JPS58122302A - Method and device for introducing cooling air into gas turbine rotor - Google Patents

Method and device for introducing cooling air into gas turbine rotor

Info

Publication number
JPS58122302A
JPS58122302A JP499082A JP499082A JPS58122302A JP S58122302 A JPS58122302 A JP S58122302A JP 499082 A JP499082 A JP 499082A JP 499082 A JP499082 A JP 499082A JP S58122302 A JPS58122302 A JP S58122302A
Authority
JP
Japan
Prior art keywords
cooling air
rotor
gas turbine
duct
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP499082A
Other languages
Japanese (ja)
Inventor
Mitsutaka Shizutani
静谷 光隆
Shigeyoshi Kobayashi
成嘉 小林
Manabu Matsumoto
学 松本
Shigeyuki Akatsu
赤津 茂行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP499082A priority Critical patent/JPS58122302A/en
Publication of JPS58122302A publication Critical patent/JPS58122302A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor

Abstract

PURPOSE:To reduce a flow loss which would be caused by the sharp expansion and contraction of a fluid passage, by providing a duct to conduct cooling air to the hollow central part of a turbine rotor. CONSTITUTION:A duct 10 for conducting cooling air 7 from the through hole 2 of the side wall of a stub shaft rotor 1 to its hollow central part 1' is secured with a support 13 on the rotor. Since the cooling air introduced from outside is conducted to the central part 1' of the rotor 1 through the fluid passage, turbulences are prevented from being caused by the sharp expansion and contraction of a cooling air passage. The flow loss is thus reduced.

Description

【発明の詳細な説明】 本発明は、ガスタービンロータへの冷却空気の導入方法
及びそれに用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for introducing cooling air into a gas turbine rotor and an apparatus used therefor.

従来、外部から冷却空気を導入してガスタービンの回転
部分を冷却する技術としては5例えば第1図に示すもの
が採用されている。この従来例においては、冷却空気7
をロータの一方の軸方向側壁に設けられた貫通孔2から
取入れ、中空にし丸軸中心部1′を通して各段に配分す
る方式が採られている。これには第1図に示すように、
タービンロータの軸方向両端に位置するスタブシャフト
IC)間に、動翼4が外周に植込まれたロータディスク
3とスペーサ5が複数ずつタイボルト6で締結されて一
体になるという基本構造の中で、各段への冷却流路を形
成するため、一方のスタブシャ7ト1の側壁に複数の貫
通孔2を設け、各ロータディスク3の軸中心部を中空に
して軸方向の貫通流路とし、さらにロータディスタ3と
スベーナ5の間に半径方向流路を設ける設計がなされる
。冷却空気7は前記の流路を順に流れ、動翼4の内部の
冷却や回転・静止体間のすき間のシールを行つ九後、ガ
ス流路内に吹出されて高温ガス8と混合するのであるが
、この方式では回転数の上昇に伴って導入過程前半の流
動損失が増大し、タービンの各段の圧力差が変動し異く
、従って各段への冷却空気流量配分の設計が難しいとい
う欠点がある。
2. Description of the Related Art Conventionally, a technique shown in FIG. 1, for example, has been adopted as a technique for cooling the rotating parts of a gas turbine by introducing cooling air from the outside. In this conventional example, cooling air 7
The rotor is taken in through a through hole 2 provided in one axial side wall of the rotor, made hollow, and distributed to each stage through the round shaft center 1'. As shown in Figure 1, this includes:
In the basic structure, a plurality of rotor disks 3 and spacers 5, each having rotor blades 4 embedded in the outer periphery, are fastened together with tie bolts 6 between stub shaft ICs located at both axial ends of the turbine rotor. In order to form a cooling flow path to each stage, a plurality of through holes 2 are provided in the side wall of one stub shaft 1, and the axial center of each rotor disk 3 is hollowed out to form a through flow path in the axial direction. Furthermore, a design is made in which a radial flow path is provided between the rotardistor 3 and the svana 5. The cooling air 7 sequentially flows through the flow path, and after cooling the inside of the rotor blades 4 and sealing the gaps between rotating and stationary bodies, it is blown out into the gas flow path and mixed with the high-temperature gas 8. However, with this method, the flow loss in the first half of the introduction process increases as the rotation speed increases, and the pressure difference between each stage of the turbine fluctuates and is therefore difficult to design the distribution of cooling air flow to each stage. There are drawbacks.

この問題点を、第2図を用いて明らかにする。This problem will be clarified using FIG.

すなわち、従来技術において回転に伴い流動損失が増大
することは、第2図に示すロータ内部の各位置での冷却
空気の流れの状況を分析すれば理解できる。図ではロー
タに固定した視点から見え流線を矢印のついた実線と破
線とで示し、各位置麿〜fではそれぞれの位11におけ
ゐ軸・半径方向の合成速度を実線の矢印で示し、さらに
周方向速度をらせん状の破線の矢印で各々示しである。
That is, in the prior art, the fact that the flow loss increases with rotation can be understood by analyzing the state of the flow of cooling air at each position inside the rotor shown in FIG. In the figure, the streamlines seen from a viewpoint fixed to the rotor are shown by solid lines with arrows and broken lines, and at each position 11 to 11, the combined speeds in the axial and radial directions are shown by solid arrows. Further, circumferential velocities are indicated by spiral broken line arrows.

とζろ・で第3図は、モデルロータでの導入過程の圧力
分布データを示すものである。横軸にタービンO軸方向
位置1〜f(第2図参照)tとシ。
Figure 3 shows pressure distribution data during the introduction process in the model rotor. The horizontal axis shows the turbine O axial positions 1 to f (see FIG. 2) and t.

たて軸に圧力(ate)をとる。非回転時の圧力分布を
実線で示し1回転時(65OOri)m)の圧力分布を
破線にて示す。この図かられかるように。
Apply pressure (ate) to the vertical axis. The pressure distribution during non-rotation is shown by a solid line, and the pressure distribution during one rotation (65OOri)m) is shown by a broken line. As you can see from this diagram.

毫デルロータの非回転時には実線で示す圧力分布データ
のとお)1通中で流路の急拡大・急縮小に伴う流動損失
は発生するものの、全体の損失は少ない、しかし1回転
数の上昇とともに損失が増え、q#に位置1〜6間とd
 −、e間での流動損失の増加が原著になって来る。第
3図の破線で示すとおりである。
(As shown in the pressure distribution data shown by the solid line when the rotor is not rotating) Although flow loss occurs due to sudden expansion and contraction of the flow path during one pass, the overall loss is small, but as the number of rotations increases, the loss increases. increases, and q# between positions 1 and 6 and d
The increase in flow loss between - and e becomes the original paper. This is shown by the broken line in FIG.

ζOような流動損失の発生について、第2図に戻ってそ
の原因を検討して見る。まず位置暑〜b関O過鴨では、
低速でほとんど周方向速度をも九ない冷却空気7を、ロ
ータの強度上の制約から中学WkK位置している貫通孔
2から大きな周方向速度差の11敗入れる丸め、流入後
に流れの乱れ9が着しく増幅され、非回転時よシ大きな
損失を発生する。流入した冷却空気7は位置b−+c→
dと進むにつれ周方向速度を増してゆき、ロータディス
ク3の中心の軸方向の貫通流路では内周面よりかなシ大
きな周方向速度をもつようになる。このような状況では
、ロータディスク3の内周面近傍の流れは不安定になシ
やすい丸め、曲)なから流入する際に生ずる流れの乱れ
9の成長が助長され。
Regarding the occurrence of flow loss such as ζO, let us return to Figure 2 and examine the cause. First of all, in the location hot~b Sekio Kagamo,
The cooling air 7, which is at low speed and has almost no circumferential velocity, is introduced into the through hole 2, which has a large circumferential velocity difference due to the strength constraints of the rotor, through the through hole 2, which has a large circumferential velocity difference. It is strongly amplified and causes a larger loss than when it is not rotating. The inflowing cooling air 7 is at position b-+c→
d, the circumferential velocity increases, and the axial passage through the center of the rotor disk 3 has a circumferential velocity that is much larger than the inner circumferential surface. In such a situation, the flow near the inner circumferential surface of the rotor disk 3 tends to become unstable (rounded or curved), which promotes the growth of flow turbulence 9 that occurs when flowing in.

ここでも回転時には損失が大きくなる。Here too, the loss increases during rotation.

以上の説明かられかるとおプ、このような流動損失の増
加は、導入時に冷却空気7に付与された周方向速度成分
がロータ内部の流路で乱れ9の発生を助長することが原
因となっている。従って。
As can be seen from the above explanation, this increase in flow loss is caused by the fact that the circumferential velocity component imparted to the cooling air 7 at the time of introduction promotes the generation of turbulence 9 in the flow path inside the rotor. ing. Therefore.

それを減らす対策としては、付与される周方向速度を小
さくするか、乱れが増幅されないように流れを制御すれ
ばよいことになる。
As a measure to reduce this, it is sufficient to reduce the applied circumferential velocity or to control the flow so that the turbulence is not amplified.

本発明の目的は、上記したような中空ロータへの冷却空
気導入のための基本構造は変えずに、よって従来のもの
に簡単な改良を施すだけで得ることができ、しかも回転
時にも冷却空気導入過程での流動損失の少ない、有利な
ガスタービンロータへの冷却空気導入方法及びその装置
fを提供することにある。
It is an object of the present invention to achieve the above-mentioned hollow rotor without changing the basic structure for introducing cooling air into the hollow rotor, by simply making improvements to the conventional rotor, and to provide cooling air even during rotation. It is an object of the present invention to provide an advantageous method and apparatus for introducing cooling air into a gas turbine rotor, which causes less flow loss during the introduction process.

この目的を達成するため1本発明においては。In order to achieve this object, one aspect of the present invention is as follows.

回転中のガスタービンの中空ロータ内へ冷却空気を導入
してその回転部分を冷却するに際し、外部から導入する
冷却空気を流路によってロータ中央部近傍に導く方法を
採る。
When cooling air is introduced into the hollow rotor of a rotating gas turbine to cool the rotating part, a method is adopted in which the cooling air introduced from the outside is guided to the vicinity of the center of the rotor through a flow path.

このような流路によシ流れを制御することができ、乱れ
を増幅しないようにできるので、流動損失を小ならしめ
得る。
With such a flow path, the flow can be controlled and turbulence can be prevented from being amplified, so that flow loss can be reduced.

このような流路を採用する方法を実施するのには、ロー
タに簡易な構造物を付加することによって得られる装置
を用いることができる。
To implement the method employing such a flow path, a device obtained by adding a simple structure to the rotor can be used.

すなわち、ロータamに貫通孔を設け、ロータ内部の中
空の軸中心部に冷却空気を導く流路を構成する構造物を
その貫通孔を介してロータに付加することによシ、この
冷却装置導入装置を構成することができる。
That is, this cooling device can be introduced by providing a through hole in the rotor am and adding a structure to the rotor that constitutes a flow path that guides cooling air to the hollow center of the shaft inside the rotor through the through hole. The device can be configured.

以下、本発明の一実施例について#E4図にょシ説明す
る。
An embodiment of the present invention will be described below using Figure #E4.

これは1回転中のガスタービンの中空ロータ内へ冷却空
気7を導入してその回転部分を冷却する丸めに、ロータ
側壁に貫通孔2を設け、ロータ内部の中空の軸中心部1
′に冷却空気7を導く流路を構成するダク)10を貫通
孔2を介してロータに付加して構成したものである。
This system introduces cooling air 7 into the hollow rotor of a gas turbine during one revolution to cool the rotating part.A through hole 2 is provided in the side wall of the rotor, and a hollow shaft center part 1 inside the rotor is provided.
A duct 10 constituting a flow path for guiding cooling air 7 to the rotor is added to the rotor through a through hole 2.

ロータに付加して設置されたこのダクト10は。This duct 10 is installed in addition to the rotor.

本例においてはその人口11はロータの外壁を構成する
スタブシャフト1の中半径位置に設けられた貫通孔2の
位置に開口し、出口12はロータ内部の中空の軸中心部
に開口している。途中の経路は両者を結ぶように任意表
ものを選んでよく、ダクト10は支持部材13などによ
シスタブシャフト1に固定される。ロータ内に取入れた
冷却空気7をこのようなダクト10で導く形式にすれば
In this example, the population 11 opens at the position of the through hole 2 provided at the mid-radius position of the stub shaft 1 forming the outer wall of the rotor, and the outlet 12 opens at the center of the hollow shaft inside the rotor. . Any intermediate route may be selected to connect the two, and the duct 10 is fixed to the systub shaft 1 by a support member 13 or the like. If the cooling air 7 taken into the rotor is guided through such a duct 10.

従来のように途中の径路で急拡大・急縮小を伴うことも
ないし、流れは回転管内に限られるため周方向速度差に
起因する乱れの増幅も抑制され、冷却空気7に最終的に
付与される周方向速度も小さいものとなる。
Unlike in the past, there is no sudden expansion or contraction in the intermediate path, and since the flow is limited to the rotating tube, amplification of turbulence caused by circumferential velocity differences is suppressed, and the final flow is applied to the cooling air 7. The circumferential velocity also becomes small.

よって冷却空気導入過程前半での流動損失は抑えること
ができる。これに伴い、タービン各段の圧力差の変動も
生じに〈〈、各段への冷却空気流量配分の設計も容易と
なる。導入過程両生での圧損が小さくなるから、各段へ
冷却空気を配分する際の入口圧力が設定値からあまりず
れないからである。(出口圧力の方は定まっている)。
Therefore, flow loss in the first half of the cooling air introduction process can be suppressed. As a result, the pressure difference between each stage of the turbine also fluctuates, making it easier to design the distribution of the cooling air flow rate to each stage. This is because the pressure loss at both ends of the introduction process is reduced, so the inlet pressure when distributing cooling air to each stage does not deviate much from the set value. (The outlet pressure is fixed).

また。Also.

従来技術では第1段よ)冷却が必要な奥の第2段(蒸気
を先に受ける方)の冷却効が小さくなってい九のが1本
構成ではほぼ均一に冷却でき、冷却効率が良い。
In the conventional technology, the cooling effect of the second stage (the one that receives the steam first) at the back, which requires cooling (the first stage), is smaller, but with a single stage, cooling can be done almost uniformly and the cooling efficiency is good.

なお本例装置では、ダクトの入口11が出口12よシも
外周にあるため、ダクト内の冷却空気7に働く遠心力が
全体として流れを押戻す作用をするという問題がある。
In this example device, since the inlet 11 of the duct is located on the outer periphery of the outlet 12, there is a problem in that the centrifugal force acting on the cooling air 7 in the duct pushes back the flow as a whole.

しかしこれも通常の形状・寸法の範囲では小さい。例え
ば、第3図のモデルロータの場合、遠心力によシ流れを
押戻す作用は圧力差で約0.15ataであるに対し、
ダクトの付加によシ、従来の軸中心部までの導入過梅で
の全損失2ataは半分ないしそれ以下になるため、全
体の損失は前者の効果を差引いても少なくなる。
However, this is also small within the normal shape and size range. For example, in the case of the model rotor shown in Fig. 3, the effect of pushing back the flow due to centrifugal force is approximately 0.15 ata in pressure difference;
With the addition of the duct, the conventional total loss of 2ata due to the introduction to the center of the shaft is reduced to half or less, so the overall loss is reduced even after subtracting the effect of the former.

また本実施例において、ダク)10内の整流効果を高め
るため、仕切シ板や格子を設けてもよい。
Further, in this embodiment, a partition plate or a grid may be provided in order to enhance the rectification effect within the duct 10.

第5図0)〜に)に略示するとおシである。同図(イ)
(ロ)は断面円形のダクト10に各々格子101.横仕
切り102を設けたものであり、(ハ)に)は断面角形
のダクトlOに各々格子101.7’tて仕切シ103
を設けたものであるが、その他種々の形態を採)得るこ
とは言うまでもない。この整流作用によシ流れが制御さ
れ、特に入口11における旋回成分が無くなるから、そ
のような渦発生による圧損が効果的に除去される。
This is shown schematically in FIG. Same figure (a)
(b) Each lattice 101. Horizontal partitions 102 are provided, and (c) shows a grid 101.7't in each duct lO with a rectangular cross section and partitions 103.
However, it goes without saying that various other forms can be adopted. This rectifying action controls the flow, and in particular eliminates the swirling component at the inlet 11, so that the pressure loss caused by such vortex generation is effectively eliminated.

さらに、第6図の如く、途中で複数のダクト104を合
流させる形式にしてもよい。
Furthermore, as shown in FIG. 6, a plurality of ducts 104 may be joined in the middle.

以上のようにこの実施例では、a−夕内に取入れられた
冷却空気がダクト内を流れることによシ。
As described above, in this embodiment, the cooling air taken into the a-tube is cooled by flowing through the duct.

大きな乱れを発生しないため、導入過程での流動損失を
少なくできる。
Since large turbulence does not occur, flow loss during the introduction process can be reduced.

上記実施例の変形例として、ダクトをロータ外にまで延
長し、ダクトの入口を冷却空気の取入れ易い形状にする
構成例がある。第7図はその一例で、ダク)10の入口
11はロータ外部の内周寄シに開口しているため、取入
れる冷却空気7との周方向速度差が小さくて、効果的に
取入れることが可能である。また別の例として、ダクト
の入口の向きを周方向の冷却空気と正対させて、周方向
速度差によシ押込み作用が働くようにしてもよい。
As a modification of the above embodiment, there is a configuration example in which the duct is extended to the outside of the rotor, and the inlet of the duct is shaped to facilitate the intake of cooling air. FIG. 7 shows an example of this. Since the inlet 11 of the duct 10 is open toward the inner circumference of the outside of the rotor, the difference in speed in the circumferential direction with the cooling air 7 to be taken in is small, making it possible to take in the air effectively. is possible. As another example, the direction of the inlet of the duct may be made to directly face the cooling air in the circumferential direction, so that the pushing action is caused by the circumferential speed difference.

例えば第8図に略示する如く、ダクト10を周方向に曲
げて、その開口11を周方向の空気流れと対向させるよ
うにする。この例ではダクト入口での冷却空気の取入れ
が効果的に行われる。かつロータ内部のダクトについて
は繭記の例と同様の効果が期待できるため、導入過程で
の流動損失が少なくなる。
For example, as schematically illustrated in FIG. 8, the duct 10 is bent circumferentially so that its opening 11 faces the circumferential air flow. In this example, cooling air is effectively taken in at the duct inlet. Moreover, since the same effect as in the example of Mayuki can be expected for the duct inside the rotor, the flow loss during the introduction process will be reduced.

上記各側では流路を構成する構造物としてダクトを採用
したが、その地回様の作用を呈する構成のものを用い得
ることは言うまでもない。
Although ducts are used as the structures constituting the flow passages on each side, it goes without saying that ducts having a structure that functions like a ground circuit may also be used.

上述の如く本発明のガスタービンロータへの冷却空気導
入技術は、外部から導入する冷却空気を流路によってロ
ータ中央部近傍に導いて成るものであるので、従来から
の基本構造は変える必要がなく、従って従来のものに簡
単な改良を施すだけで得ることができる。かつ回転時に
は冷却空気導入過程での流動損失が少ないので、冷却効
果上有利である。また、流動損失が少ないため、タービ
ン各段への冷却空気量配分設計も容易になるという効果
もある。
As mentioned above, the technology for introducing cooling air into the gas turbine rotor of the present invention is such that the cooling air introduced from the outside is guided near the center of the rotor through a flow path, so there is no need to change the conventional basic structure. Therefore, it can be obtained by simply making improvements to the conventional one. In addition, during rotation, there is less flow loss during the cooling air introduction process, which is advantageous in terms of cooling effect. Furthermore, since the flow loss is small, the design of cooling air amount distribution to each stage of the turbine is also facilitated.

なお、轟然のことではあるが、本発明は図示し九実施例
にのみ限定されるものではない。
It should be noted that the present invention is not limited to the nine illustrated embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の全体断面図である。第2図は線側にお
ける冷却空気導入過程での流動状態を示すための部分拡
大断面図である。第3図は該導入過程での圧力変化を示
すグラフである。第4図は本発明の一実施例を示す部分
断面図である。第5示す部分断面図である。 1・・・ロータ(スタブシャフト)、2・・・貫通孔&
3・・・ロータ(ロータディスク)、7・・・冷却空気
。 10・・・(流路を構成する)構造物(ダクト)。 11・・・構造物(ダクト)の入口、12・・・構造物
(ダクト)の出口。 代理人 弁理士 秋本正実 第2I2] 第3図 第40 ”i s  [] (4)          (ロ) (ハン           (ニ) 第6図
FIG. 1 is an overall sectional view of a conventional example. FIG. 2 is a partially enlarged sectional view showing the flow state during the cooling air introduction process on the line side. FIG. 3 is a graph showing pressure changes during the introduction process. FIG. 4 is a partial sectional view showing one embodiment of the present invention. FIG. 5 is a fifth partially sectional view. 1... Rotor (stub shaft), 2... Through hole &
3... Rotor (rotor disk), 7... Cooling air. 10... Structure (duct) (constituting a flow path). 11... Inlet of structure (duct), 12... Outlet of structure (duct). Agent Patent Attorney Masami Akimoto No. 2I2] Figure 3 Figure 40 “is [] (4) (B) (Han (D)) Figure 6

Claims (1)

【特許請求の範囲】 1、回転中のガスタービンの中空ロータ内へ、冷却空気
を導入してその回転部分を冷却する方法において、外部
から導入する冷却空気を流路によってロータ中央部近傍
に導いたことを特徴とするガスタービンルータへの冷却
空気導入方法。 2 回転中のガスタービンの中空ロータ内へ、冷却空気
を導入してその回転部分を冷却する構成のガスタービン
冷却空気導入装置において、ロータ側壁に貫通孔を設け
、ロータ内部の中空の軸中心部に冷却空気を導く流路を
構成する構造物を、咳貫通孔を介してロータに付加して
構成し九ことを特徴とするガスタービンロータへの冷却
空気導入装置。 1 構造物の冷却空気入口は、はぼ貫通孔のある場所に
位置する本のである特許請求の範囲第2項に記載のガス
タービンロータへの冷却空気導入装置。 也 構造物の冷却空気入口は、貫通孔よりも外側に位置
することを特徴とする特許請求の範囲第2項に記載のガ
スタービンロータへの冷却空気導入装置。
[Claims] 1. In a method of introducing cooling air into a rotating hollow rotor of a rotating gas turbine to cool the rotating part thereof, cooling air introduced from the outside is guided to the vicinity of the center of the rotor through a flow path. A method for introducing cooling air into a gas turbine router, characterized in that: 2. In a gas turbine cooling air introduction device configured to introduce cooling air into the hollow rotor of a rotating gas turbine to cool the rotating portion thereof, a through hole is provided in the side wall of the rotor, and a hollow shaft center portion inside the rotor is provided with a through hole in the side wall of the rotor. 9. A device for introducing cooling air into a gas turbine rotor, characterized in that the structure is added to the rotor through a cough through hole, and a structure constituting a flow path for guiding cooling air to the rotor. 1. The cooling air introduction device to a gas turbine rotor according to claim 2, wherein the cooling air inlet of the structure is located at a location where the through hole is located. The cooling air introduction device to the gas turbine rotor according to claim 2, wherein the cooling air inlet of the structure is located outside the through hole.
JP499082A 1982-01-18 1982-01-18 Method and device for introducing cooling air into gas turbine rotor Pending JPS58122302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP499082A JPS58122302A (en) 1982-01-18 1982-01-18 Method and device for introducing cooling air into gas turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP499082A JPS58122302A (en) 1982-01-18 1982-01-18 Method and device for introducing cooling air into gas turbine rotor

Publications (1)

Publication Number Publication Date
JPS58122302A true JPS58122302A (en) 1983-07-21

Family

ID=11599039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP499082A Pending JPS58122302A (en) 1982-01-18 1982-01-18 Method and device for introducing cooling air into gas turbine rotor

Country Status (1)

Country Link
JP (1) JPS58122302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388205A (en) * 1986-09-30 1988-04-19 Mitsuhiro Kanao Gas turbine shaft with air cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388205A (en) * 1986-09-30 1988-04-19 Mitsuhiro Kanao Gas turbine shaft with air cooling device

Similar Documents

Publication Publication Date Title
US4752185A (en) Non-contacting flowpath seal
US5338155A (en) Multi-zone diffuser for turbomachine
US4666368A (en) Swirl nozzle for a cooling system in gas turbine engines
US5603605A (en) Diffuser
CA2287308C (en) Method and apparatus for enhancing gas turbo machinery flow
US7828514B2 (en) Rotor for an engine
JPH0259281B2 (en)
JPS58167802A (en) Axial-flow steam turbine
JP3776580B2 (en) Axial turbine exhaust system
JP2009047411A (en) Turbo machine diffuser
JPS5865938A (en) Rotary seal used in gas turbine engine and reduction of heat stress
JP3165611B2 (en) Gas turbine cooling air introduction device
JPS58122302A (en) Method and device for introducing cooling air into gas turbine rotor
US4648791A (en) Rotor, consisting essentially of a disc requiring cooling and of a drum
US4159738A (en) Fan-assisted forced flow air-cooling heat exchanger system
JPH06323105A (en) Leaking and flowing passage structure for axial-flow turbo-machinery
JPH06241858A (en) Straightening apparatus
JP2004156617A (en) Clustering cover for diffusing turbine in axial direction
JP2005240727A (en) Impulse axial flow turbine
JPS5934402A (en) Rotor device of steam turbine
JPH11264328A (en) Compressor disc for gas turbine engine
JPH03249303A (en) Double-current steam turbine
JPH0486334A (en) Cooling medium introducing device for gas turbine
CN107448417B (en) Centrifugal compressor and impeller cooling device
JPH0343427Y2 (en)