avoiding bends. Since it is important to prevent interference as much as possible, methods such as thermal insulation means included in the structural device to minimize the pressure drop of the jet gas, measures to increase the pressure of the nodules in addition to the fitting, or mechanical It is also possible to construct an exhaust system by attaching a decompression structure space of an appropriate volume to the exhaust port, including installing a device to make the negative pressure that is being generated even higher, or to create a desired high vacuum. This is an effective method as a supplementary means to reach this goal.

本提案の着眼点の一つは、排気系を逸走する爆発毎の排
出ガスの先発団塊と後続団塊との中間帯が負圧域である
から、団塊間の距離並びにその占有空間容積の広さによ
って高真空を形成させる事、即ち、ピストンが給気ポー
ト開の直前位置に下降した時までに、排気ポートを突出
して排気系、即ち減EE!空間を拡大しながら噴流する
ガス団塊の最後尾が到達し得た点まで、従って、(逸走
距離×減圧室断面積)が大きい程に真空度が高くなる。
One of the points of focus of this proposal is that the intermediate zone between the leading nodule and the following nodule of exhaust gas from each explosion that escapes the exhaust system is a negative pressure region, so the distance between the nodules and the size of the space occupied by the nodule are important. By the time the piston has descended to the position just before opening the air supply port, the exhaust port is protruded and the exhaust system is closed. The degree of vacuum increases as (escape distance x cross-sectional area of the decompression chamber) increases until the tail end of the gas mass that jets while expanding the space reaches the point.

この事は逸走速度を同一と仮定すれば、高速回転時に低
い真空度を、低速域で高い真空度を示すのであるから高
速域で必要最低の真空度を得るように減圧室断面並びに
長さを設定すれば、原理的には目的達成が可能である。
This means that assuming the escape speed is the same, a low degree of vacuum occurs during high-speed rotation and a high degree of vacuum occurs at low speeds, so the cross-section and length of the decompression chamber should be adjusted to obtain the minimum necessary degree of vacuum at high speeds. If set, it is possible in principle to achieve the purpose.

同様に、排気吹き出しによって大気圧に降下した状態を
排気吹き出し終りと考へ、続く減圧行程の時間延長のた
めに給気ボート開を遅らせる機作設定が、基本的に、ガ
ス団塊の逸走距離を延長する作用を含め高真空の発生を
誘導する手段の要点である。
Similarly, considering that the state where the pressure drops to atmospheric pressure due to the exhaust blowout is considered to be the end of the exhaust blowout, the mechanism setting that delays the opening of the air supply boat to extend the time of the subsequent decompression stroke basically reduces the escape distance of the gas nodules. This is the essence of the means for inducing the generation of high vacuum, including the effect of prolongation.

高真空達成の手段として、シリンダー及び排気系下流を
含む広い容積空間を逸走するガス団塊の噴流エネルギー
を、直接に利用し、大気圧を過ぎ負圧に移行しっ\ある
シリンダー内を廻に、急速且つ効果的に高真空とするた
めに、機械的手段例へば機関のクランク軸に連結し、若
くは排気タービンに接続した機械作用による真空ポンプ
を作動させて所望の高真空に到達させ、完全排気を行う
手法は、自発噴流排気と機械的吸引作用との協同作動に
よる相乗効果も含めて、2サイクル機関の総てに対応で
きる減圧排気法を提供するもので、且つ歩容量のポンプ
室で充分な機能を期待できる。
As a means of achieving high vacuum, the jet energy of the gas lumps escaping through a wide volume space including the cylinder and the downstream of the exhaust system is directly utilized to move around the inside of the cylinder where the pressure has passed past atmospheric pressure and reached negative pressure. In order to quickly and effectively create a high vacuum, mechanical means such as a mechanical vacuum pump connected to the engine crankshaft or, in some cases, an exhaust turbine, are operated to reach the desired high vacuum and complete exhaustion. This method provides a depressurized evacuation method that can be applied to all types of two-cycle engines, including the synergistic effect of the cooperative operation of spontaneous jet evacuation and mechanical suction, and the pump chamber with a stepping capacity is sufficient. You can expect great features.

従って、減圧室の一部をポンプ室とする事によって長さ
短縮ができるから、アフターバーナ及び消音機構を含め
た排気系全体の縮少が可能となる。
Therefore, since the length can be shortened by using a part of the decompression chamber as a pump chamber, the entire exhaust system including the afterburner and the silencing mechanism can be downsized.

この特徴は大型及び超大型機関に適し、且つ二〇機作は
、提案の根源理解に役立つ根拠として充分であろう。
This feature is suitable for large and very large engines, and 20 engines will be sufficient as a basis to help understand the basis of the proposal.

本提案で繰返し高真空と称している真空度は、地上で実
現できる上限値の、例へば1o−6などの超真空の意味
ではなく、前述したように、0.2〜0、I KG/C
M” 程度附近の真空度で充分で0.02〜0.01 
KG/CM”までの必要はないのである。
The degree of vacuum repeatedly referred to as high vacuum in this proposal does not mean the upper limit that can be realized on the ground, for example, an ultra-vacuum of 1o-6, but as mentioned above, the degree of vacuum is 0.2 to 0, I KG/C.
A degree of vacuum around 0.02 to 0.01 is sufficient.
There is no need to go up to "KG/CM".

従って、低速域の小型機関では、減圧室のみで必要な真
空度を得ることが出来る。負荷変動率の激しい機関者く
は超大型機関等の場合には機械式真空ポンプ連設型が、
運転操作等に優れた結果を示す。発明の目的達成の到達
真空度も、前述の実用範囲で良い為に、細流ポンプ若し
くはラヂアルポンプ等の高速遠心式が使用できるから、
排気タービンが適切な機能を発揮する。
Therefore, in a small engine operating in a low speed range, the necessary degree of vacuum can be obtained only with the decompression chamber. For engine operators or very large engines with severe load fluctuations, a mechanical vacuum pump type is recommended.
Shows excellent results in driving operations, etc. Since the degree of vacuum that can be achieved to achieve the purpose of the invention is within the above-mentioned practical range, high-speed centrifugal pumps such as trickle pumps or radial pumps can be used.
The exhaust turbine performs its proper function.

詳述した論旨に基づく第一の発明は、高温度、^圧力の
排気ガス団塊が、密封包囲体内を高速度で、突出、逸走
する固体ピストン様の勤惰性エネルギーが派生する吸引
力に因るポンプ作用の活用であって、排気逸走を根源と
している。
The first invention based on the detailed thesis is based on the suction force derived from inertia energy similar to a solid piston in which a high temperature and pressure exhaust gas mass protrudes and escapes at high speed within a sealed enclosure. It is the utilization of pump action and is based on exhaust escape.

従来、両−を開放した管の中央部に爆発物を装填して着
火した場合、管の開放両端面から噴出する激烈なガス爆
風の突出と共に管内中央部に高い真空を発生する事は、
既に知られている現象であって。プルペラ翼揚力等も、
高速で流動する気体或は液体が物体表面から剥離する現
象に依って真空が創生される事も公知に属している。
Conventionally, when an explosive is loaded in the center of a tube with both ends open and ignited, a high vacuum is generated in the center of the tube along with a violent gas blast ejected from both open ends of the tube.
It's already a known phenomenon. Purpera wing lift, etc.
It is also known that a vacuum is created by the phenomenon in which a gas or liquid flowing at high speed is separated from the surface of an object.

2ストa−クサイクル式内燃機関の回転に際し、燃焼ガ
スの膨張行程が終りに近付き、下降するピストンが排気
ポートを開く時に、ポートから突出する3〜8 KG/
CM”の高圧熱流ガスを、広いポート面積から極短時間
に突出させ断面周囲への膨張減圧を制限する密封包囲体
の長い通路を噴流逸走させ、その方向の突進力を強化し
た高温噴流ガス団塊は、圧その他に従う価の逸走速度で
通路を突進する。
When a two-stroke cycle internal combustion engine rotates, when the expansion stroke of combustion gas approaches the end and the descending piston opens the exhaust port, 3 to 8 kg/kg protrudes from the port.
CM" high-pressure hot gas is ejected from a wide port area in an extremely short period of time, and the jet escapes through a long passage in a sealed envelope that limits expansion and depressurization around the cross section, creating a high-temperature jet gas mass that strengthens the thrusting force in that direction. rushes through the passage with an escape velocity that depends on the pressure, etc.

続く次の爆発までの間、即ち給気ポート開に依って上流
が開放される迄の進行距離が、本発明の根源とする、排
気逸走に依って発生させる高真空の目安である。
The distance traveled until the next explosion, that is, until the upstream side is opened by opening the air supply port, is a measure of the high vacuum generated by exhaust escape, which is the basis of the present invention.

この事は、従って固体ピストン様に突進する勤惰性エネ
ルギーが派生する真空ポンプ機能として理解する事も出
来る筈である。
Therefore, this can also be understood as a vacuum pump function that derives inertia energy that rushes like a solid piston.

大径の通路と、長い距離を、高速且つ団塊状を保ちつ一
突進させる必要性と1、突き抜ける圧力波′瓢、 と、従って発生真空圧の勘定から、真空ポンプ作用を^
好に発揮させる為の減圧室の設計が定まる。
Due to the large diameter passage, the need to rush over a long distance at high speed and in a block-like manner, the pressure wave that penetrates, and the vacuum pressure generated, the vacuum pump action is effective.
The design of the decompression chamber is determined to ensure good performance.

減圧室内の通路を突進する排気逸走によって所望の高真
空排気を達成させる手段は、頗る簡単な装備と、高速作
動の機械部分の省略による耐久性の増強とに依って充分
な効果が期待できると同時に、ガス逸走路の大半をアフ
ターバーン室に併用する特長も附帯効果として優れてい
るから、消音部を含めた設置容積の増加について、実用
上の問題点はない。
The means of achieving the desired high vacuum evacuation by the exhaust escape that rushes through the passage in the decompression chamber is expected to be sufficiently effective due to its extremely simple equipment and increased durability due to the omission of high-speed operating mechanical parts. At the same time, since the advantage of using most of the gas escape path in the afterburn chamber is also excellent as an additional effect, there is no practical problem with increasing the installation volume including the silencing section.

機械的作動部の無い高真空排気方法に依って残留気を排
出消滅することは、従って当然に混合気若しくは新気の
有効気体の充填率を高めて出力が増大する利得と共に、
低速型若しくは定速型機関に適し、特に機関の運転性能
等の各種機能の向E―に貢献する基本の発明である。
Evacuation and disappearance of residual gas using a high vacuum evacuation method without mechanically operating parts naturally has the advantage of increasing the effective gas filling rate of the mixture or fresh air and increasing the output.
This is a basic invention that is suitable for low-speed or constant-speed engines, and particularly contributes to improving various functions such as engine operating performance.

この場合に、上流側を排気ボート若しくは排気吐出室に
、下流側を消音構造等に連接させ、機械的回転部分を具
へない密封包囲体に依って、高真空を創始させる減圧有
効空間域を、減圧室と呼ぶこと。
In this case, the upstream side is connected to an exhaust boat or exhaust discharge chamber, and the downstream side is connected to a sound-deadening structure, etc., and a vacuum effective space area for creating a high vacuum is created by a sealed enclosure that does not include mechanical rotating parts. , called a decompression chamber.

例へば複数の異種機構の機械的作動部を空間を隔て、連
設した場合も、機械ポンプ等の回転構造を含む減圧空域
は、減圧構造室と称して本文を構成し説明している。
For example, even when the mechanical operating parts of a plurality of different types of mechanisms are spaced apart and arranged in series, the reduced-pressure air space that includes the rotating structure such as a mechanical pump is referred to as a reduced-pressure structure chamber and is explained in the text.

次の発明は、減圧室断面を複数に分割する事を特徴とし
、逸走する排出ガス圧が直径方向に膨張減圧する作動を
制限し、直進する固体ピストン様の吸引作用を強化補完
して、真空度を高める方法である。従ってこの手段は後
述しているように、アフターパーカ効率を向上させ、且
つ減圧室の長さ短縮ができる排気手段と其の装置が特長
である。
The next invention is characterized by dividing the cross section of the decompression chamber into a plurality of parts, restricting the expansion and depressurization of the escaping exhaust gas pressure in the diametrical direction, and strengthening and supplementing the suction action of a straight-moving solid piston. It is a way to increase the degree of Therefore, as will be described later, this means is characterized by an exhaust means and its device that can improve the after-parker efficiency and shorten the length of the decompression chamber.

排気吹き出しの高圧熱流ガス団塊を逸走させる大径の減
圧室を小区画に分割し、又は小径パイプの集合体として
、合計断面積を拡大させるとき、ガス団塊と圧力波は直
径方向に拡散できず進行方向のみに突進し、且つ圧力降
下、即ち速度減衰も最少値に押へて、高速逸走の区間を
延長できる。
When a large-diameter decompression chamber that allows the high-pressure heat flow gas nodules to escape from the exhaust outlet is divided into small sections or a collection of small-diameter pipes to increase the total cross-sectional area, the gas nodules and pressure waves cannot diffuse in the diametrical direction. By lunging only in the forward direction and minimizing the pressure drop, that is, the speed attenuation, the high-speed escape section can be extended.

このように、排気系においてポートに触設した減圧室を
小区画分割構成として合計断面積を拡大し且つ排気ボー
ト面積も大巾に拡巾することによって、突出排ガス流は
、管内流れの助走距離を過ぎ速度の定まった域以降では
盤面状に突進する。
In this way, by dividing the decompression chamber attached to the port in the exhaust system into small sections to expand the total cross-sectional area and widening the exhaust boat area, the protruding exhaust gas flow can be controlled over the approach distance of the flow in the pipe. After passing this point and reaching a certain speed, it rushes forward in a board-like manner.

即ち、分割面を突進する各個のガス団塊は、長円筒形で
圧力減衰は最低の形状を保ち、進行方向に対する全体の
厚さが短縮された平盤型固体ピストン様に突出させるこ
とが出来るから、続く突出ガス流との距離即ち負圧空間
を拡巾する結果真空度も高めることになる。更に効果を
強める一つの方法として、保温材で外側を包囲して断熱
構造とすれば、分割部材構成体が、激突する排出ガスの
高熱伝導によって赤熱するから、やがてその区域が拡大
すると共に高温ガスの伝熱による温度低下を減少して、
高速逸走区間を更に延長する効果と、高温度になった分
割構成体に接触する未燃焼ガスに、燃焼器として酸化機
能を与へ清浄化作用を発揮させることが出来る。
In other words, each gas lump that rushes through the dividing surface maintains an elongated cylindrical shape with the lowest pressure attenuation, and can be made to protrude like a flat solid piston with a shortened overall thickness in the direction of travel. As a result of expanding the distance from the subsequent projecting gas flow, that is, the negative pressure space, the degree of vacuum is also increased. One way to further enhance the effect is to surround the outside with heat insulating material to create an insulating structure.The split member structure will become red hot due to the high heat conduction of the colliding exhaust gas, and as the area expands, the high temperature gas By reducing the temperature drop due to heat transfer,
This has the effect of further extending the high-speed escape section, and the unburned gas that comes into contact with the high-temperature divided structure can be given an oxidizing function as a combustor, thereby exerting a cleaning action.

本発明の実施に際して、特願昭52−45833号若し
くは特願昭53−31125号の発明を併用する事によ
り、示唆している遮断帯を構成した圧力空気団塊を二次
空気添加源として働かせ得る、従って結果的に77タ一
バーナ作用も期待できる相乗効果が発生する。
When carrying out the present invention, by using the invention of Japanese Patent Application No. 52-45833 or Japanese Patent Application No. 53-31125, it is possible to make the compressed air mass forming the suggested barrier zone act as a secondary air addition source. Therefore, as a result, a synergistic effect is generated that can be expected to have the effect of the 77-turn burner.

このように、細分割型断面構成によって高圧の逸走距離
を延長して真空度を高め、断熱構造の併用によって排出
ガスの有害成分を消滅させる方法を具へた減圧室は、機
械的な回転部分を有しないから耐久性に優れた有効な方
法で、例へば低速の大型機関、若くは、小型の定速機関
等に採用できる。
In this way, the decompression chamber has a method of increasing the degree of vacuum by extending the escape distance of high pressure by using a subdivided cross-sectional structure, and eliminating harmful components of exhaust gas by using a heat insulating structure. This is an effective method with excellent durability, and can be used, for example, in large, low-speed engines, and in the future, small, constant-speed engines.

回転その他の機械的運動部を有しない減圧手段において
、小区画に分割する構造は、減圧方法として前記相乗効
果を含めて、減圧結果を向上させるには各区画内を逸走
するガス圧部速度は、均等であることが望ましい。
In a decompression means that does not have rotating or other mechanical moving parts, the structure of dividing it into small sections is such that the speed of the gas pressure part escaping within each section is increased to improve the depressurization result, including the synergistic effect described above as a depressurization method. , preferably uniform.

次の発明は、その目的達成の具体的手段の一つとして有
効である。
The following invention is effective as one of the specific means for achieving the objective.

排気ボートと、その面積よりも拡大され且つ小区画に分
割した構造の減圧室を接続するために末広型の継手部分
を設けること、内部に複数の末広型気流ソラセ板を配列
することを特徴とし、通過気流を配分して圧を均等に、
流速及び団塊厚さの平均化を図って減圧効果を良好にし
ようとする方法並に構造を要旨としている。
It is characterized by providing a wide-spread joint part to connect the exhaust boat and a decompression chamber that is larger than the area of the boat and has a structure divided into small sections, and that a plurality of wide-spread air flow plates are arranged inside. , distributes passing airflow to equalize pressure,
The gist of this paper is a method and structure that aim to improve the depressurizing effect by equalizing the flow velocity and nodule thickness.

減圧室の断面が、円または楕円構成のときはメガホン状
に、角または長方型ではその形なりに、若しくは梯形板
を集積して末広型に配列する多数のンラセ板構造によっ
て力等に分配するのであって、要するに突出する高速排
気流の圧が中心部に集中しないように、適切にソラセ板
のト曳構にその分配手段を受持たせること、即ち、各区
画上通過する気流の密度を可及的に均等として、速度若
くは団塊気柱の厚さを平均させ、進行中の変化によって
発生する部分的差異による乱流、部分発熱を最少に押へ
減圧効果即ち真空生成機能を向上し、且つ下流の消音装
置に及ぼす悪影響を防止することを特徴としている。
If the decompression chamber has a circular or elliptical cross-section, it can be distributed like a megaphone, if it is square or rectangular, it can be distributed according to that shape, or by a multiple spiral plate structure in which trapezoidal plates are accumulated and arranged in a wide-spread configuration. In other words, in order to prevent the pressure of the protruding high-speed exhaust flow from concentrating in the center, the distribution means should be appropriately assigned to the towing structure of the solace plate, that is, the density of the air flow passing over each section should be adjusted. As much as possible, the speed and the thickness of the nodule air column are averaged, and turbulence and heat generation due to local differences caused by ongoing changes are minimized, thereby improving the decompression effect, that is, the vacuum generation function. Moreover, it is characterized in that it prevents an adverse effect on downstream silencing devices.

このように、突出流の高速動慣性の減衰を最少にし、圧
力波とガス団塊の相関性、を維持するために減圧室を細
分区割パイプ型とし、末広型継手とする手段に続いて、
区画向流れを均分化する手段の一つは、小区画減圧室を
複数に切断分離し、接続部に設けた空間を均圧室とする
方法である。
In this way, in order to minimize the attenuation of the high-speed dynamic inertia of the projecting flow and maintain the correlation between pressure waves and gas lumps, following the measures of making the decompression chamber into a subdivided pipe type and using a wide-spread joint,
One of the means for equalizing the flow in the compartment direction is to cut and separate the small compartment decompression chamber into a plurality of parts, and use the space provided at the connection part as the pressure equalization chamber.

このように複数に連設した減圧室の場合に、内蔵した区
画の断面積を大少とし、または対応する区画を径違い配
列に構成する事ができる。
In the case of a plurality of decompression chambers arranged in series in this way, the cross-sectional area of the built-in compartments can be made larger or smaller, or the corresponding compartments can be arranged in a different diameter arrangement.

均圧室で連結する減圧室の一つに内蔵する集合管小区画
の長さを短縮してその複数を連結すること、その連結に
際して、前記の如く径違いまたは位置ずらせに固定する
事も有利な手段の一つである。
It is also advantageous to shorten the length of the collecting pipe small sections built in one of the decompression chambers connected by the pressure equalization chamber and connect a plurality of them, and to fix them at different diameters or at different positions as described above. This is one of the methods.

複数の均圧室を設けた排気系構成において、各室から導
圧管によって直接に、或はまた間接に均圧室を通過する
排気噴流によって発生する高い圧力と低い圧を排気吐出
基若くは指令様作動装置に連動適応させ、そのガス圧力
を排気ポート開俵の各種の指令機に作用させる効果とし
て、例へば排気吐出室に吹き抜は遮断帯生成のため直接
に弁開閉の動力源とし若くは間接法としてセンサー或い
はスイッチ類の起動源に利用できる。
In an exhaust system configuration with multiple pressure equalization chambers, the high and low pressures generated by the exhaust jets passing through the pressure equalization chambers directly or indirectly from each chamber are controlled by the exhaust discharge base or command. For example, the blowhole in the exhaust discharge chamber can be used as the power source for opening and closing the valve directly to generate a cutoff zone. As an indirect method, it can be used as a starting source for sensors or switches.

複数の指令による和と差及びその積による微細な制御が
可能で、従って単独の均圧室の場合でも適当機種に採用
できる。
Fine control is possible using the sum, difference, and product of multiple commands, so even in the case of a single pressure equalization chamber, it can be adopted in an appropriate model.

更に、具体的に換言すれば、排気ポートを通過した排気
圧が、均圧室に到達する時間は、均圧室の距離と減圧室
長さに関連して定まる回転数を含めた遅れの間隔である
から、適位置にピストン弁を設け、到達した圧によって
弁作動の手段とし、排気逸走によって真空となった吐出
室に、大気圧の外気を直接に導入噴出させて、吹き抜は
遮断帯域を生成させる直動方式、またはこの手段と併せ
て、電気信号に置換へ圧力センサーを利用する間接式に
も変化させ得るから、大気圧の自然利用と共に、別途に
設けた圧力空気源の増巾制御による過給手段の指令装置
とする事も出来る点に特徴がある。
Furthermore, in other words, the time for the exhaust pressure that has passed through the exhaust port to reach the pressure equalization chamber is determined by the delay interval including the rotation speed determined in relation to the distance of the pressure equalization chamber and the length of the decompression chamber. Therefore, a piston valve is installed at an appropriate position, and the reached pressure is used as a means of operating the valve, and outside air at atmospheric pressure is directly introduced into the discharge chamber, which has become a vacuum due to exhaust escape, and is blown out. It can be changed to a direct-acting method that generates the air, or an indirect method that uses a pressure sensor to replace the electric signal with this method, so that it can naturally utilize atmospheric pressure and control the amplification of a separately provided pressurized air source. The feature is that it can also be used as a command device for supercharging means.

続〈発明は、減圧室に排気タービン構造を連設する事に
よって達成され、負荷変動率の激しい、又は大型機関に
も適切な方法である。
The present invention is achieved by connecting an exhaust turbine structure to a decompression chamber, and is a method suitable even for large-scale engines with severe load fluctuations.

即ち、排気吹き出しエネルギーをタービン真の駆動力と
して、その勤惰性を蓄積しり一回転させる事によって、
直結した真空ポンプの高真空をタンクに蓄積し若くは連
通機構によって、排気吹き出し終りに連動させ動弁構成
等によってシリンダー内の残留気体を吸引排出させる手
段とし真空排気を達成する方法を軸としている。
In other words, by using the exhaust air blowing energy as the true driving force of the turbine and accumulating its inertia to make one rotation,
The main method is to accumulate the high vacuum of a directly connected vacuum pump in a tank, and use a communication mechanism to synchronize it with the end of exhaust blowing, and use a valve mechanism to suction and exhaust the residual gas in the cylinder to achieve vacuum evacuation. .

従って、シリンダー内圧が大気圧に降、下する以前から
気体吸引を開始する事も出来るから、気体吸引と、吹き
出し排気流との併列運転が出来るためその効率上昇の結
果が、給気始めまでのクランク角度を狭くする設定がで
き、従って視点を逆にすれば、排気ポート開きを遅らせ
て爆発膨張エネルギーを充分に利用できる利得が生じる
Therefore, gas suction can be started even before the cylinder internal pressure drops to atmospheric pressure, so gas suction and blown exhaust flow can be operated in parallel, resulting in increased efficiency until the start of air supply. By setting the crank angle to be narrower and therefore reversing the perspective, there is a gain in delaying the opening of the exhaust port and making full use of the explosion expansion energy.

排気始めを遅らせ、更に給気始めまでのクランク角を拡
巾した場合では、排気吹き出しの逸走団塊が適当な負圧
を発生するから真空ポンプの働きも僅かで済む事となり
、この場合には更に圧縮ポンプを連結して、特願昭52
−45833号による遮断気体生成のための高圧気体源
とする事もできる。
If the start of exhaust air is delayed and the crank angle to the start of air intake is widened, the escape lump of the exhaust air outlet will generate an appropriate negative pressure, so the vacuum pump will only have to work a little. Connecting a compression pump, patent application 1972
It can also be used as a high-pressure gas source for the generation of barrier gas according to No. 45833.

排気タービン等の駆動体と真空吸引構造部とを排気ポー
トに連設する場合は、併列運転による排気真空作動の連
携効果により、減圧室の長さを極度に短縮できるから、
特段の機種では減圧室はアフターバーナとしての利用が
優先する。
When a driving body such as an exhaust turbine and a vacuum suction structure are connected to the exhaust port, the length of the decompression chamber can be extremely shortened due to the cooperative effect of the exhaust vacuum operation through parallel operation.
For special models, priority is given to using the decompression chamber as an afterburner.

本発明の実施に関する具体的な真空排気を行ぶたぬの減
圧用附属装置は、通常の軸流ポンプ若くはラヂアルポン
プ等、高速遠心式排気タービンを含む回転ポンプの学問
的技術的範囲によって構成される。従って詳述してない
場合も常識的なこれらの取扱いを含み、例へば、1対の
静翼、動翼の組合せ、又は多段式等の説明も省略してい
る。
The auxiliary device for reducing the pressure of the vacuum evacuation device related to the implementation of the present invention is constituted by the technical range of rotary pumps including a high-speed centrifugal exhaust turbine, such as ordinary axial flow pumps or radial pumps. . Therefore, even if not explained in detail, common sense handling is included, and for example, explanations of a pair of stationary blades, a combination of rotor blades, a multi-stage type, etc. are also omitted.

再び発明の詳細な説明する。The invention will be explained in detail again.

排気ポートに連設した遠心式若くは軸流式夕〜ビンの回
転するインペラー若しくはタービンブレ−ドを突き抜け
て噴流するガス団塊と圧力波によって、更に高速化し且
つその勤惰性を蓄積しつ\回転を続けるそのエネルギー
は、排気吹き出し終りと共に、例へばタービン翼揚力は
吸引作用に変換する、従ってこれは真空ポンプ機能を発
揮する結果を招来して、負圧状態の排出残り残留ガスを
強力に吸引排出してシリンダー内を所望の高真空に到達
させることが出来る。
The gas mass and pressure waves that jet through the rotating impeller or turbine blade of the centrifugal or axial flow turbine connected to the exhaust port further increase the speed and accumulate the force of the rotation. At the end of the exhaust blowout, for example, the lift force of the turbine blades is converted into suction action, which results in the vacuum pump function, and the remaining gas is strongly suctioned and discharged under negative pressure. The desired high vacuum can be achieved inside the cylinder.

この手段は、排気吹き出し終り後の一定時間を高真空生
成のために資すことが必須要件となる。
It is essential that this means contributes to the generation of a high vacuum for a certain period of time after the end of exhaust blowing.

排気ボート開から吹き出し終りまでのクランク角度は、
機関性格によって相違し回転数によっても同一ではない
。通常の低速又は定速型、若くは大型機関の場合では、
排気ポート開俵10度前後の経過で排気吹き出しが終了
して、大気圧附近までシリンダー内圧が低下する。併し
、その進行経過バインベラ−若しくはタービンブレード
に関連する効率、性能による変化の価は少さく、主たる
要因は、排気吹き出しのガス圧が高い程早く終るから、
従って、排気ポート開きの角度に大きく支配−各一れる
The crank angle from the opening of the exhaust boat to the end of the exhaust is
It differs depending on the engine characteristics and is not the same depending on the rotation speed. In the case of ordinary low-speed or constant-speed engines, young or large engines,
Exhaust blowing ends when the exhaust port opens approximately 10 degrees, and the cylinder internal pressure decreases to near atmospheric pressure. However, the change in efficiency and performance related to the progress of the process is small, and the main factor is that the higher the gas pressure of the exhaust blowout, the sooner it ends.
Therefore, the opening angle of the exhaust port is greatly influenced.

本発明方式では、排気ポート開き後、最少の場合でも2
0度を経過した後に給気ボートが開く設定の必要最低条
件が定まる。
In the method of the present invention, after opening the exhaust port, at least 2
The minimum necessary conditions for setting the air supply boat to open after passing 0 degrees are determined.

この角度並びに真空吸引作用力等に関連し、給気ボルト
開までの可及的短時間に高真空排気上完了する為の実施
上の要点は、インペラー又はブレードの形状真空の研究
にある。
In relation to this angle and the vacuum suction force, etc., the key to achieving high vacuum evacuation in as short a time as possible before opening the supply bolt is to study the vacuum shape of the impeller or blade.

駆動力発生のため並びにポンプ吸引力発生のための機能
的要点の適切な実験と研究によってこれ等を決定し、よ
り良好な結果を得る可能性を探究しなければならない。
These must be determined by appropriate experiments and studies of the functional points for the generation of the driving force as well as for the generation of the pump suction force, and the possibility of obtaining better results must be explored.

排気吹き出しと高真空排気と、混合気若しくは新気の給
入が、サイクル中に交互且つ正確に例へば脈動的適期で
繰返されるとき、上死点を境界とする180度は、排気
に直接の係はりのない運動であって、超大型機関等で、
排気タービン軸をクランク軸に連結し、変動負荷に即応
してタービン並びにクランク軸駆動力の請払いをさせる
コンパウンド方式の機関では低速時にもタービンの回転
を低下させないで済む。このように充分な真空容量を有
する設計では、別途に設けたタンク等に連続して真空力
を貯溜し、回転弁等の操作によって減圧排気を達成する
手段も有効である。
When exhaust blowing, high vacuum evacuation, and supply of mixture or fresh air are repeated alternately and precisely, for example at pulsating timing, during the cycle, the 180 degrees with the top dead center as the boundary are directly related to the exhaust. It is a movement without a beam, and it is a super large engine, etc.
In a compound type engine, in which the exhaust turbine shaft is connected to the crankshaft and the turbine and crankshaft driving force are transferred in response to fluctuating loads, the rotation of the turbine does not decrease even at low speeds. In such a design having sufficient vacuum capacity, it is also effective to continuously store vacuum power in a separately provided tank or the like and achieve reduced pressure exhaust by operating a rotary valve or the like.

次に、吹き抜は防止または過給に関連し、排気タービン
に圧縮ポンプを連結した発明を詳述する。
Next, an invention relating to the prevention or supercharging of air vents, in which a compression pump is connected to the exhaust turbine, will be detailed.

高真空を達成するには真型等の研究も重要であるが、高
速回転並びに吸引時間延長によっても目的達成ができる
In order to achieve high vacuum, it is important to research true molds, etc., but the goal can also be achieved by high-speed rotation and extending the suction time.

排気吹き出しによる加速期間は約5〜15度前後で、突
出噴流するガス圧が高い程高速回転となり、より狭い角
度で終り、続いて始まる減圧行程は、クランク角約15
〜60度前後の範囲が排気減圧時間であるう 前述のように、タンクに真空力を貯溜しない期間は、排
気タービンは空転し、仕事をしないから慣性による回転
域である。
The acceleration period due to the exhaust blowout is around 5 to 15 degrees, and the higher the gas pressure of the protruding jet, the faster the rotation will be, and it will end at a narrower angle, and the subsequent decompression stroke will start at a crank angle of about 15 degrees.
The range of about 60 degrees is the exhaust depressurization time.As mentioned above, during the period when no vacuum force is stored in the tank, the exhaust turbine idles and does no work, so it is a rotation range due to inertia.

従ってこの場合に、回転するタービンの加速エネルギー
に余裕があれば、若くは充分に余裕を保たせて圧縮ポン
プを連結することによって過給源とすることが出来る。
Therefore, in this case, if there is a margin in the acceleration energy of the rotating turbine, it can be used as a supercharging source by connecting a compression pump with a sufficient margin.

従って、高真空排気と過給とによって格段に充填率を向
上させること、及び特願昭52−45833号若くは持
着昭−31125号に於いて提案している遮断帯生成の
ための圧力空気源として併用し得る附帯効果も含めて、
現用の4サイクルタ一ボ過給機関以上の出力増加、省燃
費等並びに排ガス清滲化を含めた利得を期待できる機械
的体系を真へた内燃機関の製作が可能となろう本発明機
関に装備する排気管制弁の機械的構造部は、閉止作用時
の空気圧が2 KG/CM”以下であり低圧の弁構造で
充分で従って特殊高圧用を除けば、ディスク弁が適して
いる。
Therefore, it is necessary to significantly improve the filling rate by high vacuum evacuation and supercharging, and to use pressurized air for creating a barrier band as proposed in Japanese Patent Application No. 52-45833 or Sho-31125. Including incidental effects that can be used together as a source,
The engine of the present invention will be equipped with a mechanical system that can be expected to provide benefits such as increased output, fuel efficiency, and purification of exhaust gas over current 4-cycle turbocharged engines, making it possible to produce a truly advanced internal combustion engine. As for the mechanical structure of the exhaust control valve, the air pressure during the closing action is 2 KG/CM" or less, so a low-pressure valve structure is sufficient. Therefore, except for special high-pressure applications, a disc valve is suitable.

然し乍から、高速の断続作用と、高温度の排気構造部分
に連設する必然性等の制約のために、低い摩擦係数の材
料、例えば炭素系の基材に銅繊維等を混和成型したディ
スク体であっても尚特段の潤滑手段を必要とする。
However, due to constraints such as high-speed intermittent action and the necessity of being connected to a high-temperature exhaust structure, the disk body is made of a material with a low friction coefficient, such as a carbon-based base material mixed with copper fiber, etc. Even so, special lubrication means are required.

即ち、2サイクル機関ボート附近は排気ガス中に含まれ
ている潤滑油成分も通過し、耐着した飛沫量のみでも充
分な場合が多く、従って簡単な給油でもよいと考えられ
る。
That is, the lubricating oil component contained in the exhaust gas also passes through the vicinity of the two-stroke engine boat, and the amount of droplets that are retained is often sufficient, so it is considered that simple refueling is sufficient.

併し乍から、大型機関、高速機関等では伝導熱の為めに
ディスク体が高温となり、析出したタール分或は潤滑油
に含まれる金属残渣等の細粒が、排気流に乗って通過す
る際に、漸次、ディスク体に耐着しやがて焼付を生じる
等の事故が発生する。
However, in large engines, high-speed engines, etc., the disk body becomes hot due to conduction heat, and fine particles such as precipitated tar or metal residues contained in lubricating oil pass along with the exhaust flow. At this time, accidents such as sticking to the disk body and seizure eventually occur.

尚、本発明は、サイクル中に減圧真空行程を介在させる
本質的機作のために、その真空蒸発作用に従って、滑油
分等の液体は毎サイクル消滅しこの点は良好な作用の附
加が期待できるが機橋に依り不充分な冷却作用が欠陥故
障を誘発する虞れがある。
In addition, in the present invention, due to the essential mechanism of intervening a decompression vacuum stroke during the cycle, liquids such as lubricating oil disappear every cycle according to the vacuum evaporation effect, and this point can be expected to have a good additional effect. However, depending on the bridge, there is a risk that the insufficient cooling effect may induce defective failures.

詳述すれば、ディスク弁の場合では高温の排気流はポー
トから突出する時にはゲート孔を通過するのみでディス
ク体は覆はれている為に、きのこ弁のように弁体周囲を
直接に加熱しない。
Specifically, in the case of a disk valve, when the high-temperature exhaust flow protrudes from the port, it only passes through the gate hole and the disk body is covered, so it directly heats the area around the valve body like a mushroom valve. do not.

薄型のディスク弁であるから白熱気流の接触加熱または
輻射熱に曝露される面は僅であって、覆蓋等の接続部か
らの伝導熱のみ考慮すればよい。
Since it is a thin disk valve, the surface exposed to contact heating or radiant heat of the incandescent air stream is small, and only the conductive heat from the connection parts such as the cover needs to be considered.

排気吐出室が高真空に達する瞬間期を境界に、機関回転
に同期させて、圧力気流を弁構成の接触面隙間に圧入さ
せること、続いて再び真空掃気が始まるまでの約300
度のクランク角の経過中も圧送を続けて、伝導熱の遮断
と冷却を含む潤滑法とする本発明の場合、圧力気流量は
多い程結果は良い。
At the moment when the exhaust discharge chamber reaches a high vacuum, pressurized airflow is forced into the contact surface gap of the valve structure in synchronization with engine rotation, and then about 300 minutes until vacuum scavenging starts again.
In the case of the present invention, which uses a lubrication method that includes cooling and cutting off conductive heat by continuing pressure feeding even during the elapse of a crank angle of degrees, the higher the flow rate of pressurized air, the better the results.

流れ去る量は排気系を通る二次空気として有効に作用す
ると同時に、圧力空気は弁の断続作用を補助するシール
材の効果と共に排気ボート以下のゲート孔附近を内部か
ら冷却し、且つ燃焼時の生成異物、例えば前記タール残
渣等を吹き飛ばす作用等の特徴を含め優れた潤滑方法で
ある。
The amount that flows away acts effectively as secondary air passing through the exhaust system, and at the same time, the pressurized air has the effect of a sealing material that assists the intermittent action of the valve, and cools the area below the exhaust boat near the gate hole from within, and also cools the area during combustion. This is an excellent lubrication method that has features such as the ability to blow away generated foreign matter, such as the tar residue mentioned above.

前述の如く、充填効率を支配する根源が給気始まりにお
ける隙間容積の比較にあってその中に含まれている残留
気体量の差が本発明誕生の原点の一つであるから、即ち
、4サイクル機関と2サイクル機関とを比較したとき、
給気始まり時のシリンダー容積値が格段に相違する。
As mentioned above, the basis for controlling the filling efficiency is the comparison of the gap volume at the beginning of air supply, and the difference in the amount of residual gas contained therein is one of the origins of the present invention. When comparing cycle engines and 2-cycle engines,
The cylinder volume value at the start of air supply is significantly different.

前者は、最少すきま容積の上死点直後から始まり、ピス
トンの下降に従って発生する真空吸引力に依って、吸入
弁を経て気体が吸入される仕組である。
The former is a mechanism in which gas is sucked in through a suction valve by the vacuum suction force generated as the piston descends, starting immediately after the top dead center of the minimum clearance volume.

従って、火花点火式ガソリン吸入機関では、気化器絞り
弁すきまを通る、ペンチエリ−に依って加速された空気
流に乗って、微粒化した燃料が混合気としてシリンダー
に突入する。
Therefore, in a spark ignition type gasoline intake engine, atomized fuel rushes into the cylinder as an air-fuel mixture, riding on the air flow accelerated by the pentieri that passes through the carburetor throttle valve gap.

即ち、この間の機械作用は拡大するシリンダー容積に応
じて進行するクランク1回転の間における継続作用であ
る、従って、その行程は回転角に関して変化させる事が
できない、4サイクル機関における吸気行程は、このよ
うな負圧利用の限りでは、高速回転時の充填率強化を含
めターボ過給を行う場合でも、吸気時間短縮が出来ず、
従って約2回転と定まるのである。
That is, the mechanical action during this period is a continuous action during one crank revolution that progresses according to the expanding cylinder volume. Therefore, the stroke cannot be changed with respect to the rotation angle. As far as negative pressure is used, even if turbocharging is performed, including strengthening the filling rate during high-speed rotation, it is not possible to shorten the intake time.
Therefore, it is determined to be about 2 rotations.

後者は、行程容積の8〇−附近、即ち最大値に近くまで
シリンダー空間が拡大した時から給気を始める絶対条件
に支配される。解決方法は給気圧を高める加圧手段に依
ってシリンダー内圧に差を付ける方法であるから差圧に
よって時間充填量が定まり、内圧が低く給気が高圧なら
、狭いクランク角の範囲で、即ち瞬間的な時間経過で充
分に給気を完了できる。
The latter is governed by the absolute condition of starting air supply when the cylinder space has expanded to around 80° of the stroke volume, that is, close to the maximum value. The solution is to create a difference in the cylinder internal pressure using a pressurizing means that increases the supply pressure, so the time filling amount is determined by the differential pressure. Air supply can be completed within a certain amount of time.

本発明の基本的手段として提示している排気吹き出しと
、給気始まりとの間のクランク角を拡巾する手法が、負
圧発生の時間帯を引伸ばす結果を生じるが、併し、その
為に充分に高真空が発生する。
The method of widening the crank angle between the exhaust air blowout and the start of air supply, which is proposed as a basic means of the present invention, results in the lengthening of the time period in which negative pressure is generated. A sufficiently high vacuum is generated.

従って、その高い真空圧が給気圧に加算される結果、合
計の差圧を高めると共に、有害な残留気体を激減させる
相乗効果の利得が、瞬間給気の完成に頗る有効に貢献す
る機作となる。
Therefore, as a result of the high vacuum pressure being added to the supply pressure, the synergistic gain of increasing the total differential pressure and drastically reducing harmful residual gas is a mechanism that contributes most effectively to the completion of instantaneous air supply. Become.

これ等の特長は、圧縮ポンプに依って空気を供給する圧
縮点火機関等の燃料噴射方式に際しても有効に発揮され
る。
These features are also effectively exhibited in fuel injection systems such as compression ignition engines that supply air using a compression pump.

更にクランク室予圧による気体給入に際し1も過給ポン
プ加圧等に関しても、瞬間的給気の達成が可能である。
Furthermore, when supplying gas by prepressuring the crank chamber, it is possible to achieve instantaneous supply of air either by pressurizing the supercharging pump or the like.

繰返し詳述しているように、本発明の根源は、自発的機
作によって発生させた高真空状態、即ち有害残留気体を
超微量に排出した後に、大気圧或は更に加圧した新気、
若しくは混合気を突入させる思想である。
As has been repeatedly explained in detail, the origin of the present invention lies in the high vacuum state generated by a spontaneous mechanism, that is, after exhausting ultra-trace amounts of harmful residual gases, atmospheric pressure or even more pressurized fresh air,
Alternatively, the idea is to rush the mixture.

旧来説の掃気法に依れば、給気流によって排ガスを追い
出し若しくは押し出し、更に掃除のために新気の一部を
吹き抜けさせる。との定説である。
According to the conventional scavenging method, exhaust gas is expelled or pushed out by a supply air flow, and a portion of fresh air is also blown through for cleaning. This is the established theory.

従って、ガス分析方法、或はトレイサーガスを用いる方
法等に依る充填効率若しくは掃気効率の測定を考えてい
る挑段階の給排気理論に基づく観念では、混合掃気から
の脱却は不可能である。
Therefore, it is impossible to break away from mixed scavenging with the concept based on the supply/exhaust theory of the challenge stage, which considers measurement of filling efficiency or scavenging efficiency by gas analysis methods or methods using tracer gas.

従って、この理論段階では、2サイクル機関の進歩は望
み得ないし不可能事である。
Therefore, at this theoretical stage, progress in two-stroke engines is undesirable and impossible.

本発明は、排気吹き出し終りによって大気圧に降下した
シリンダー内圧を更に低下させる減圧行程の効果の拡大
を基本理念とし、排気系に依る。
The basic idea of the present invention is to expand the effect of the depressurization stroke that further lowers the cylinder internal pressure, which has dropped to atmospheric pressure at the end of exhaust blowing, and relies on the exhaust system.

排気ガス団塊に潜在している。排気エネルギーの吸引排
出力の強化のために、真空ポンプ機能の開発と装置の新
設を特徴とし、従来の掃気理論に立脚しない、瞬間給気
に依る、完全層状給気方法を完成した吸給気の発明であ
る。
It is hidden in exhaust gas nodules. In order to strengthen the suction and discharge power of exhaust energy, this air intake system features the development of a vacuum pump function and the installation of new equipment, and has completed a completely stratified air supply method that relies on instantaneous air supply and is not based on conventional scavenging theory. It is an invention of

低中速回転域で使用される定速型機関の場合、ポンプ装
置によって有圧の気体を押し込む、2サイクル機関の必
然性は消滅し、シリンダーの真空圧に吸引される気体流
に依って給気が完了するから、従って例えば給気側は大
気に開口しているだけでも良い。
In the case of constant-speed engines used in the low- to medium-speed rotation range, the necessity of pushing pressurized gas through a pump device, which is the case with two-cycle engines, disappears, and air is supplied by the gas flow sucked into the vacuum pressure of the cylinder. is completed, therefore, for example, the air supply side may simply be open to the atmosphere.

即ち、圧縮点火機関等におiる給気(掃気)ポンプの吐
出圧は、大気圧相当分の省略が可能でありその為めの駆
動力分の利得が大きく、高圧過給の場合を除き、通常低
圧型の遠心式若しくは軸流式ファンでも過給効果を得ら
れる特徴がある。
In other words, the discharge pressure of the supply air (scavenge air) pump in a compression ignition engine, etc. can be omitted by the equivalent of atmospheric pressure, and therefore the gain for the driving force is large, except in the case of high-pressure supercharging. , it has the characteristic that supercharging effects can be obtained even with normally low-pressure centrifugal or axial fans.

更に、減圧行程の効果は、クランク室予圧式ガソリン機
関の場合、更に新しい利得が生じる。
Furthermore, the effect of the depressurization stroke yields even newer gains in the case of a gasoline engine with crankcase preload.

給気ポート開によってシリンダーに突入する混合気圧は
、負圧加算の高圧気体と見做す事が出来る。即ち、給気
ポートからシリンダーへの突入圧を増した場合と同様に
給気能力が強化される結果充填効率が上昇し、従って、
過給手段と同様に充填混合気量が増加し出力が大巾に向
上する。
The mixture pressure that rushes into the cylinder when the air supply port is opened can be regarded as high-pressure gas with added negative pressure. In other words, the air supply capacity is strengthened in the same way as when the rush pressure from the air supply port to the cylinder is increased, resulting in an increase in charging efficiency, and therefore,
Similar to the supercharging means, the amount of charged air-fuel mixture increases and the output is greatly improved.

また、後述のように、クランク室の吸入気を空気に置き
変え、排気吐出室に給送することに依って、吸入混合気
の吹き抜は防止と過給と、更に成層状希薄燃焼手段にま
で発展させる事ができる。
In addition, as will be described later, by replacing the intake air in the crank chamber with air and feeding it to the exhaust discharge chamber, blowing of the intake air-fuel mixture can be prevented and supercharging, and furthermore, stratified lean combustion means can be used. It can be developed to.

2サイクル機関に、管制弁を使用し充填率を向上させる
方法の開発は、古くから実用されているが、減圧行程を
含まなかった為に、改善範囲が僅かであった。
The development of a method to improve the filling rate using a control valve in a two-stroke engine has been in practice for a long time, but since it did not include a pressure reduction stroke, the scope of improvement was small.

併しながら、大型ディーゼル機関等では、全体的な利得
の量が増大する為に、金属回転部の析出タール分等に依
る故障等を克服しり\実用されている。
However, in large diesel engines and the like, since the overall amount of gain increases, it is put into practical use to overcome failures caused by deposited tar on metal rotating parts.

5社が開発した掃気口管制弁は、更に進歩して排気口管
制弁に発展し、M社も同様な経過に依って、掃気孔閉止
に続く後過給と圧縮行程始りの仕組による非対称式排気
孔管制弁を完成し、現在、超大型ディーゼル機関、例え
ば5万馬力以上の大型機関を具えた船舶が就航している
The scavenging port control valves developed by five companies were further advanced and developed into exhaust port control valves, and company M followed the same process to prevent asymmetry due to the mechanism of post-supercharging and the start of the compression stroke following the closing of the scavenging holes. A type of exhaust port control valve has been completed, and ships equipped with ultra-large diesel engines, such as engines with over 50,000 horsepower, are now in service.

併しながら、排掃気行程理論の解明進歩が不充分で錯誤
が生じていたため、高真空排気の着想がなく、従って、
多量な残留気体の為に、高い掃気ポンプ圧であっても充
填効率の低下を補正できず過給についても、有効圧縮開
始点に関しても、今−歩の進歩に余地が残され、その解
決は、格段の利得が期待できる。
However, due to insufficient progress in elucidating the exhaust stroke theory and errors occurring, there was no idea for high vacuum exhaust, and therefore,
Due to the large amount of residual gas, even high scavenging pump pressure cannot compensate for the decrease in charging efficiency, leaving room for progress in terms of supercharging and effective compression starting point, and a solution to this problem remains. , significant profits can be expected.

本発明の根源は、高真空掃気法である。The origin of the present invention is the high vacuum scavenging method.

排気、吸気ボート間のクランク角を拡巾して、その経過
時間帯における排気逸走の関連に依って派生する、0.
1〜0.2 KG/CM”の高真空に依ってシリンダー
残留気を排出し1、給気ボート開と同時に給気流がシリ
ンダーに突入する自発型の瞬間給気を成立させるのであ
る。
By widening the crank angle between the exhaust and intake boats, 0.
Residual air in the cylinder is discharged using a high vacuum of 1 to 0.2 KG/CM, and a spontaneous instant air supply is established in which the supply air rushes into the cylinder at the same time as the supply boat is opened.

従来の2サイクル機関は、排気吹き出しを終って給気(
掃気)始めの時のシリンダー圧を大気圧附近と考え、ポ
ンプの高い掃気圧に依って残留気体を押し出す思想が定
説で、例えば、ルーツブルアおよび排気ターボ過給機付
の高速機関が製作されている。
In a conventional two-stroke engine, the supply air (
Scavenging) It is a well-established theory that the initial cylinder pressure is near atmospheric pressure and that the high scavenging pressure of the pump is used to push out the residual gas.For example, high-speed engines with roots blowers and exhaust turbo superchargers are manufactured. .

高真空掃気法は、基本的には有圧掃気ポンプの一路がで
きるから、従って、起動待以外は、排気ターボ単独で充
分な充填と過給が出来る。即ち、排気吐出室に空気に依
る吹き抜は遮断帯0時る管制弁を構成させる手段のみの
場合、及び更に吐出室壁にディスク弁を併設する場合、
並びに減圧室に大気を導入しアフターバーンの為の二次
空気源とすると共に、上流シリンダーへの真空影響力を
相殺する手法等の選択に依って、回転作動の経過が違う
のであるが、前記の掃気ポンプ省略の場合の基本的共通
項は次の如くである。
The high-vacuum scavenging method basically allows a single path of a pressurized scavenging pump, so sufficient filling and supercharging can be achieved with the exhaust turbo alone, except when waiting for startup. That is, in the case where the blow-through by air in the exhaust discharge chamber is only a means of constructing a control valve with a cutoff zone of 0, and in the case where a disk valve is additionally installed on the wall of the discharge chamber,
In addition, the course of the rotational operation differs depending on the selection of methods such as introducing atmospheric air into the decompression chamber and using it as a secondary air source for afterburn, and canceling the vacuum influence on the upstream cylinder. The basic common features when the scavenging pump is omitted are as follows.

下降するピストンの上端が排気ポートを開き始めて、排
気吹き出しが開始され、やがて終りに近付く時シリンダ
ー内は大気圧を過ぎ負圧が始まる。
The upper end of the descending piston begins to open the exhaust port, and exhaust gas begins to blow out.As the cylinder nears its end, the pressure inside the cylinder exceeds atmospheric pressure and negative pressure begins.

減圧作用が働き行程の進行と共にシリンダー内が所望の
高真空に到達する下死点前20度乃至60度附近を下降
するピストンが吸気ボートを開く、従ってシリンダー内
に発生している負圧高真空は、排気系減圧室の高真空に
連通し、吸気ボートから突入する吸入気体はシリンダー
を充満し更に排気ポートを経て排気吐出室の連通孔から
減圧室に突出すべく進行を始めている。
The decompression effect works and as the stroke progresses, the cylinder reaches the desired high vacuum.The piston descends around 20 to 60 degrees before bottom dead center and opens the intake boat, thus creating a negative pressure and high vacuum inside the cylinder. is in communication with the high vacuum of the exhaust system decompression chamber, and the intake gas rushing in from the intake boat fills the cylinder and begins to advance to the decompression chamber through the communication hole of the exhaust discharge chamber via the exhaust port.

−従ってこの時、排気吐出室に有圧空気を突入させて吹
き抜は遮断帯を生成させ、又は吐出室壁に設けたディス
ク弁に依って減圧室への突出連通を遮断し、若しくは双
方を併用する事に依って過給手段とする事ができる。
- Therefore, at this time, pressurized air is forced into the exhaust discharge chamber to create a cutoff zone in the atrium, or the protruding communication to the decompression chamber is blocked by a disc valve installed on the wall of the discharge chamber, or both are blocked. By using them together, it can be used as a supercharging means.

高真空に吸引されて突入し充満しつ\ある吸入気は、そ
の供給源の圧力に等しくなるまでシリンダー内圧を高め
る。従って空気供給源が大気なら大気圧まで、機械ポン
プの吐出圧が2 KG/CM ”なら同様に2 KG/
CM”まで、即ち供給源圧に平衝するまで瞬間吸気が進
行する事となる。
The suction air that is being drawn into the high vacuum and filling up increases the pressure inside the cylinder until it equals the pressure of its source. Therefore, if the air supply source is the atmosphere, the pressure is up to atmospheric pressure, and if the discharge pressure of the mechanical pump is 2 KG/CM, it is also 2 KG/CM.
CM'', that is, the instantaneous intake progresses until it reaches equilibrium with the supply source pressure.

実際は、吸入管路抵抗或は運転状態によって変化する吸
気状況に依って充填効率が定まるが、機械作用の通念的
説明は、前記の状態の記述で充分である。
In reality, the filling efficiency is determined by the intake conditions which vary depending on the resistance of the intake pipe or the operating conditions, but the description of the above conditions is sufficient for a general explanation of the mechanical action.

大気を供給源とし、ボートから突入させる吸気流は、ボ
ート閉ぢを境界として充填を終る。上昇行程始りまでに
は、排気吐出室には遮断帯が成立し有圧空気がボートか
ら逆流しシリンダーに補助充填が始まる。
The intake air flow, which is supplied from the atmosphere and enters from the boat, finishes filling at the boat closure. By the start of the ascent stroke, a barrier is established in the exhaust discharge chamber and pressurized air flows back from the boat and begins to supplement the cylinder.

従って、シリンダー内圧より高圧の吐出室の圧力気のた
めに吹き抜けは当然に発生せず、給気ボート閉直前から
圧縮−が始まり、排気ポート閉までの間における、補助
充填空気量の管制に依って、所望段階の、過給を含めた
充填が完了できる。
Therefore, blow-by does not naturally occur due to the pressure air in the discharge chamber, which is higher than the cylinder internal pressure, and compression starts just before the intake boat closes, and depends on the control of the amount of auxiliary charging air while the exhaust port is closed. Thus, the desired stage of filling including supercharging can be completed.

吹き抜は遮断帯、即ち、空気団塊式排気孔管制弁、略し
て9気圧型管制弁の空気源は、クランク室予圧、若しく
は排気タービンポンプの採用で、すでに開発済の技術利
用が出来るから、詳述した機作の技術系につき問題はな
い。
The atrium is a cut-off zone, that is, the air source for the air lump type exhaust hole control valve (abbreviated as 9-atmosphere type control valve) is a crank chamber pre-pressure or an exhaust turbine pump, so it is possible to use already developed technology. There is no problem with the technical system of the detailed mechanism.

火花点火式ガソリン混合気吸入型2ストロークサイクル
機関を回転させる場合若しくは、圧縮点火式2ストロー
クサイクル式ディーゼル機関の場合について、又は、燃
料噴射式火花点火ガソリン2サイクル機関等のハイブリ
ット方法に渉って実施の要点を説明する事は、本文に重
複する点が多い、併しながら基本的な相違点、例えば、
燃料噴射機関の場合に燃料は吹き抜けないが掃気の吹き
抜けを生じていること、等があって、根源的な残留気関
連其他については発明の特長に係はる変化は無い、従っ
て連条の記述は省略する。
When rotating a spark-ignition type gasoline mixture intake type two-stroke cycle engine, a compression-ignition type two-stroke cycle type diesel engine, or a hybrid method such as a fuel injection type spark-ignition gasoline two-stroke engine. In explaining the main points of implementation, there are many points that overlap with the main text, but at the same time there are basic differences, such as:
In the case of a fuel injection engine, the fuel does not blow through, but the scavenging air blows through, etc., and there is no change in the features of the invention regarding the fundamental residual gas and other aspects.Therefore, the description in the consecutive articles is omitted.

本発明の実施に際して、在来型の機関に追加される新し
い機構と装置が原価に加算される。
In implementing the present invention, new features and equipment added to the conventional engine are added to the cost.

従って、構造が簡単で重量も軽く、少さく、製産価格が
安く耐久性に優れた、2サイクル機関のを域の変化を反
論される可能性がある。
Therefore, there may be objections to changes in the area of two-stroke engines, which are simple in structure, light in weight, small in size, cheap to produce, and have excellent durability.

併し乍から重要な事は、出力の為めの燃料消費率であり
、製産価格であって、更に、保守耐久性或は取扱性能の
優劣である。
However, what is important is the fuel consumption rate for output, the production price, and the superiority or inferiority of maintenance durability and handling performance.

クラーク氏に依って開発された2サイクル機関の仕組み
は、発明以来百年の歴史を経た今日も命脈を保ち続け、
特に舶用大型機関では主流としての存在を占めている。
The two-stroke engine mechanism developed by Mr. Clark continues to be vital even today, 100 years after its invention.
Particularly in large marine engines, they are the mainstream.

然し、創始以来機関の高速化に依って自然的に発生し基
本的観点として指摘されている問題点が解消できず不可
能視されて現在に至っている。
However, since its inception, the problems that have arisen naturally due to the increase in speed of engines and have been pointed out as a fundamental point of view have not been resolved and are considered impossible to this day.

混合気若しくは新気の素通り損失、即ち排気行程時の吹
き抜は現傘のために燃費率が劣悪で、排気中に含まれる
生ガス等の有害成分の解消が困難なこと、圧縮点火式の
場合には燃料損失は発生しないが、掃気の吹き抜けがポ
ンプ動力損失とじて大きく影響し、残留ガスのために掃
気が不充分で低速域の不整着火と不快な振動と排気音等
の解決に問題が多く従って特殊用途に限られ、4サイク
ル機関のように陸上運輸機関の分野の進展が排気ガス規
制と共に衰退の岐路に立到っている。
The loss of air-fuel mixture or fresh air passing through, that is, the blowout during the exhaust stroke, is due to the current umbrella, which results in poor fuel efficiency, and it is difficult to eliminate harmful components such as raw gas contained in the exhaust, and compression ignition type In this case, no fuel loss occurs, but the blow-through of scavenging air has a large effect on pump power loss, and the scavenging is insufficient due to residual gas, causing problems such as irregular ignition in the low speed range, unpleasant vibrations, and exhaust noise. Therefore, advances in the field of land transportation, such as four-stroke engines, are reaching a crossroads of decline along with exhaust gas regulations.

有限で、貴重な石油資源としての燃料は、極限までに研
究され遭歩して来た4サイクル機関では大巾な節約は望
めない。
Fuel is a finite and precious resource, so four-stroke engines, which have been extensively researched and tested, cannot be expected to save much.

欠陥部分を解決し、特長を進展させ燃費率の向上を図る
解明点が、機関の給排気関連の見直しである。
The key to solving deficiencies, improving features, and improving fuel efficiency is to review the engine's air supply and exhaust system.

結果としては、残留気体に関する新しい理論と方法の発
明を根源とする換骨奪胎の新規創設の2ストロ一クサイ
クル機関であるにかかわらず、新設機構の追加が軽微で
済むため、製造関連の占有価格の割合が少さく、而も旧
来の欠点を一掃して特長を温存し得られるのである。
As a result, even though it is a newly created two-stroke cycle engine based on the invention of a new theory and method regarding residual gas, the addition of new mechanisms is only minor, and the manufacturing-related proprietary price is reduced. The ratio is small, yet it is possible to wipe out the traditional flaws and preserve the features.

格段の高出力と小型軽量化は勿論、4サイクル機関と比
較した場合に、同一定格出力では機関価格を大巾に引下
げ低廉化が出来ると共に省燃費吃経済的に大きな新しい
利得ももたらす特長がある。
Not only does it have extremely high output, it is compact and lightweight, but when compared to a 4-cycle engine, it can significantly reduce the price of the engine at the same rated output, and it also offers significant new economic benefits in terms of fuel efficiency and fuel efficiency. .

発明の構想理解の資料として、所定の附帯図に就いてy
に説明を繰返します。
Please refer to the prescribed accompanying drawings as materials for understanding the concept of the invention.
Repeat the explanation.

第1図A−B−C−D−E−Fは、基本的な作動状態の
概説図である。図表−1は火花点火機関、図表−2が圧
縮点火機関の弁開閉時期線図で特にその時の機作も表示
している。
FIG. 1A-B-C-D-E-F are schematic diagrams of basic operating conditions. Chart 1 is a valve opening/closing timing diagram for a spark ignition engine, and Chart 2 is a compression ignition engine valve opening/closing timing chart, which also shows the mechanism at that time.

本発明によって開発された新たな機作と機能と作用を示
すのが第1図の要旨であり図表外周の矢印A〜Fにおけ
るクランク位置の時の、シリンダー及び排気系を通過す
るガス体の流動を理解する為の断面図が提示されている
から以下之に従って詳述する。
The gist of Figure 1 is to show the new mechanism, function, and action developed by the present invention.The flow of gas passing through the cylinder and exhaust system when the crank is in the position indicated by the arrows A to F on the outer periphery of the diagram. A cross-sectional view is presented to help you understand, so we will explain it in detail below.

A0点火爆発直後、最高圧力でピストン−2を押下げて
いる状況。
Immediately after the A0 ignition explosion, piston-2 is being pushed down at maximum pressure.

Bo排気ポート−10から吹き出しが始り爆発ガス−1
1の尖頭が突出ガス団塊−13となって排気吐出室に噴
出している。
Blowout starts from Bo exhaust port-10, explosive gas-1
The tip of the gas nozzle 1 becomes a protruding gas nodule 13 and is ejected into the exhaust discharge chamber.

C0突出ガス団塊−13並びに高圧排出ガス−12は減
圧室−15を逸走中であり、従って7リンダーー3内は
大気圧を過ぎて負圧真空−16が発生し、更に通史を続
ける排気ガス団塊−12〜13に依って減圧模作が進展
している状況を示す。
The C0 projecting gas nodules-13 and the high-pressure exhaust gas-12 are escaping from the decompression chamber-15, so the inside of the 7 Linder-3 exceeds the atmospheric pressure and a negative pressure vacuum-16 is generated, and the exhaust gas nodules continue to flow. -12 to 13 show the progress of the reduced pressure imitation.

D6ピストンー2は下死点に近付き、給気ボート−9開
きの直前に位置している。突出ガス団塊−13〜12に
因って強烈に制御吸引される排気吐出室−14附近は真
空域−16、シリンダー3内は高真空発生域−17であ
る。従ってこの時は有害残留気体は消滅している。
The D6 piston-2 is approaching the bottom dead center and is located just before the air supply boat-9 opens. The vicinity of the exhaust discharge chamber 14, which is strongly controlled and sucked by the protruding gas nodules 13 to 12, is a vacuum region 16, and the inside of the cylinder 3 is a high vacuum generation region 17. Therefore, at this time, the harmful residual gas has disappeared.

E0吸気ボート−9開きに依り、新気若しくは混合気−
40は、高真空発生域−17の負圧と、前者の高圧との
合計差圧に依って瞬間的にシリンダー3に突入し給気が
充填される。
E0 intake boat - 9 Depending on the opening, fresh air or mixture -
40 instantaneously rushes into the cylinder 3 and is filled with supply air due to the total differential pressure between the negative pressure in the high vacuum generation area 17 and the high pressure in the former.

給気の先頭部は、排気系を逸走している突出ガス団塊−
12〜13の影響による強制吸引作用の真空のため、排
気ポート−10から排気下流へ吹き抜けようと、ボート
−10附近に殺到する。
The leading part of the air supply is a protruding gas lump that has escaped the exhaust system.
Due to the vacuum caused by the forced suction effect due to the influence of 12 and 13, the exhaust rushes around the boat 10 in an attempt to blow through from the exhaust port 10 to the exhaust downstream.

この時期、遮断帯制御弁−26を開く、従つて排気吐出
室−14内には有圧の吹き抜は遮断帯−19の生成が始
り、高い遮断帯圧と衝突した吹き抜は気体−40の先頭
部はシリンダーに押し戻され従って、新気若しくは混合
気は吹き抜けない。
At this time, the cutoff zone control valve 26 is opened, and the pressurized atrium begins to generate a cutoff zone 19 in the exhaust discharge chamber 14. The leading end of 40 is pushed back into the cylinder, so no fresh air or mixture can blow through.

クランク室予圧型機関はこの時に下降するピーストン下
面に依って圧縮が進行し、即ち上死点を過ぎた矢印A点
から予圧が始っているから、下死点後も高い給気圧を保
ち、併も吸気ボート−9閉止のクランク角が少さい為に
、僅かなピストン−2上昇で、吸気ボートが閉じ、従っ
て流入慣性と遮断帯圧力の吊合いが対応して吹戻しの発
生も無く、排気ボート閉までのシリ〉・夕゛−3の内圧
上昇は遮断帯圧力又は後述のディスク弁式を含めて吹抜
けを完全に防止するので、ピストンの上昇始りは即圧縮
行程の始りであって従来の機関に無い新規な特徴である
In the crank chamber preload type engine, compression progresses due to the lower surface of the piece stone falling at this time, that is, the preload starts from the arrow A point past the top dead center, so the high supply pressure is maintained even after the bottom dead center. At the same time, since the crank angle for closing the intake boat 9 is small, the intake boat closes with a slight rise of the piston 2. Therefore, the balance between the inflow inertia and the barrier band pressure corresponds to each other, so there is no blowback. The rise in internal pressure in Series 2 and 3 when the exhaust boat is closed is completely prevented from blowing through, including the cutoff band pressure or the disc valve type described later, so the piston starts to rise immediately at the beginning of the compression stroke. This is a new feature not found in conventional engines.

F0前記の如く、吸気ボート−9閉に依ってシIJンダ
ー3への給気行程が終り圧縮行程が進行する。
F0 As described above, the air supply stroke to the cylinder cylinder 3 is completed by closing the intake boat 9, and the compression stroke begins.

従って、排気吐出室−14の遮断帯気圧が上昇しつ\あ
るシリンダー3の内圧より高ければ、排気ボート−10
から吹き抜けようとする新気若しくは混合気−40は逆
波してシリンダー3に押し戻され、併も通常の場合シリ
ンダー内圧ハ0.7〜0.8 KG/CM”附近である
から、この場合遮断帯空気源が大気圧の場合は殆ど両者
が吊合う。
Therefore, if the cut-off zone pressure of the exhaust discharge chamber-14 is higher than the internal pressure of the cylinder 3, which is rising, the exhaust boat-10
The fresh air or mixture -40 that is about to blow through is pushed back into the cylinder 3 by a reverse wave, and since the cylinder internal pressure is normally around 0.7 to 0.8 KG/CM, in this case it is shut off. When the strip air source is at atmospheric pressure, the two are almost balanced.

制御弁−26の開弁期の調整により、若干の過給も可能
である。
A slight supercharging is also possible by adjusting the opening period of the control valve 26.

併し、その為めには次の点に留意しなければならない。However, for this purpose, the following points must be kept in mind.

遮断帯域−19を形成している有圧気団は、排気系下流
を逸走している突出ガス団塊に依る強制吸引作用、を受
け、従って制御弁並びに吸入通路を、吸引力に見合う大
径にする事が要求される。但し、排気吐出室−14又は
ボート〜10と、減圧室を含む排気系との間にディスク
弁等〆切弁を設けるときは必要がない。
The pressurized air mass forming the cutoff zone 19 is subjected to forced suction by the protruding gas mass escaping downstream of the exhaust system, and therefore the control valve and suction passage are made large in diameter to match the suction force. things are required. However, it is not necessary when a cutoff valve such as a disc valve is provided between the exhaust discharge chamber 14 or the boat 10 and the exhaust system including the decompression chamber.

本発明は、前述のようにその特徴である瞬間給気に依っ
て軽度の過給効果同様の高い充填効率が得られる。
As described above, the present invention can achieve high charging efficiency similar to a slight supercharging effect by relying on instantaneous air supply, which is a feature of the present invention.

然し乍ら、1.2〜2 KG/CM”以上の高圧過給が
要求される場合は当然に圧縮ポンプの助けが必要で、第
13図以下に示す排気タービンの方法が望ましく、更に
は第9図以下に示す遠心型真空ポンプの協働が必要であ
る。
However, if high-pressure supercharging of 1.2 to 2 KG/CM or more is required, the assistance of a compression pump is naturally required, and the exhaust turbine method shown in Figure 13 and below is preferable, and furthermore, the method shown in Figure 9 The cooperation of the centrifugal vacuum pump shown below is required.

詳述した新しい機作によって回転する2サイクル内燃機
関が第1図の説明で、第1項以下の各種発明の根源の基
本的作動である。
The two-stroke internal combustion engine rotated by the detailed new mechanism is the explanation of FIG. 1, and is the basic operation underlying the various inventions described in Section 1 and below.

本arJAは、ピストン−2が上昇して排気ポート−1
0を閉じるまでは吹き抜は遮断帯−19酎解消できない
In this arJA, piston-2 rises and exhaust port-1
Until 0 is closed, the atrium cannot clear the barrier zone -19.

非過給型機関でイ)、排気ボー)−10附近の内圧は弁
閉時期には上昇し、1.5 KG/CM2iこ近(なる
、従って、気体に依る遮断帯圧力は更にこの数値以上を
保持するか、若しくは空気ノヅルー7の角度位置及び開
弁時期の工夫が要求され、背圧活用等に就いては前述し
ているが、小型定速型以外の場合では大気圧導入の非過
給方式を含め、また過給型では当然にディスク弁に依っ
て排気吐出室を締切る方法の併用が簡単有利であり望ま
しい方法となる。
In a non-supercharged engine, the internal pressure around -10 (exhaust bow) rises to around 1.5 KG/CM2i (a) at the valve closing time, so the cutoff band pressure due to gas is even higher than this value. The angle position of the air nozzle 7 and the valve opening timing must be maintained or the angular position of the air nozzle 7 and the valve opening timing must be devised.Using back pressure has been mentioned above, but in cases other than small constant speed types, it is necessary to In addition to the feeding system, in the case of a supercharging type, it is naturally advantageous and desirable to use a method in which the exhaust discharge chamber is closed off using a disk valve.

また、この場合に、機関の性格に依っては圧縮ポンプの
みで遮断帯空気を賄う手段が経済的な場合も多い。
Further, in this case, depending on the characteristics of the engine, it is often economical to supply the barrier air with only a compression pump.

高温区域で高速回転を必要とするディスク弁はクランク
回転の1が回転の下限で、廻に遅いと孔の僅のズレが開
閉時期の制御に影響する。
For disc valves that require high-speed rotation in high-temperature areas, the lower limit of rotation is 1 crank rotation, and if the rotation is slow, even a slight deviation in the hole will affect the control of opening and closing timing.

激しい温度差の為にも嵌合挿入部は緩いことが必要で充
分な隙間を与えるために機械的なシール方法は即しいか
ら、提案のように排気吹き出し圧に合せて、間欠的に吹
き出す空気流の利用で潤滑する手段は、送風量が遮断帯
生成に役立ち、二次空気として兼用できる冷却方法とし
ても優れている。
Due to the large temperature difference, the fitting insertion part needs to be loose, and a mechanical sealing method is quick to provide sufficient clearance. In the method of lubricating by using air flow, the amount of air blown helps to create a barrier zone, and it is also an excellent cooling method that can be used as secondary air.

従って、排気管制のための遮断帯生成及びその制御並び
に保持に寄与させる為の構成が容易であって、消費動力
も僅かで済むのである。
Therefore, the configuration for contributing to the generation, control, and maintenance of the barrier zone for exhaust gas control is easy, and the power consumption is small.

過給に関する説明は省略。Explanation regarding supercharging is omitted.

第2図のA−B断面は、気流ソラセ板構造に依って、突
出するガス団塊が蜂の巣型又は複合管型内挿管を備え、
拡大された減圧室に均等に配分されつ\ある状況を示し
ている。Cは集合管型を示す。
The cross section A-B in FIG. 2 shows that the protruding gas mass is equipped with a honeycomb-shaped or composite tube-shaped inner tube, depending on the airflow solace plate structure.
It shows a situation where the pressure is being evenly distributed in the enlarged decompression chamber. C indicates a collecting pipe type.

第3図のA−B−Cは矢視方向断面である。ABC in FIG. 3 is a cross section in the direction of arrows.

第4図・第5図説明省略。Explanation of Figures 4 and 5 is omitted.

図表−3は、クランク室予圧型内燃機関のシリンダー及
び排気ポート並びに排気吐出室と、クランク室における
弁開閉時期線図に対応する機作を示す、A及びBが前者
、Cがクランク室内である。
Chart 3 shows the cylinder, exhaust port, exhaust discharge chamber, and valve opening/closing timing diagram in the crank chamber of a crank chamber preloaded internal combustion engine. A and B are for the former, and C is for the inside of the crank chamber. .

外周矢印のFとDは、図表−1及び2に対応させである
The outer arrows F and D correspond to Figures 1 and 2.

ピストン−2の下降端りでは、ディスク弁−25の気化
器連通孔−44は閉じているので、クランク室内−4は
ピストン下面に依って圧縮される装封気体が、ピストン
−2の行程容積当量だけ収縮し、これに因って圧が上昇
している。
At the descending end of the piston-2, the carburetor communication hole-44 of the disc valve-25 is closed, so that the gas compressed by the lower surface of the piston in the crank chamber-4 is reduced to the stroke volume of the piston-2. It contracts by an equivalent amount, which causes the pressure to rise.

続いているピストン−2の下降が、吸気ボート−9を開
き、クランク室−4及びガス移送路−18に充満してい
る有圧の装置気体、(新気若しくは混合気)が高真空状
態のシリンダー3に突入し始め、高い差圧のために狭い
クランク角の間に瞬間的給気が終る。図表−1のE位置
における流動状況である。
The subsequent descent of the piston 2 opens the intake boat 9, and the pressurized system gas (fresh air or air mixture) filling the crank chamber 4 and the gas transfer passage 18 is transferred to a high vacuum state. It begins to enter cylinder 3 and ends momentarily during a narrow crank angle due to the high differential pressure. This is the flow situation at position E in Figure 1.

運動を続けているピストン−2は下死点を過ぎて上昇し
、上端面部が給気ボート−9を閉じ、従って給気行程が
完了する。
The piston 2, which continues to move, rises past the bottom dead center and its upper end closes the air supply boat 9, thus completing the air supply stroke.

この時にはクランク軸に同期しているディスク弁−25
の気化器連通孔が開き、シリンダー3に突入流出した給
気の慣性に因り弱い負圧を生じているクランク室−4に
、連通孔−44を経由して、大気に開口している気化器
−20の絞り弁に通った混合気、又は気化器を設けない
圧縮点火機関の場合の空気源としての開口部を通った空
気が吸入され装置が始まる。
At this time, the disc valve-25 is synchronized with the crankshaft.
The carburetor communication hole is opened, and the carburetor is opened to the atmosphere via the communication hole 44 to the crank chamber 4, where a weak negative pressure is generated due to the inertia of the air flowing into and out of the cylinder 3. The system is started by sucking in the air-fuel mixture that has passed through the -20 throttle valve or, in the case of a compression ignition engine without a carburetor, the air that has passed through the opening as an air source.

クランク室への装置気体の吸入は、ピストン−2が上死
点を通過するまで続く。
The suction of system gas into the crank chamber continues until piston-2 passes through top dead center.

従って、この時ピストン−2の上端面は、前記給気行程
完了に続く圧縮行程の進展に従い上死点隙間即ち燃焼室
に集圧した混合見苦くは新気の点火燃焼を始める体勢に
ある。
Therefore, at this time, the upper end surface of the piston 2 is in a position to start igniting and burning the unsightly mixture of fresh air that has gathered pressure in the top dead center gap, ie, the combustion chamber, as the compression stroke progresses following the completion of the intake stroke.

爆発行程に移行したピストン−2はガス膨張に依って下
降し始め、強烈な爆圧に依って下方に8・されてクラン
ク軸の駆動力を発揮し始める。
Piston 2, which has entered the explosion stroke, begins to descend due to gas expansion, and is pushed downward by the intense explosion pressure, and begins to exert driving force for the crankshaft.

同期しているディスク弁−25の連通孔は閉じ、従って
ピストン下面はクランク室の装置気体の圧縮作動を続け
る。
The communication hole of the synchronized disc valve 25 is closed, so that the lower surface of the piston continues to compress the system gas in the crank chamber.

詳述した関連機作が、通常型2サイクル機関を回転させ
る仕組みであり、図表−3のA−Bの欠視部F及びDの
位置の作動説明文の〔吹抜は制御域及可給可、及び減圧
真空〕の機械作用は、前述しているように機関の回転中
にシリンダ−3内部に発生させた気圧利用の機作を示し
本発明に因って開発された新しい作動の説明である。
The related mechanism described in detail is a mechanism that rotates a normal two-stroke engine, and the operation description at the missing parts F and D of A-B in Figure 3 [The atrium can be accessed in the control area. , and reduced pressure vacuum] refers to the mechanism of utilizing the air pressure generated inside the cylinder 3 while the engine is rotating, as described above, and is an explanation of the new operation developed according to the present invention. be.

排気吹き出し終りの減圧真空行程によって有害残留気体
を消滅させ、短いクランク角に瞬間給気を終らせ、生成
させた吹き抜は制御域を構成している有圧気体によって
所望の過給を達成できる2サイクルストロ一ク式内燃機
関の提供が本発明の目的であり、新規の機構部分と製産
価格の追加が僅かで、増大する出方が特長である。
The harmful residual gas is eliminated by the decompression vacuum stroke at the end of the exhaust blowout, the instantaneous air supply is ended at a short crank angle, and the generated blowout can achieve the desired supercharging with the pressurized gas that forms the control area. It is an object of the present invention to provide a two-stroke stroke type internal combustion engine, which is characterized by a slight increase in new mechanical parts and production costs.

第6図は、均圧室に依って接続組立てた複数の減圧室、
例えば蜂の巣型内挿管又は複合管減圧室と気流ソラセ板
の重複した組合せ感圧センサーの構成を示す。機種に依
っては、均圧室を2連以上とする。
Figure 6 shows a plurality of decompression chambers connected and assembled by pressure equalization chambers,
For example, a configuration of a pressure-sensitive sensor is shown in which a honeycomb-shaped internal intubation tube or a composite tube decompression chamber and an airflow solace plate are overlapped. Depending on the model, there may be two or more pressure equalizing chambers.

第7図・第8図の説明は省略。Explanation of FIGS. 7 and 8 is omitted.

排気路−33に連設した、反動型若しくは衝動型タービ
ン機構を示す第9図の内容について。
Regarding the content of FIG. 9 showing a reaction type or impulse type turbine mechanism connected to the exhaust passage 33.

通常の利用方法では、高速回転の特性を生かし装置の原
動機として駆動機械源として、例えば遠心式圧縮ポンプ
を回転させる。
In a normal usage method, a centrifugal compression pump, for example, is rotated as a driving mechanical source as the prime mover of the device by taking advantage of its high-speed rotation characteristics.

本発明の機関は、減圧真空掃気行程を介在させる手法が
根源で、長い減圧室通路を逸走する突出ガス団塊の慣性
エネルギーが基本理念である。
The engine of the present invention is based on a technique that involves a vacuum scavenging stroke, and its basic idea is based on the inertial energy of the protruding gas mass escaping through a long vacuum chamber passage.

従って、回転と、突出圧とに見合ふ排気路の長さが必要
な設計基礎となりその解決が重要である。
Therefore, it is important to solve this problem, which is a design basis that requires a length of exhaust path that corresponds to the rotation and ejection pressure.

排気吹き出しの突出ガスのエネルギーはタービン翼を極
限まで高速回転させるが、吹き出し終りが回転終りでは
ない。適切な蓄力機構、例えばフライホールだけでも慣
性を錐持し翼揚力は逆の翼下面に真空域を発”生させて
真空吸引が始り、従って、吹き出し終り以後の慣性回転
に依って希薄気体を更に継続して吸出す。
The energy of the gas ejected from the exhaust gas causes the turbine blades to rotate at extremely high speeds, but the end of the blowout is not the end of rotation. An appropriate force storage mechanism, such as a flyhole, maintains the inertia, and the lift of the blade generates a vacuum area on the lower surface of the blade, where vacuum suction begins, and is therefore diluted by inertial rotation after the end of blowout. Continue to suck out more gas.

効率の点に付、この両件用を兼ねるタービン翼の研究は
大切ではあるが、排気吹き出し終り大気圧に達した後の
若干の時間経過に依り実用上の前記0.1〜0.2 K
G/CM”程度の真空を達成し有害残留ガスを解消する
。従って、小型若しくは低速機関の場合には充分に目的
の達成が可能で、減圧室の長さも短縮でき、減圧行程の
クランク角も縮少でき、背圧を最少に押えて、回転数、
負荷率の変動の激しい機関に対応して真空生成が出来る
From the point of view of efficiency, it is important to research turbine blades that serve both purposes; however, depending on the time elapsed after the exhaust reaches atmospheric pressure at the end of exhaust blowing, the practical 0.1 to 0.2 K
G/CM'' degree of vacuum and eliminates harmful residual gas. Therefore, in the case of small or low-speed engines, the purpose can be fully achieved, the length of the decompression chamber can be shortened, and the crank angle of the decompression stroke can be reduced. It can be reduced, back pressure is kept to a minimum, and rotation speed,
Vacuum can be generated in response to engines with severe load factor fluctuations.

真空タンクの附設も示唆しである通り有効な方法である
As suggested, installing a vacuum tank is also an effective method.

第10図は、強制ポンプ式減圧真空回路に依って2サイ
クル機関を回転させる方法を提示している。排気タービ
ン−30に連結された^遼遠心坐真空ポンプ−32を排
気突出によって回転させ、閉じているディスク弁−25
の空気源通気孔−43以下の真空ポンプ気体通路を真空
タンクと見做して適当に管路拡巾等で容積を確保し、作
動している真空ポンプ−32に因って所望高真空に到達
した時限において、前記排気突出気流が減圧室排気系を
通過逸走して発生する排気ボート附近の大気圧若しくは
所望負圧に対応するよう空気源通気孔−43が開く設定
に依り、瞬間的に残留気体を吸引排出させる方法は、減
圧真空のクランク角を縮少する。
FIG. 10 presents a method for rotating a two-stroke engine by means of a forced pump vacuum vacuum circuit. The Liao centrifugal vacuum pump-32 connected to the exhaust turbine-30 is rotated by the exhaust protrusion, and the disc valve-25 is closed.
The vacuum pump gas passage below the air source vent hole 43 is regarded as a vacuum tank, and the volume is secured by appropriately widening the pipe, etc., and the desired high vacuum is achieved depending on the operating vacuum pump 32. At the time reached, the air source vent-43 is set to open in response to the atmospheric pressure or desired negative pressure near the exhaust boat, which is generated when the exhaust airflow passes through the decompression chamber exhaust system and escapes, so that the air source vent 43 is opened instantaneously. The method of suctioning and discharging residual gas is to reduce the crank angle of the vacuum.

従って、高速機関又は回転数変化若しくは負荷変動率の
激しい機関の減圧真空手段に、適切な装置を提供する。
Therefore, a suitable device is provided as a vacuum means for reducing pressure in a high-speed engine or an engine with severe changes in rotational speed or load fluctuation rate.

従来2サイクル機関に不可欠な機素とされている掃気ポ
ンプ。例えばクランク室密閉式、シリンダー底密閉式、
往復動式、回転式、遠心式等の圧縮ポンプで有圧の空気
を創って排気吹き出しガスを押し出して、給気をする思
考の、最悪の観点が有害残留気であり、4サイクル機関
との生存競争に勝利し得なかった誕生以来の問題点であ
る。
A scavenging pump has traditionally been considered an essential element in two-stroke engines. For example, crank chamber sealed type, cylinder bottom sealed type,
The worst aspect of the idea of supplying air by creating pressurized air with a reciprocating, rotary, or centrifugal compression pump and pushing out the exhaust gas is harmful residual air, and it is difficult to use a 4-cycle engine. This has been a problem since its birth, as it has not been able to win the struggle for survival.

2サイクル機関の欠陥について詳述したが、第10図に
示す、排気タービン駆動式の高速遠心型真空ポンプを、
前記圧縮圧型掃気ポンプに置換る本発明で、−挙に欠陥
を解決できるのみか中型高速機関の分野にまで格段の進
展が約束されたのである。
Having detailed the defects of the two-stroke engine, the exhaust turbine-driven high-speed centrifugal vacuum pump shown in Fig. 10,
The present invention, which replaces the compressed pressure type scavenging pump, not only solves the deficiencies, but also promises significant progress even in the field of medium-sized high-speed engines.

シリンダー側面に開口している吸気ボート、絞り舟行の
空気源通気孔に依る大気圧型吹き抜は管制等を含む排気
タービン型遠心式真空ボンゴ構造を主体とする、減圧真
空ポンプ回路に依って、2サイクル内燃機関に新しい生
命を吹き込んで新規な回転を得たのである。
The atmospheric pressure type atrium, which is based on the intake boat opening on the side of the cylinder and the air source vent on the throttle boat, is based on the reduced pressure vacuum pump circuit, which is mainly composed of an exhaust turbine type centrifugal vacuum bongo structure that includes control, etc. It breathed new life into the two-stroke internal combustion engine and gave it a new level of rotation.

第10図は、圧縮点火機関の作図である。併し、全く同
様な構成思想に依り、燃料噴射式火花点火のハイブリッ
ト機関並びに気化器型火花点火機関等の2サイクル機関
を回転させ得る事も物論である。
FIG. 10 is a diagram of a compression ignition engine. However, it is also theoretically possible to rotate two-stroke engines such as a fuel injection spark ignition hybrid engine and a carburetor spark ignition engine using the same structural idea.

第11図は2気筒機関の平面図で、ガス通路に沿って切
断しである。
FIG. 11 is a plan view of the two-cylinder engine, cut along the gas passage.

2つの排気通路とディスク弁が連動し、合流した突出ガ
スが交互に排気タービン−30を回転させて高真空を発
生させる方式で第゛9図の発展型式である。低速用並び
に定速型機関に適している。
This is the advanced type shown in Fig. 9, in which two exhaust passages and a disk valve are interlocked, and the combined protruding gas alternately rotates the exhaust turbine 30 to generate a high vacuum. Suitable for low speed and constant speed engines.

第12図は強制ポンプ式減圧真空回路を備えた2気筒型
機関、ガス通路に沿って切断した平面図で2つの排気通
路と2つの排気タービンが同軸上の1つの遠心型真空ポ
ンプを180度遅れの突出ガスに依って交互に駆動する
Figure 12 is a plan view of a two-cylinder engine equipped with a forced pump decompression vacuum circuit, cut along the gas passage, and shows two exhaust passages and two exhaust turbines that operate one coaxial centrifugal vacuum pump at a 180 degree angle. It is driven alternately depending on the delayed ejection gas.

第11図と同様にディスク弁も1つで充分に機能させる
ことが出来る。
As in FIG. 11, a single disc valve can function satisfactorily.

排気タービン−30の慣性運転が生成する減圧真空域に
、吸気ボート−9から突入する大気と、タービン−30
に連結した遠心型圧縮ポンプ−31が吐出する有圧空気
を排気吐出室−14に噴出させて吹き抜は遮断帯〜19
を形成し、更にその一部−21をシリンダーに突出せし
めて充填率を高める方式の機関を第13図に示している
The atmosphere entering from the intake boat-9 and the turbine-30 enter the reduced pressure vacuum area generated by the inertial operation of the exhaust turbine-30.
The pressurized air discharged by the centrifugal compression pump 31 connected to the is blown into the exhaust discharge chamber 14, and the atrium is connected to the cutoff zone 19.
FIG. 13 shows an engine in which a part -21 of the cylinder is formed to protrude into the cylinder to increase the filling rate.

第15図はポート−9の吸気を、圧縮ポンプ−31によ
る有圧空気とした純過給型機関で、排気タービン−30
を含む減圧室が駆動源で之等の装置を含め、排気吹き出
し減圧真空手段のクランク角を縮少し、従って、高速回
転に適し、負荷変動の激しい機関で、且つ大型機関に適
した方法である。
Figure 15 shows a pure supercharging engine in which the intake air at port 9 is compressed air by a compression pump 31, and the exhaust turbine 30
This method reduces the crank angle of the exhaust blowing decompression vacuum means, including the decompression chamber as the drive source, and is therefore suitable for high-speed rotation, for engines with severe load fluctuations, and for large engines. .

第13図及び第15図は圧縮点火式ディーゼル機関を示
しているが。燃料噴射型火花点火式のハイブリット機関
を設計するには、基本的な変化は無い。給気管若しくは
ポート−9、或はシリンダーヘット−1に噴射ノヅルを
追加すればよい。
13 and 15 show a compression ignition diesel engine. There are no fundamental changes in designing a fuel-injected spark-ignition hybrid engine. An injection nozzle may be added to the intake pipe or port 9 or cylinder head 1.

排気タービン−30と、圧縮ポンプ−31とを直結して
排気系に連接する過給火花点火型の気化器式の1例を、
第16図及び第17図に提示する。
An example of a supercharging spark ignition type carburetor type in which an exhaust turbine 30 and a compression pump 31 are directly connected to the exhaust system is shown below.
It is presented in FIGS. 16 and 17.

第18図では、有圧混合気は更にクランク室手圧に依っ
て圧を高めているが、クランク室予圧をしないで、吸気
ボート−9に直接接続することが出来る。
In FIG. 18, the pressure of the pressurized mixture is further increased by manual pressure in the crank chamber, but it can be directly connected to the intake boat 9 without prepressuring the crank chamber.

之等の手段は、本発明の基本的、原理的な発展形式で、
例えば自動車機関、若くは船外機、又は小型軽飛行機の
発動機に適している。
These means are basic and principle developments of the present invention,
For example, it is suitable for automobile engines, outboard motors, or small light aircraft engines.

第19図は、本発明の発展形排気タービン過給式の2気
筒火花点火機関を示す。ガス通路に沿って切断した平面
の説明図である。
FIG. 19 shows an advanced exhaust turbine supercharged two-cylinder spark ignition engine of the present invention. FIG. 3 is an explanatory diagram of a plane cut along a gas passage.

2つのシリン〆一の排気路−33に連設した排気タービ
ン−30が2個、同軸に連接され、軸上に圧縮ポンプ及
び真空ポンプが設けである。従って、180度の間隔で
交互に突出する排気流によって、連続して高い圧力空気
と所望の真空状態を創り出す。
Two exhaust turbines 30 are connected coaxially to the exhaust passages 33 of the two cylinders, and a compression pump and a vacuum pump are provided on the shafts. Thus, the exhaust flow alternately projects at 180 degree intervals to continuously create high pressure air and the desired vacuum condition.

給気ボート開き直前高真空のシリンダーを示す第20図
は、上側のシリンダー系の断面を示して居て、上列点前
点火前を示す第21図のピストンは、連接棒によって同
軸クランクに組合され、上側のディスク弁−25は、排
気系連通孔−42及び真空ポンプ達通孔−47が開いて
いる。即ち、タービン−30の上側(図面に正対しての
意味)は慣性運転に依る真空ポンプ作用を派生して、真
空ポンプ−32に協働してシリンダーの高真空達成中の
状況であり、他方のディスク弁は閉じ、従って双方の有
圧空気源通路−46に発生している圧縮ポンプ−31の
圧力は、気化器−20を経由して、吸気ポート−9に達
している真空ポンプ−32と圧縮ポンプ−31を独立さ
せ分離した組合せの例を第22図に示しである。
Figure 20, which shows the cylinder in high vacuum just before the opening of the air supply boat, shows a cross section of the upper cylinder system, and the piston in Figure 21, which shows the upper row before ignition, is connected to the coaxial crank by a connecting rod. The upper disc valve 25 has an exhaust system communication hole 42 and a vacuum pump communication hole 47 open therein. That is, the upper side of the turbine 30 (as viewed directly in the drawing) derives a vacuum pump action based on inertial operation and cooperates with the vacuum pump 32 to achieve a high vacuum in the cylinder, and the other side The disc valve of is closed, and therefore the pressure of the compression pump 31 generated in both pressurized air source passages 46 passes through the vaporizer 20 and reaches the intake port 9 of the vacuum pump 32. An example of a combination in which the compressor pump 31 and the compressor pump 31 are made independent and separated is shown in FIG.

噴射ノヅル若しくは気化器等の燃料系を省略しているの
は、詳述して来たように点火手段は設計上の変更に依る
。従って特定せずに図面数を省略している。
The reason why a fuel system such as an injection nozzle or a carburetor is omitted is due to a change in the design of the ignition means, as described in detail above. Therefore, the number of drawings is omitted without specifying.

第24図−38のように、排気タービンポンプ−31及
び−32は直接又は間接に連動機構に依って協働させる
事が出来る。
As shown in FIG. 24-38, the exhaust turbine pumps -31 and -32 can be directly or indirectly operated together by an interlocking mechanism.

本発明のガソリン機関は、吸入混合気の吹き抜は遮断帯
を形成している有圧空気の一部を逆流させて、過給手段
とする方法が説明されている。
In the gasoline engine of the present invention, a method is described in which a part of the pressurized air forming a cut-off zone is reversely flown to blow out the intake air-fuel mixture to serve as a supercharging means.

濃厚混合気を給気し希薄化して、標準混合比とし、充填
率を高め、出力を向上する場合も詳述している。
It also details the case where a rich mixture is supplied and diluted to a standard mixture ratio to increase the filling rate and improve the output.

併し乍ら、特に注目すべき特長は、標準混合気を吸気ポ
ート−9を通る主給気流とし、逆流する過給の有圧空気
の突入に依って層状給気を行うことが出来る点である。
However, a particularly noteworthy feature is that the standard air-fuel mixture is used as the main air supply flow through the intake port 9, and stratified air supply can be performed by injecting supercharged pressurized air flowing back.

若干の改造、例えば排気ボート−10の気流突出角實の
補正、若しくはピストン上面又は燃焼室天井に設ける案
内板に依って、適切な龍巻状の渦流を発生させ、従って
、点火栓附近に発火に適した標準混合気を閉じ込め点火
し燃焼させる事に因って、全体として極めて薄い空燃比
の混合気を完全燃焼させる事が可能である。
By making some modifications, such as correcting the angle of the airflow protrusion of the exhaust boat 10, or by installing a guide plate on the top surface of the piston or the ceiling of the combustion chamber, an appropriate tornado-like vortex can be generated, and ignition will occur near the ignition plug. By confining, igniting, and combusting a standard air-fuel mixture suitable for this purpose, it is possible to completely burn an air-fuel mixture with an extremely lean air-fuel ratio as a whole.

燃料噴射式ガソリン機関の場合は、負荷状態に応じて燃
料の増減が出来るから、更に空燃比の範囲が拡大でき、
従って優れた運転制御が可能となり、詳述した種々の特
長に附帯して、希薄混合気燃焼のための層状給気を容易
に達成する利得が、排気ガス清浄化を含め、本発明2サ
イクル機関の性能向上に格段に役立つのである。
In the case of a fuel-injected gasoline engine, the amount of fuel can be increased or decreased depending on the load condition, so the range of air-fuel ratios can be further expanded.
Therefore, excellent operational control is possible, and in addition to the various features described in detail, the two-stroke engine of the present invention has the advantage of easily achieving stratified air supply for lean mixture combustion, including exhaust gas cleaning. This will greatly help improve the performance of the system.

近年、大型トラック等に依る遠距離輸送が盛んであるが
、通常の内燃機関は、経済的な最大出力回転数範囲が定
まる関係から、往路は重負荷、帰路は軽負荷の自家用車
輌等の場合では、帰路に、低出力型エンヂンに交換でき
れば、燃料費が大巾に節約できて、莫大な利得が生じる
In recent years, long-distance transportation using large trucks has become popular, but because the economical maximum output rotation speed range for normal internal combustion engines is determined, it is preferable to use private vehicles with heavy loads on the outbound trip and light loads on the return trip. If you can replace the engine with a lower-output engine on the way home, you can save a lot of money on fuel and make a huge profit.

本発明大型機関の具体機構は、有圧空気を主体とする吹
き抜は遮断帯の創設がその根源である。
The specific mechanism of the large-scale engine of the present invention is based on the creation of a barrier zone in the atrium, which mainly uses pressurized air.

有圧空気は、大気を自動弁等に依って吸入すること、及
び圧縮ポンプに依る高圧空気の導入との双方の合成を提
案している。
For pressurized air, it is proposed to combine both the intake of atmospheric air using an automatic valve, etc., and the introduction of high-pressure air using a compression pump.

従って、過給機関はこの手段の発展形であり、機関の排
気吐出室に生成させる圧力空気団塊は、その殆んどを自
動弁吸入に依って賄うことができる。
Therefore, a supercharged engine is an advanced form of this means, and most of the pressure air mass generated in the exhaust discharge chamber of the engine can be provided by automatic valve intake.

例えば、双方の空気量を等量とする過給機関では、圧縮
ポンプの高圧送気分を過給量と設定でき従って、自動弁
吸入を閉止すれば通常型低出力機関となる。
For example, in a supercharged engine in which both amounts of air are equal, the high-pressure supply of the compression pump can be set as the supercharge amount, and therefore, if the automatic valve suction is closed, the engine becomes a normal low-output engine.

自動弁の開閉制御は、簡単な装置を追加して、電気スイ
ッチで行うことができる。
The opening and closing of automatic valves can be controlled by adding a simple device and using an electric switch.

勿論、楠時に燃料系の制御が必要な事は当然である。Of course, it is necessary to control the fuel system when using Kusunoki.

このように本発明を採用する事に依って、高低二段の出
力要素を具えた自動車特にトラック用機関作出の可能性
を示唆できる。
By employing the present invention as described above, it is possible to suggest the possibility of producing an engine for an automobile, particularly a truck, equipped with two stages of high and low output elements.

第19図以下に示す複数気筒機関は、共用部分等の利得
の為に技術的な変更と、発展と発明が生じている。
The multi-cylinder engine shown in FIG. 19 and below has undergone technical changes, developments and inventions due to the benefits of common parts and the like.

併しながら、これ等の手段は、本発明の範囲を逸脱する
ことが出来ないのであるから、現在の発達した多気筒機
関における学問的、技術釣部−に属して居て、特段の特
許出願の必要性はないもあと考え、之を省略した。
However, since these measures cannot deviate from the scope of the present invention, they belong to the academic and technical field of modern multi-cylinder engines, and are therefore subject to a special patent application. I thought there was no need for this, so I omitted it.

【図面の簡単な説明】[Brief explanation of the drawing]

tJ1図は機関の基本的な作動を示す概略説明の縦断側
面図で、図表−1及び−2の外周矢印符号A−B、C,
D、E、Fの各点につきガス体の流動を理解する為のも
のである。 図表−1及び−2は、弁開閉時期線図と新しい作用を記
入している。 第2図は基本型減圧室と機関の関連を示す縦断面図で、
Aは組合せ例B−Cは減圧室の具体例を示している。 第3図は、前記ABC部の切断部矢視図、第4図は、具
体的な実施例の縦断側面図を示し。 第5図に、シリンダー及びクランク室を含む切断面とデ
ィスク弁筒を取外した状況を示す。 図表−3は、火花点火機関の場合におけるシリンダー室
の作動及びクランク室機能を示す。 第6図、減圧室の構成を示す切断側面、第7図及び第8
図は切断部平面図。 第9図は、減圧行程に依って真空ポンプに変化する排気
タービンを含む機関縦断側面図8第1θ図は、排気ター
ビンに直結した遠心型真空ポンプを組合せた機関の側断
面図で、本発明の実施に際して大型低速機関の原型とな
る基本形である。 第11図、2気筒機関、排気タービンのみの場合の断面
を示す。 第12図、遠心型真空ポンプを2速排気タービンに直結
している要部切断平面図。 813図、排気タービンに圧縮ポンプを緒合し減圧のク
ランク角を具えている2気筒機関の縦断側面図。 第14図、ディスク弁の例、平面略図、第15図、第1
3の発展型、過給機関の側断面図 第16図、減圧ポンプ兼用の排気タービン直結の圧縮ポ
ンプを連結している火花点火機関の縦断側面図。 $18図、上記の発展形、過給式ガンリン機関の例を示
す。 第19図、双方の排気タービンに直結した真空ポンプと
圧縮ポンプの切断平面図、第20図及び第21図には第
1並びに第2気筒の側面略図の断面を示す。 第22図、真空ポンプと圧縮ポンプを分離し、減圧兼用
の排気タービンにi1接した過給式2気筒11pAの系
統断面図。 第23図、第24図はその系統図である。 符号の説明 1燃焼室    20気化器 2 ピストン          21  圧力空気団
3 シリンダー        22  逆止弁又は動
弁機構4 クランク室        23  断熱構
造5 点火栓又は噴射機構    24  気流ソラセ
板6 空気絞り弁        25  ディスク弁
7 空気ノヅル        26  遮断帯制御弁
8 空気源大気圧又は高圧気体 27  蜂の巣型内装
管体9 吸気ポー)         28 1[金型
減圧内装管10  排気ポート29  集合型減圧管室
11  爆発ガス          30  反動若
しくは衝動ターピ12  高圧排出ガス       
   ン機構13  突出ガス団塊       31
  ターボ型軸流又は遠心圧14  排気吐出室   
        縮機15  減圧室若しくは減圧構造
室 32  ターボ勾真空ポンプ16真空域    羽
排気路 、17  高真空発生区域      調 触 媒 室
18  ガス移送路        35  消音機構
19喀、き抜は遮断帯      お 均 圧 室37
  弁駆動歯車又はスブロケツ 42v#気系連通孔ト
構造          43  空気源通気孔間 直
動又は間接連動機構   I 装置給気孔39  真空
タンク        45  連 通 路40  新
気若しくは混合気    柘 高圧空気通路41  気
化器絞り弁       47  真空ヂンプ連通路特
許出願人   松 尾 松 茂 手続補正書(方式) 昭和57年5月26日 特許庁長官 殿 1 事件の表示  昭和57年特許願第4035号2 
発明の名称 真空掃気式2ストロ一クサイクル内燃機関ろ 補正をす
る者 事件との関係   特許出願人 住 所  郵便番号 143 5、補正の対象 1−明細書、発明の詳細な説明。および図面の簡単な説
明の欄」 「図 面」 6、補正の内容 別紙の通り 別  紙 1正の内容詳細 明細書、第72頁5行の「図表−1」を11’Jに訂正
する。 2 同、第72頁6行の「図表−2」を1−TJK訂正
する。 ろ、同、第72頁9行の「図表」を[V及びTJに訂正
する。 4、同、第78頁7行および8行「第6図・・・・・省
略」の全27字を削除する。 5、同、第78頁9行「図表−6」を「第3図」に訂正
する。 6、 同、第78頁13行「図表−1及び2」を「第1
図のV及びTの同符号」に訂正する。 Z 同、第79頁5行「図表−1」を[第一図のVおよ
びT」に訂正する。 8、 同、第80頁11行「図表・・・・・可給町、J
の全34字を「第3図のA 、 B外周の符号F及びD
矢視位置における、〔吹き抜は遮断、逆流過給可、」に
訂正する。 9 同、第91貞12行の「側」を削除する。 10  同、第91頁12行の「図表−1及び−2」啼
「弁開閉時期線図VおよびT」に訂正する。 11  同、第91頁15行の[図表−1及び−2は。 」を「従って;A−Fの縦断面図に対応した、」に訂正
する。 12、同、第92頁1行「前記ABC部の切断部矢視図
、」を「火花点火機関シリンダー室の作動状況を弁開閉
時期線図のAおよびBに、同じくCけ、クランク室予圧
の作動機能を示している。 」に訂正する。 13  同、第92頁5行及び6行「図表−6・・・・
・を示す」全68字を削除する。 14  同、第92頁17行「2速」を「2連」K訂正
する。 15  同、第91頁12行1面略図の」を削除する。 16「第1図および図表1並びに図表2」を別紙第1図
のように補正する。 1Z[第5図A、 B、 Cを別紙第2図のように補正
する。 18.1図表−6」を第3図とする。 19、「第19図」を、A、B矢視%4字を削除した第
19図のように補正する。 20、「第22図」を、A、B矢視% 4字を削除した
第22図のように補正する。
Figure tJ1 is a longitudinal cross-sectional side view showing the basic operation of the engine, and the outer circumferential arrow marks A-B, C,
This is for understanding the flow of gas at each point D, E, and F. Diagrams 1 and 2 show valve opening/closing timing diagrams and new effects. Figure 2 is a longitudinal sectional view showing the relationship between the basic decompression chamber and the engine.
A shows a combination example, and B-C shows a specific example of a decompression chamber. FIG. 3 is a cross-sectional view of the ABC section, and FIG. 4 is a longitudinal sectional side view of a specific embodiment. FIG. 5 shows a cut surface including the cylinder and crank chamber, and a state in which the disc valve cylinder is removed. Diagram 3 shows the operation of the cylinder chamber and the function of the crank chamber in the case of a spark ignition engine. Figure 6, cutaway side showing the configuration of the decompression chamber, Figures 7 and 8
The figure is a plan view of the cut section. FIG. 9 is a longitudinal sectional side view of an engine including an exhaust turbine that changes into a vacuum pump depending on the decompression stroke; FIG. This is the basic form that will serve as the prototype for a large, low-speed engine when implementing this. FIG. 11 shows a cross section of a two-cylinder engine with only an exhaust turbine. FIG. 12 is a cutaway plan view of the main part of a centrifugal vacuum pump directly connected to a two-speed exhaust turbine. Fig. 813 is a vertical sectional side view of a two-cylinder engine in which a compression pump is coupled to an exhaust turbine and a crank angle is provided for pressure reduction. Fig. 14, Example of disk valve, schematic plan view, Fig. 15, 1st
FIG. 16 is a side sectional view of a supercharged engine of the advanced type of No. 3, and a vertical sectional side view of a spark ignition engine connected to a compression pump directly connected to an exhaust turbine that also serves as a decompression pump. Figure $18 shows an example of a supercharged Ganlin engine, which is an advanced version of the above. FIG. 19 shows a cut-away plan view of a vacuum pump and a compression pump directly connected to both exhaust turbines, and FIGS. 20 and 21 show cross-sections of schematic side views of the first and second cylinders. FIG. 22 is a system sectional view of a supercharged two-cylinder 11 pA system in which the vacuum pump and compression pump are separated and connected to an exhaust turbine that also serves as a pressure reducer. FIG. 23 and FIG. 24 are the system diagrams. Description of symbols 1 Combustion chamber 20 Carburizer 2 Piston 21 Pressure air group 3 Cylinder 22 Check valve or valve mechanism 4 Crank chamber 23 Heat insulation structure 5 Ignition plug or injection mechanism 24 Air flow control plate 6 Air throttle valve 25 Disk valve 7 Air Nozzle 26 Shutoff zone control valve 8 Air source atmospheric pressure or high pressure gas 27 Honeycomb-shaped internal pipe body 9 Intake port) 28 1 [Mold decompression internal pipe 10 Exhaust port 29 Collective type decompression pipe chamber 11 Explosive gas 30 Reaction or impulse terpi 12 high pressure exhaust gas
Mechanism 13 Protruding gas lump 31
Turbo type axial flow or centrifugal pressure 14 Exhaust discharge chamber
Compressor 15 Decompression chamber or depressurization structure chamber 32 Turbo gradient vacuum pump 16 Vacuum area Blade exhaust passage, 17 High vacuum generation area Adjustment catalyst chamber 18 Gas transfer passage 35 Silence mechanism 19, cutout is cut-off zone and pressure equalization chamber 37
Valve drive gear or subrocket 42v# Air system communication hole structure 43 Between air source vents Direct motion or indirect interlocking mechanism I Device air supply hole 39 Vacuum tank 45 Connection passage 40 Fresh air or mixture 41 High pressure air passage 41 Carburetor throttle Valve 47 Vacuum pump communication passage patent applicant Shigeru Matsuo Procedural amendment (method) May 26, 1980 Commissioner of the Japan Patent Office 1 Indication of case Patent application No. 4035, 1988 2
Title of the invention: Vacuum scavenging two-stroke cycle internal combustion engine Relationship with the case of the person making the amendment Patent applicant address Zip code 143 5. Subject of amendment 1 - Specification, detailed explanation of the invention. and a column for a brief explanation of the drawings.''``Drawings.'' 6. As per the attached sheet of amendments, ``Figures-1'' on page 72, line 5 of Attachment 1 Detailed Description of Contents is corrected to 11'J. 2 Same, page 72, line 6, “Chart-2” is corrected by 1-TJK. Ibid., page 72, line 9, "Figures and Tables" is corrected to [V and TJ. 4. Delete all 27 characters in "Figure 6...omitted" on page 78, lines 7 and 8. 5. Same, page 78, line 9, "Figure 6" is corrected to "Figure 3." 6. Same, page 78, line 13, “Figures 1 and 2” were changed to “1st
Corrected to ``same numerals for V and T in the figure''. Z Same, page 79, line 5, ``Chart-1'' is corrected to [V and T in Figure 1''. 8. Ibid., p. 80, line 11 “Charts... Kagemachi, J
All 34 characters of ``A, B outer circumference symbols F and D in Figure 3
Corrected to ``[Atrium is blocked, backflow supercharging is possible]'' at the arrow position. 9 Same as above, delete "side" in line 12 of 91st Tei. 10 Same, page 91, line 12, “Figures 1 and 2” is corrected to “Valve opening/closing timing diagrams V and T.” 11 Ibid., page 91, line 15 [Figures 1 and 2]. " is corrected to "Therefore; it corresponds to the vertical cross-sectional view of A-F." 12, same, page 92, line 1, ``A cutaway view of the ABC part,'' was changed to ``The operating status of the spark ignition engine cylinder chamber is shown in A and B of the valve opening/closing timing diagram. "indicates the operating function of the machine." 13 Ibid., p. 92, lines 5 and 6 “Figure 6...
・Delete all 68 characters. 14 Same, page 92, line 17, correct "2nd gear" to "2 consecutive" K. 15 Ibid., page 91, line 12, schematic diagram on page 1 is deleted. 16 "Figure 1, Figure 1, and Figure 2" should be corrected as shown in attached Figure 1. 1Z [Correct Figure 5 A, B, and C as shown in attached Figure 2. 18.1 Diagram-6” is referred to as Figure 3. 19. Correct "Figure 19" to look like Figure 19 by deleting %4 characters in the A and B arrows. 20. Correct "Fig. 22" to look like Fig. 22 by deleting %4 characters in the direction of arrows A and B.

Claims (1)

【特許請求の範囲】 火花点火式、若しくは圧縮点火式等の往復ピストン型、
又は回転ピストン型2ストロークサイクル式内燃機関に
おいて。 シリンダー残留気体を消滅させるために。 減圧作用目的の空間区域を内蔵する。閉鎖包囲形の排気
ガス通路を、排気ポート、若しくは其の下流適位置に触
般若しくは連設して。 排気吹き出し始めから給気始めまでのクランク角度を1
6度以上の適値に拡巾することを含む、前記、減圧空間
域の長さ及び容積、並びにその機能構成に因って。 減圧空間域内を突出する。排気ガス圧力の噴流エネルギ
ーがシリンダー内を高真空に到達させる掃気能力の達成
に必要な逸走距離並びに時間帯を確保させることを特徴
とする内燃機関。 即ち 減圧空間域を逸走する排気ガス圧力団塊の、突出噴流を
根源とし、その排気ガス団の動慣性エネルギーを吸引排
出作用に変換し機能的に顕現派生させることに依って、
排気吹き出し段階に従って大気圧に降下したシリンダー
内圧を、前記作用を協働させて、給気ボート開までには
高真空に到達させ残留有害気体を消滅させる真空掃気方
法。 ■ 逸走する高圧排気吹−き出しガス団塊の、断面方向
の膨張を制限するため、複合分割内装管等の小区画断面
構成とすること。 従って、逸走方向の高圧高温度の突出力を強化加速する
構造を具へた排気通路の適応距離を、固体ピストン様に
突進させる事に依って。 高速化した、噴流ガス団塊の動慣性エネルギーに依る真
空ポンプ作用を派生させ。 排気吹き出しに・依って大気圧に降下したシリンダーの
残存気圧を、排気逸走に因って協働し派生形成は渦巻形
等の必須容積形状を備へ、上流並びに下流接続面以外を
密封包囲体構成とし、要すれば、外気断熱を構造した排
気通路を内装した減圧室を、排気ポートまたは排気吐出
室に触接し、排気系に連設した。 火花点火式若しくは圧縮点火式、2ストロ一クサイクル
式内燃機関の残留気を排出消滅して有効気体充填率を高
める装置。 ■ シリンダーの排気ポートに連接した排気吐出室と、
蜂の巣管若しくは複合管内装の減圧室との接続部を末広
型とし、末広型内部に気流ソラセ板構造を設けて、排気
吹き出しガス団塊並びに潜在圧力波流れの分配装置とし
、大径の減圧室通路の分割区画に均等に配分し逸走させ
るようにした、内燃機関における高真空排気のための排
気流体分配装置。 Φ 内燃機関に連設される排気系において。 排気吐出室に触接若しくは連設した減圧室の断面積をピ
ストン面積の古を下限とする適値に定め、排出ガス逸走
方向の長さ増加を含めて、その内容積を行程容積の10
倍以上の適値とし、ガス膨張制限のため、゛減圧室内を
複数に区切る集合管構造とし、更に要すれば、外気との
断熱構造を含み、下流に消音機構其他を連設した内燃機
関の排気装置。 ■ 噴出する排気吹き出し高熱ガス流の突出力と、その
ガス団塊を根源として排気系を逸走する動慣性エネルギ
ーと、その作動が派生する真空吸引排出作用を強化し、
且つ、その吸引作用を継続的に維持して、シリンダー内
を負圧化し高真空に到達させ残留ガスを消滅させる真空
ポンプ機能を発生させる為めに。 排気、吸気ポー)Q閘のクランク角度を、25度以上の
適値に拡巾し、下限をピストン直径の1以上とした排気
ガス突出路断面と、所定回転数に関連する適正長さと内
容積を具へた減圧室を、排気ポートに触接し若しくは排
気吐出室に連設した。 2ストロ一クサイクル式内燃機関を回転させる装置。 ■  2ストロ一クサイクル式内燃機関において。 排気吹き出しのガス突出路断面を、複数区画に分割し、
または複数区両型内挿管に依って、或は1排気吐出室以
下を複数の集合管等の分割少区画断面に構成して、通過
ガス流直径を制限し、膨張減圧を規制して、逸走方向の
突出力を強化した大径の減圧室とすることで、噴流ガス
団塊の固体ピストン様の吸引作用を激発させ、排気吹き
出しに依って発生するシリンダー負圧を【に高真室に到
達させる為めの機械作動要因として機能させる状態を、
吸気ボート開までの間、及び吸気流がシリンダーに充満
して排気ポートから吹き抜けようとする適期までの間を
、継続して維持させることを含む、高真空排気手段によ
って残留気体を激減させる方法、並びにその装置。 ■ シリンダーと、上死点と下死点の間を往復するピス
トンと、下降行程の問を過ぎたシリンダ側面に開口して
いる排気ポートと。 排気ポート開俵、25度及至65度以内のクランク角を
隔て、開口している吸気ポートと。 排気ポートに触設した排気吐出室に続く排気系に設けた
減圧室、又は排気タービン回転翼を備へた減圧機構室等
を含む2サイクル機関を回転させる方法を基本とし、排
気吹き出しに続く排出気体の動慣性が派生する作動によ
って、シリンダー内を高真空に到達させて残留気体を消
滅させること、有圧新気若しくは混合気を、その真空空
間に突入させて、充てん時間の短縮及び充填効率を向上
させる事を特長とする、2ストp−クサイクル式内繰働
1!alt+開七七ル!→算 ■ シリンダーと、上死点と下死点の間を往復するピス
トンと、下降行程の1を過ぎたシリンダー側壁に開口し
ている排気ポートと、更に20度及至65度以内のクラ
ンク角を隔て、開口している吸気ポートと。 前記排気ポートに触接した排気吐出室壁面に設けた逆止
弁等の自動弁若しくはディスク弁等の回転弁と、続く下
流に減圧構造室又はその作用を兼用できるアフターバー
ン室とを設け。 排気吹き出し終りに発生する比較的高い真空によって起
動する前記自動弁が、外気を導入して空気による吹き抜
は遮断帯域を排気吐出室内に生成し、下死点を過ぎて上
昇するピストンが排気ポートを閉じるまでの間、差圧に
従って流入を続ける遮断帯保持のための空気流が、充満
している排気吐出室を経て上流及び下流に一部を分流し
、従って排気吐出室は、シリンダーに充填した混合気若
しくは新気が排気ポートから吹き抜ける現象を防止する
管制弁を構成する圧力空間を形成する段階と。 管制弁としての封止作用を発揮した充満空気が続く排出
気の爆発ガスに含まれている未燃焼分のアフターバーン
のための二次空気源として作用す會る こ と。 従って、有害残留気を消滅し、充堺率を向上し且つ生ガ
スの吹き抜けを防止すると共に、アフターバーンによっ
て排出ガス清浄化を図ることを特徴とす、る。2ストロ
一クサイクル内燃機関を回転させる方法。 ■ 2ストロ一クサイクル内燃機関を回転させる行程に
おいて。 下降するピストンの上端が排気ポートに臨み突出し始め
る排気吹き出しガス団塊が、排気吐出まを充満し壁面に
設けた通気口を通り減圧室を経て下流へ逸走し始める段
階と。 更に下降するピストンが吸気ポートを開くまでのクラン
ク角度を拡巾し、その間に減圧室内を逸走し続ける噴流
ガス団塊の動慣性をエネルギー源として派生する真空ポ
ンプ機能が、主としてシリンダー内を所望高真空度に到
達させ残留気体を激減させる段階と。 更に下降するピストンbt開く吸気ポートから、有圧の
新気若しくは混合気が真空状態のシリンダーに突入する
段階と。 大気、或は他の空気源から有圧空気を突入させ充満させ
て、充てん作動が進行しているシリンダー内圧よりも高
圧の気体による吹き抜は遮断帯を、充てん吸入気が排気
ポートに到達する直前までに、排気吐出室内に生成させ
る段階と。 下死点を過ぎ上昇し始めたピストンが、吸気ポートを閉
じ、更に排気ポートを閉じるまで、吹き抜は遮断帯域の
気圧を保持、させる段階と。 従って、圧を保ち続けるための背圧の利用、若しくは下
流の開口部を狭搾し又は閉鎖する弁構成とすること。更
に要すれば、シリンダーに逆流し又は排気系へ流出する
量を補ふため、若しくは、過給目的に因り、有圧空気の
圧入を制御する事を含む、2サイクル式内燃機関を回転
させる方法。 ・ 内燃機関の、排気ポートに連設した減圧構造室に、
排気噴流ガス団塊の圧力エネルギーを駆動源とする。反
動式若くは衝動式の軸流又は遠心型タービンのランナー
若くはインペラーを内装し、排気吹き出しに因ってター
ビンを貫流するガスエネルギーを駆動源として、翼回転
を極限までに高速化しその真揚力を高めながら、減圧構
造室を含む排気系を突出逸走するガス排出作動に依って
、シリンダー内を負圧化する段階と。 排気吹き出し終りによる駆動源消滅の結果、真揚力は吸
引力作用に自発変換し真空ポンプ機能を発揮し、従って
瞬間的経過により所望の高真空度に到達する段階とに依
る減圧高真空排気のサイクルを皇統して繰返す排気ター
ビン構成を具へた減圧構造を、排気ポートに触接する排
気系に連設し。 た。2ストロ一クサイクル内燃機関を回転させる装置。 ■ 排気吹き出しが始り。 噴流し始めた排出ガス団塊による、動慣性エネルギーを
駆動源として、排気吐出室若しくは之に続く減圧室に連
設した軸流式又は遠心式タービンのランナー若しくはイ
ンペラーを回転させ、貫流する排出ガスエネルギーに依
って極限までにタービン翼揚力を高めながら突出を続け
るエネルギーが、回転力を増強し、且つ、その回転エネ
ルギーを蓄積しり\高速化する段階と。 固体ピストン様に排気系を逸走し続けるガス団塊の勤惰
性に従かう吸引作用に因ってシリンダー内を負圧化する
段階と。 排気吹き出し終りと共に駆動源が消滅し、従って、負圧
化し希薄となった結果に依る流体抵抗の減少のために、
タービン翼揚力が吸引力に自動変換し真空ポンプ機能を
発生する結果と、蓄積した回転動慣性の放出が、タービ
ン翼の高速回転を附勢継続し更に下降するピストン運勢
に従って吸気ボートを開き吸気流の突入が進行する適期
まで、負圧化している残留ガスの吸引排出を続け、シリ
ンダー内を所望の高真空度に到達させる段階に依る。 排気行程の作動が、残留ガスの悪謬響を払拭して充填効
率を高め、続いて、排気ポートに触接した回転弁等の動
弁構造の閉鎖によって排気系下流との連通を遮断し、シ
リンダーに突入し充満している新気若しくは混合気の吹
き抜けを防止する事を特徴とする、2ス)a−クサイク
ル内燃機関を回転させる方法。 O下降行程の漬を過ぎた側面に排気ポートを具へ且つボ
ートに触接して排気吐出室を設けたシリンダーと。上死
点と下死点の間を往復するピストンと。下降するピスト
ンに因る排気吹き出し始めの後、20度乃至65度のク
ランク角を隔て\開口している吸気ボートと。排気吐出
室下流側に設けたディスク弁等の回転弁若しくはきのこ
弁等によって、排気系下流若しくは、他の空気源との連
通、遮断を適期に行はせる装置を備へた2ストロ一クサ
イクル内燃機関において。 排気系下流に例へば軸流式又は遠心式タービンのランナ
ー若しくはインペラー等の排気タービン回転翼を設は排
気吹き出しの噴流ガス圧力を駆動源とする回転原動装置
とし、その回転軸にターボ圧縮機を連設し、また、要す
れば真空ポンプ装置を接続して有圧空気源若しくは真空
吸引発生源とし。クランク軸に同期する回転弁の作動に
因って、行程の適期に排気吐出室に出入する気体流各個
の配分を行はせること、即ち排気吹き出し終りに際して
、排気タービン翼に発生する真空吸引力と、真空ポンプ
装置とを併用し高真空達成と残留気排除の時間短縮を図
9、給礒行程においては、圧縮ポンプ出力側を吸気ボー
ト側に分流して有圧給気の手段とし、要すれば過給する
ことを含む、2ストロ一クサイクル式内燃機関。 0 シリンダーと、上死点と下死点の間を往復するピス
トンと、下降行程の壺を過ぎた位置のシリンダー側面に
開口している排気ポートと、排気系下流又は他の空気源
等との連通遮断を適期に管制する弁機構例へばディスク
バルブ等を具へた排気吐出室と、之に続く下流排気系に
設けた減圧構造室若しくは排気タービン回転翼等のポン
プ装置等ヲ備へた2ストロ一クサイクル式内燃機関にお
いて。 下流との連通孔を開放しているディスクパルプのボート
を通る、排気吹き出しガス団塊の噴流エネルギーをシリ
ンダー負圧の発生源として利用しつ\、そのエネルギー
を回転力等の機械力に変換し蓄積し、その一部又は全部
を真空ポンプに香川し、若しくは蓄積分を利用する残留
気体の消滅装置 置と。 回動しているディスクに因る給気ポート開き関連の適期
に、開放しているディスクボートの連通孔を縮少し苦し
くは閉鎖すると共に、排気ポートを境界として上流シリ
ンダーと連通している排気吐出室に圧力空気を突入させ
て、有圧気体による吹き抜は遮断帯域を生成させるため
の空気源装置と。 、 従って、充填気体量の増強と、更には過給目的によ
る多量の空気給送手段、例へば排気タービン回転軸上に
直結した圧縮ポンプ等の装置併用を含み、吸気ボート開
に始まる通常の混合気装、置着しくは新気給送装置を具
へ、クランク軸回転に同期させピストン行程位置に連動
して排気吐出室に設けたディスクバルブの閉鎖、開放、
連通を管制させる装置を含み。 上流吸気ボートを通り、シリンダーに突入する給気流主
体の充填手段に併行して、給気流の慣性とピストン速度
の不整合等に起因する高速回転時の容積効率低下補正、
及び吹き抜は防止、並びに有害な残留気体を消滅せしめ
て、充填効率を向上し出力を増大するため、排気吐出室
から上流へ逆流させて充填を強化する、逆流給気、着し
くは逆流過給法を特徴とする、内燃機関を回転させる装
置。 [相] 排気吹き出し終りの段階で、大気圧に降下した
シリンダー内圧を、排気逸走エネルギーを利用する減圧
行程を介在させる事に依って所望の高真空に到達させる
減圧室。着しくは排気タービン等を含む機械装置に依る
減圧構造室を具へ。 排吸気ポート間のクランク角を適値に拡巾して大気圧に
降下した後のピストン下降のクランク角即ち、時間の経
過を、減圧排気手段として介在させて高真空に到達させ
残留気体を消滅させる。減圧真空排気を特徴とする2ス
)a−クサイクル式内燃機関において。 排気ポートに触接した排気吐出室壁面に設けた、ディス
ク型又はロータリー型弁若しくはキノコ弁等の管制弁に
依って下流排気系に連通する排気通路を設定し、排気吹
き出し前並びに終りを含み、疋に減圧真空排気の進行中
は弁を開放して、有圧排気ガスの排出並びに残留気体を
消滅させる段階と。 吸気ボート開俵の適期、例へばシリンダーに突入した混
合気、若しくは新気が排気ポートに達する直前に、また
は、有圧空気を逆止弁を経て直接に若しくは、前記弁構
成に設けた連通孔等に依って排気吐出室に突入させ、吹
き抜は遮断帯域を生成させる間の適期に。開放している
管制弁動弁機構によって、上流シリンダー並びに下流排
気系の連通孔面積を狭搾し、または締切り遮断する段階
と。 従って、下死点を通過したピストンが上昇を始めた時点
から圧縮行程が開始され、即ち、低い圧縮の間は前記デ
ィスク型又はロータリー型若しくはキノコ弁、或は有圧
空気団塊によって構成されている遮断帯域の封止作用を
発揮させ、更に要すれば、その空気圧並びに量を増大し
て過給手段を機能させることを含み。続いて圧縮圧が高
まる排気ポート閉以後は、ピストン弁が上流側を封止す
る事によって、包囲空間の排気系を形成するために、続
く排気サイクルにおいて、添加される吹き抜は遮断帯の
有圧空気が二次空気源として減圧室に滞留してアフター
バーナ化し、未燃焼ガスを清浄化する段階を含み、従っ
て、排気吹き出しに減圧行程を介在させ、且つ、有圧気
体に依る吹き抜は遮断弁と、要すれば過給手段を併有さ
せた排気管制弁を装置の要部として、減圧真空排気法を
確立した。 火花点火式若しくは圧縮点火式、往復ピストン型または
回転ピストン型、2ストロ一クサイクル内燃機関を回転
させる方法。 [相] 混合気吸入式、若しくは燃料噴射式クランク室
予圧!!12ストロークサイクル内燃機関において。 シリンダーと。 上死点と下死点の間を往復するピストンと、下降行程の
責を過ぎたシリンダー壁面に開口している排気ポートと
。 更に20度及至65度のクランク角を隔て開口している
吸気ボートと。 前記、排気ポートに触接した排気吐出室壁面の耐熱製逆
止弁等の自動弁と。 続く下流に減圧構造室、若しくはその作用を兼ねるアフ
ターバーン室ヲ備へ。 爆発ガスの膨張によって下降するピストン上端が排気ポ
ートを開放し、噴流し始める排気吹き出しガス団塊が排
気吐出室を充満しっ\、壁面の通気連通孔を経て、下流
に連設した減圧構造室を固体ピストン様に突出、逸走す
る段階と。 排気吹き出し終りを含む、逸走するガス団塊の勤惰性を
根源とする真空ポンプ作用、若しくは別途機械装置等に
よって、主としてシリンダー内を所望高真空に到達させ
るため、前記クランク角の適値選定によって吸気ポート
開を遅らせる手段が、残留気体を激減せしめる段階と。 圧縮行程におけるピストン上昇によって発生する下面の
吸引作用のため、既にクランク室及び吸入連通路に充満
している混合気若しくは新気が、排気吹き出しに続いて
、下降するピストン下面の圧縮作用を受けて有圧化する
段階と。 艶に下降して下死点に近付くピストンが吸気ポートを開
く段階と。 排気ポートを境界に、高真空に到達したシリンダーに連
通している排気吐出室壁面に設けた、比較的高い真空に
よって起動する設定の自動弁が作・動して外気を導入し
、空気圧による吹き抜は遮断帯域を排気吐出室に生成し
、管制弁としての封止力を発揮するまでに充填を進行さ
せる段階と。 前記、クランク室に充満した有圧混合気若しくは新気が
、主吸気流移送路から、微減ボート開に因って、シリン
ダーに突入し、充填が進み、排気ポートに向ふ段階と。 下死点を過ぎ上昇するピストンが吸気ポートを閉じ、更
に排気ポートを閉じるまでの間を、差圧に従って、排気
吐出室に流入を続ける遮断帯空気圧保持の空気流が、上
流シリンダー及び下流減圧構造室にその一部を分流し、
従って連通孔の排気ポートからシリンダーに逆流した分
流空気が、排気ポートに向ふ主吸気流の先端と衝突し合
流して充填率を高める段階と。 この時に排気吐出室に充満している遮断帯空気圧は、吹
き抜は現象を防止する管制弁としての封止作用を発揮す
るのみに止まらず、続く爆発サイクルの排出ガスに含ま
れている有害未燃焼分のアフターパ−ンの二次空気源と
しての効果を含み、更に、主吸気流と逆流空気との合流
段階においても、シリンダー内圧は高速時を含めて、遮
断帯気圧よりも低く、従って上昇するピストンが排気ポ
ートを閉じるまで、自動弁からの導入気圧を別途機械的
手段によって高−める事を含め、即ち、遮断帯空気圧が
高い間は、下死点からの上昇は総て圧縮行程の作動であ
る事を特徴とし、有害残留気体を消滅して充填率を向上
し、生ガスの吹き抜けを防止し、且つアフターパーンに
よっテ排出ガスの清浄化を図る段階とに依って、省燃費
と高出力と、低速時の不整回転防止と有効なエンヂンブ
レーキを目的とする。火花点火式、若しくは圧縮点火式
往復ピストン型又は回転ピストン式の2ストー−クサイ
クル内燃機関を回転させる方法並びに装置。 [相] 排気ポートに続く排気吐出室に設けた回転型排
気管制弁等に依って、下流排気系との連通又は遮断を行
う場合の機械的摺動部の潤滑手段として、高圧空気を隙
間容積に圧入すること、並びに、回転に同期しサイクル
の適期に空気圧を変化させて圧入気を断続し、且つ要部
を冷、却した空気流を排気系に吹き抜けさせる事を含む
。 内燃機関排気管制弁の回転部及び摺動機構部の潤滑方法
[Claims] Reciprocating piston type such as spark ignition type or compression ignition type,
or in a rotating piston two-stroke cycle internal combustion engine. To eliminate residual gas in the cylinder. Contains a spatial area for the purpose of reducing pressure. A closed-enveloping exhaust gas passage is connected to or connected to the exhaust port or at a suitable position downstream thereof. The crank angle from the start of exhaust air blowing to the start of air supply is 1
Depending on the length and volume of the decompression space area and its functional configuration, including widening to an appropriate value of 6 degrees or more. Protrudes into the decompression space area. An internal combustion engine characterized by securing an escape distance and a time period necessary for the jet energy of exhaust gas pressure to achieve scavenging ability to reach a high vacuum inside the cylinder. That is, by taking the protruding jet flow of the exhaust gas pressure lump escaping the decompression space region as its source, and converting the kinetic inertia energy of the exhaust gas lump into suction and discharge action, and functionally manifesting it,
A vacuum scavenging method in which the cylinder internal pressure, which has dropped to atmospheric pressure during the exhaust blowing stage, reaches a high vacuum by the time the air supply boat is opened by cooperating with the above actions to eliminate residual harmful gases. ■ In order to limit the expansion of the escaping high-pressure exhaust gas lump in the cross-sectional direction, use a small section cross-sectional configuration such as a composite split inner pipe. Therefore, by making the exhaust passage have a structure that strengthens and accelerates the high-pressure, high-temperature thrust force in the escape direction, the appropriate distance is made to advance like a solid piston. The vacuum pump action is derived from the kinetic inertial energy of the jet gas mass at high speed. The residual pressure in the cylinder, which has dropped to atmospheric pressure due to the exhaust blowout, is combined with the exhaust escape to form an essential volume shape such as a spiral, and a sealed enclosure except for the upstream and downstream connection surfaces. If necessary, a depressurization chamber containing an exhaust passage with external air insulation is connected to the exhaust port or the exhaust discharge chamber and connected to the exhaust system. A device that increases the effective gas filling rate by discharging and extinguishing residual air in spark ignition, compression ignition, or two-stroke cycle internal combustion engines. ■ An exhaust discharge chamber connected to the cylinder exhaust port,
The connecting part with the decompression chamber inside the honeycomb pipe or composite pipe is of a wide-end type, and an air flow plate structure is provided inside the wide-end type to serve as a distribution device for the exhaust gas mass and potential pressure wave flow, and a large-diameter decompression chamber passageway is installed. An exhaust fluid distribution device for high vacuum exhaust in an internal combustion engine, which evenly distributes and diverts fluid to divided compartments. Φ In the exhaust system connected to the internal combustion engine. The cross-sectional area of the decompression chamber that is in contact with or connected to the exhaust discharge chamber is set to an appropriate value with the piston area as the lower limit, and its internal volume, including the increase in length in the exhaust gas escape direction, is set to 10 of the stroke volume.
In order to limit gas expansion, a collecting pipe structure is adopted that divides the decompression chamber into multiple sections, and if necessary, an insulating structure with respect to the outside air is required, and a silencing mechanism and other equipment are installed downstream of the internal combustion engine. Exhaust device. ■ Strengthen the projecting force of the high-temperature gas flow ejected from the exhaust gas, the kinetic inertial energy that escapes from the exhaust system due to the gas lumps, and the vacuum suction and discharge action that is derived from this operation.
Moreover, in order to generate a vacuum pump function that continuously maintains the suction action to create a negative pressure inside the cylinder, reach a high vacuum, and eliminate residual gas. Exhaust/intake port) The crank angle of the Q lock is widened to an appropriate value of 25 degrees or more, and the cross section of the exhaust gas protrusion path with a lower limit of 1 or more of the piston diameter, and the appropriate length and internal volume related to the predetermined rotation speed. A depressurized chamber with a decompression chamber was connected to the exhaust port or connected to the exhaust discharge chamber. A device that rotates a two-stroke cycle internal combustion engine. ■ In a two-stroke cycle internal combustion engine. Divide the cross section of the gas outlet path of the exhaust outlet into multiple sections,
Alternatively, by using a multi-section internal tube, or by configuring one exhaust discharge chamber or less into a divided small section section such as a plurality of collecting pipes, the diameter of the passing gas flow is limited, and the expansion and depressurization is regulated. By creating a large-diameter decompression chamber with enhanced directional thrust force, the solid piston-like suction action of the jet gas mass is activated rapidly, and the cylinder negative pressure generated by the exhaust blowout reaches the high vacuum chamber. The condition that functions as a mechanical operating factor for
A method of drastically reducing residual gas by high vacuum evacuation means, which includes continuously maintaining the intake air until the intake boat opens and until the appropriate time when the intake air fills the cylinder and blows out from the exhaust port; and its equipment. ■ A cylinder, a piston that reciprocates between top dead center and bottom dead center, and an exhaust port that opens on the side of the cylinder after it has passed the downward stroke. The exhaust port is open, and the intake port is open, separated by a crank angle of within 25 degrees and 65 degrees. The basic method is to rotate a two-stroke engine that includes a decompression chamber installed in the exhaust system following an exhaust discharge chamber attached to the exhaust port, or a depressurization mechanism chamber equipped with an exhaust turbine rotor. Through the action derived from the kinetic inertia of the gas, the inside of the cylinder reaches a high vacuum and residual gas disappears, and pressurized fresh air or mixture is forced into the vacuum space to shorten the filling time and improve filling efficiency. A 2-stroke p-cycle system featuring improved performance 1! alt + Kai77ru! →Calculation■ The cylinder, the piston that reciprocates between top dead center and bottom dead center, the exhaust port that opens on the side wall of the cylinder past the first point of the downward stroke, and the crank angle within 20 degrees and 65 degrees. Separated from the open intake port. A rotary valve such as an automatic valve such as a check valve or a rotary valve such as a disk valve is provided on the wall surface of the exhaust discharge chamber in contact with the exhaust port, and a pressure reduction structure chamber or an afterburn chamber that can serve the same function is provided downstream. The automatic valve, activated by the relatively high vacuum generated at the end of the exhaust blowout, introduces outside air and the air blowout creates a cutoff zone in the exhaust discharge chamber, and the piston rising past bottom dead center is connected to the exhaust port. Until the cylinder is closed, the air flow for maintaining the barrier band continues to flow in according to the differential pressure, and part of it is divided upstream and downstream through the exhaust discharge chamber, which is filled with air, so that the exhaust discharge chamber fills the cylinder. forming a pressure space constituting a control valve that prevents the mixed gas or fresh air from blowing through from the exhaust port; The filled air that has performed the sealing action as a control valve acts as a secondary air source for the afterburning of unburned components contained in the explosion gas of the subsequent exhaust gas. Therefore, the present invention is characterized in that it eliminates harmful residual air, improves the filling rate, prevents raw gas from blowing through, and purifies the exhaust gas by afterburning. A method of rotating a two-stroke cycle internal combustion engine. ■ In the process of rotating a two-stroke cycle internal combustion engine. The stage where the upper end of the descending piston faces the exhaust port and begins to protrude, filling the exhaust outlet and escaping downstream through the vent provided in the wall and through the decompression chamber. Furthermore, the descending piston widens the crank angle until the intake port opens, and during this time, the vacuum pump function derives from the dynamic inertia of the jet gas lump that continues to escape inside the decompression chamber as an energy source, mainly creating the desired high vacuum inside the cylinder. and a stage where the residual gas is drastically reduced. A step in which pressurized fresh air or air-fuel mixture enters the vacuum cylinder through the opening of the intake port as the piston bt moves downward. Pressurized air rushes in from the atmosphere or other air source to fill the cylinder, and the gas at a higher pressure than the internal pressure of the cylinder where the filling operation is progressing creates a cutoff zone, and the filled intake air reaches the exhaust port. Just before the exhaust gas is generated in the exhaust discharge chamber. The air vent maintains the pressure in the cutoff zone until the piston, which has passed bottom dead center and begins to rise, closes the intake port and then closes the exhaust port. Therefore, use back pressure to maintain the pressure, or use a valve configuration that constricts or closes the downstream opening. Furthermore, if necessary, a method for rotating a two-stroke internal combustion engine including controlling the injection of pressurized air to compensate for the amount flowing back into the cylinder or flowing out to the exhaust system, or for supercharging purposes. .・In the decompression structure chamber connected to the exhaust port of the internal combustion engine,
The driving source is the pressure energy of the exhaust jet gas mass. A reaction type or impulse type axial flow or centrifugal type turbine is equipped with a runner or an impeller, and uses the gas energy flowing through the turbine due to the exhaust air as the driving source to accelerate blade rotation to the maximum speed and generate its true lift. a step of creating a negative pressure in the cylinder by ejecting gas that escapes from the exhaust system including the decompression structure chamber while increasing the pressure; As a result of the disappearance of the driving source at the end of the exhaust blowout, the true lift force spontaneously converts into suction force and performs the vacuum pump function, thus achieving the desired high degree of vacuum in an instantaneous process.A cycle of depressurization and high vacuum evacuation. A depressurizing structure with an exhaust turbine configuration that repeats this process is connected to the exhaust system that contacts the exhaust port. Ta. A device that rotates a two-stroke cycle internal combustion engine. ■ It starts with an exhaust blowout. Exhaust gas energy flows through the exhaust gas mass by rotating the runner or impeller of an axial or centrifugal turbine connected to the exhaust discharge chamber or the decompression chamber that follows it, using the kinetic inertia energy generated by the exhaust gas lump that has begun to flow as a driving source. As a result, the energy that continues to protrude while increasing the lift of the turbine blades to the maximum increases the rotational force, and the rotational energy is accumulated and the speed increases. A stage in which the pressure inside the cylinder is reduced to negative due to the suction action that follows the force of the gas lumps that continue to escape from the exhaust system like a solid piston. The driving source disappears as soon as the exhaust blows out, and the fluid resistance decreases due to the negative pressure and dilution.
The lift force of the turbine blades is automatically converted to suction force to generate a vacuum pump function, and the release of the accumulated rotational inertia continues to energize the turbine blades to rotate at high speed, opening the intake boat according to the downward movement of the piston and increasing the intake air flow. This depends on the step of continuing to suction and discharge the residual gas under negative pressure until the appropriate time when the intrusion progresses to reach the desired high degree of vacuum inside the cylinder. The operation of the exhaust stroke eliminates the negative effects of residual gas and increases the filling efficiency, and then the valve mechanism such as a rotary valve that contacts the exhaust port is closed to cut off communication with the downstream exhaust system, A method for rotating a 2-stroke cycle internal combustion engine, characterized by preventing blow-by of fresh air or mixture filling the cylinder. A cylinder with an exhaust port and an exhaust discharge chamber in contact with the boat on the side past the dip in the downward stroke. A piston that reciprocates between top dead center and bottom dead center. After the exhaust gas starts blowing out due to the descending piston, the intake boat opens at a distance of 20 to 65 degrees of crank angle. A two-stroke cycle equipped with a device that connects and shuts off communication with the downstream exhaust system or other air sources at appropriate times using a rotary valve such as a disk valve or a mushroom valve installed downstream of the exhaust discharge chamber. In internal combustion engines. For example, an exhaust turbine rotor such as the runner or impeller of an axial flow type or centrifugal turbine is installed downstream of the exhaust system as a rotary power device whose driving source is the jet gas pressure of the exhaust blowout, and a turbo compressor is connected to the rotating shaft. If necessary, connect a vacuum pump device to use as a pressurized air source or vacuum suction source. The operation of a rotary valve synchronized with the crankshaft distributes each gas flow in and out of the exhaust discharge chamber at appropriate times in the stroke, that is, the vacuum suction force generated on the exhaust turbine blades at the end of exhaust blowing. Figure 9 shows how to achieve a high vacuum and shorten the time to remove residual air by using a vacuum pump device in combination with a vacuum pump device. A two-stroke, single-cycle internal combustion engine that includes supercharging. 0 Connecting the cylinder, the piston that reciprocates between top dead center and bottom dead center, the exhaust port that opens on the side of the cylinder past the pot on the downward stroke, and the downstream exhaust system or other air source, etc. An example of a valve mechanism that controls communication cut-off in a timely manner is a two-stroke system that has an exhaust discharge chamber equipped with a disc valve, etc., and a pressure reduction structure chamber installed in the downstream exhaust system that follows this, or a pump device such as an exhaust turbine rotor. In a one-cycle internal combustion engine. The jet energy of the exhaust blown gas lump passing through a disc pulp boat with an open communication hole with the downstream is used as a source of negative pressure in the cylinder, and the energy is converted into mechanical power such as rotational force and stored. Then, a part or all of it is sent to a vacuum pump, or a residual gas extinguisher is installed to utilize the accumulated amount. At the appropriate time when the air supply port opens due to the rotating disc, the communication hole of the open disc boat is contracted or closed, and the exhaust discharge is communicated with the upstream cylinder with the exhaust port as the boundary. An air source device for injecting pressurized air into the chamber and creating a cutoff zone using the pressurized gas. Therefore, it is necessary to increase the amount of charged gas and also use a large amount of air supply means for supercharging purposes, such as a compression pump directly connected to the rotation shaft of the exhaust turbine. Closing and opening of the disc valve provided in the exhaust discharge chamber in synchronization with the rotation of the crankshaft and in conjunction with the piston stroke position.
Includes a device to control communication. In parallel with the charging method, which is mainly based on the supply air flowing through the upstream intake boat and into the cylinder, it also compensates for volumetric efficiency decreases during high-speed rotation due to mismatches between the inertia of the supply air flow and the piston speed, etc.
In order to prevent air blowouts and eliminate harmful residual gases, improve filling efficiency, and increase output, backflow air supply, or even backflow filtration, is used, which strengthens the filling by flowing back upstream from the exhaust discharge chamber. A device for rotating an internal combustion engine, characterized by a feeding method. [Phase] A decompression chamber that allows the cylinder internal pressure, which has dropped to atmospheric pressure, to reach a desired high vacuum at the end of exhaust blowing by intervening a decompression stroke that utilizes exhaust escape energy. In other words, a decompression structure chamber using a mechanical device including an exhaust turbine etc. is used. The crank angle between the exhaust and intake ports is widened to an appropriate value, and the crank angle of the descent of the piston after it drops to atmospheric pressure, that is, the passage of time, is used as a decompression exhaust means to reach a high vacuum and eliminate residual gas. let In a two-stroke cycle internal combustion engine characterized by reduced pressure evacuation. An exhaust passage communicating with the downstream exhaust system is set up by a control valve such as a disc-type or rotary-type valve or a mushroom valve, which is provided on the wall of the exhaust discharge chamber in contact with the exhaust port, including the front and end of the exhaust blowout, In addition, during the process of vacuum evacuation, the valve is opened to discharge the pressurized exhaust gas and eliminate residual gas. The appropriate timing for opening the intake boat, for example, just before the mixture entering the cylinder or fresh air reaches the exhaust port, or directly passing pressurized air through a check valve, or through a communication hole provided in the valve structure, etc. The exhaust gas is forced into the discharge chamber, and the atrium is placed at the appropriate time to generate a cutoff zone. narrowing or closing off the area of the communication hole of the upstream cylinder and the downstream exhaust system by the open control valve mechanism; Therefore, the compression stroke starts from the moment when the piston passes the bottom dead center and starts to rise, that is, during low compression, it is constituted by the disk type, rotary type, mushroom valve, or pressurized air mass. It includes exhibiting the sealing effect of the cutoff band and, if necessary, increasing the air pressure and amount to make the supercharging means function. After the exhaust port is closed, where the compression pressure increases, the piston valve seals the upstream side to form an exhaust system for the surrounding space. It includes a step in which pressurized air remains in the decompression chamber as a secondary air source and becomes an afterburner, and purifies unburned gas. Therefore, the decompression stroke is interposed in the exhaust blowout, and the blowout using pressurized gas is We established a reduced-pressure evacuation method using a shutoff valve and, if necessary, an exhaust control valve with supercharging means as the main parts of the device. A method of rotating a spark ignition or compression ignition, reciprocating or rotating piston, two-stroke cycle internal combustion engine. [Phase] Mixture intake type or fuel injection type crank chamber preload! ! In a 12 stroke cycle internal combustion engine. with cylinder. A piston that reciprocates between top dead center and bottom dead center, and an exhaust port that opens into the cylinder wall after the downward stroke. Furthermore, the intake boats are opened at a crank angle of 20 degrees to 65 degrees. The above-mentioned automatic valve, such as a heat-resistant check valve, on the wall of the exhaust discharge chamber in contact with the exhaust port. Continuing downstream, there is a decompression structure chamber, or an afterburn chamber that also functions as such. The upper end of the piston, which descends due to the expansion of the explosive gas, opens the exhaust port, and the exhaust gas mass begins to flow, filling the exhaust discharge chamber, passing through the ventilation hole in the wall, and then entering the decompression structure chamber connected downstream. The stage where it protrudes and escapes like a solid piston. In order to reach the desired high vacuum inside the cylinder mainly by the vacuum pump action originating from the inertia of the escaped gas lumps, including the end of the exhaust blowout, or by a separate mechanical device, the intake port is adjusted by selecting an appropriate value for the crank angle. The means to delay the opening drastically reduces the residual gas. Due to the suction action of the lower surface of the piston that occurs as the piston rises during the compression stroke, the air-fuel mixture or fresh air that has already filled the crank chamber and the suction communication passage is subjected to the compression action of the lower surface of the piston as it descends following the exhaust gas blowout. The stage of becoming pressurized. The stage where the piston slowly descends and approaches bottom dead center opens the intake port. An automatic valve that is set to be activated by a relatively high vacuum is installed on the wall of the exhaust discharge chamber that communicates with the cylinder that has reached a high vacuum, with the exhaust port as the boundary, and the automatic valve that is set to be activated by the relatively high vacuum operates and introduces outside air, causing the blower to be blown by air pressure. Evacuation is a step in which a cutoff zone is created in the exhaust discharge chamber, and filling progresses until it exerts its sealing force as a control valve. The pressurized air-fuel mixture or fresh air filling the crank chamber enters the cylinder from the main intake flow transfer path due to the slight reduction boat opening, progresses in filling, and heads toward the exhaust port. During the period between the piston rising past the bottom dead center closing the intake port and further closing the exhaust port, the air flow that maintains the barrier band air pressure continues to flow into the exhaust discharge chamber according to the differential pressure between the upstream cylinder and the downstream pressure reduction structure. A part of it is divided into the room,
Therefore, the divided air flowing back into the cylinder from the exhaust port of the communication hole collides with the tip of the main intake air flow toward the exhaust port and merges with it, increasing the filling rate. At this time, the barrier air pressure that fills the exhaust discharge chamber not only functions as a sealing valve to prevent the phenomenon, but also prevents harmful substances contained in the exhaust gas from the subsequent explosion cycle. Including the effect of the combustion afterpour as a secondary air source, and furthermore, during the merging stage of the main intake flow and reverse flow air, the cylinder internal pressure is lower than the cutoff band pressure, including at high speeds, and therefore increases. In other words, as long as the cutoff band air pressure is high, the rise from bottom dead center is all a compression stroke. It is characterized by its operation, which eliminates harmful residual gases, improves the filling rate, prevents raw gas from blowing through, and purifies the exhaust gas through after-burning, which saves money. The objective is to improve fuel efficiency, high output, prevent irregular rotation at low speeds, and provide effective engine braking. A method and apparatus for rotating a spark-ignition or compression-ignition reciprocating piston or rotary piston two-stroke cycle internal combustion engine. [Phase] High-pressure air is used to lubricate mechanical sliding parts in the gap volume when communicating with or blocking the downstream exhaust system using a rotary exhaust control valve installed in the exhaust discharge chamber following the exhaust port. This includes press-fitting air into the engine, intermittent press-in air by changing the air pressure at appropriate times in the cycle in synchronization with the rotation, and blowing the air flow that has cooled the main parts into the exhaust system. A method for lubricating the rotating parts and sliding mechanism parts of an internal combustion engine exhaust control valve.
JP403382A 1982-01-16 1982-01-16 Vacuum-scavenged two-cycle engine Pending JPS58122313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP403382A JPS58122313A (en) 1982-01-16 1982-01-16 Vacuum-scavenged two-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP403382A JPS58122313A (en) 1982-01-16 1982-01-16 Vacuum-scavenged two-cycle engine

Publications (1)

Publication Number Publication Date
JPS58122313A true JPS58122313A (en) 1983-07-21

Family

ID=11573646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP403382A Pending JPS58122313A (en) 1982-01-16 1982-01-16 Vacuum-scavenged two-cycle engine

Country Status (1)

Country Link
JP (1) JPS58122313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644512A1 (en) * 1988-02-03 1990-09-21 Ind Tech Res Inst AIR EJECTION DEVICE FOR TWO-STROKE ENGINE
WO2006080044A2 (en) * 2005-01-27 2006-08-03 Centro Ricerche Tecnologiche Srl Gas jet fluid barrier for two cycle engines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644512A1 (en) * 1988-02-03 1990-09-21 Ind Tech Res Inst AIR EJECTION DEVICE FOR TWO-STROKE ENGINE
WO2006080044A2 (en) * 2005-01-27 2006-08-03 Centro Ricerche Tecnologiche Srl Gas jet fluid barrier for two cycle engines
WO2006080044A3 (en) * 2005-01-27 2006-09-08 Ct Ricerche Tecnologiche Srl Gas jet fluid barrier for two cycle engines

Similar Documents

Publication Publication Date Title
US8561581B2 (en) Two-stroke uniflow turbo-compound internal combustion engine
CN1055517C (en) Vane rotor engine
US9228491B2 (en) Two-stroke uniflow turbo-compound internal combustion engine
US4807579A (en) Turbocompounded two-stroke piston engines
CN103348110A (en) Full expansion internal combustion engine
JPS63501304A (en) Two-stroke internal combustion engine and its operating method
US5267535A (en) Rotary exhaust valve for two-stroke engine
US7621253B2 (en) Internal turbine-like toroidal combustion engine
JPH0350325A (en) Four-cycle adiabatic engine
JPS58122313A (en) Vacuum-scavenged two-cycle engine
CN107420195B (en) A kind of two stroke engine and method based on four-stroke engine structure
US20200271047A1 (en) Rotating internal combustion engine
AU2011212150B2 (en) Two-stage engine exhaust system
US11525467B2 (en) Method of gas exchange for four-stroke engine
US2410471A (en) Internal-combustion engine
JP6391027B2 (en) Engine charge system
CN2254483Y (en) Blade-rotor motor
US7891326B1 (en) Engine exhaust system
JPS57105501A (en) Two-cycle internal combustion engine
WO2008073082A2 (en) Internal turbine-like toroidal combustion engine
CN108368773A (en) Quartastroke engine
KR19980040281U (en) Vortex Reduction Device for Exhaust Turbocharger Engine
JPH0494418A (en) Two-stroke engine