JPS5812222B2 - Corrosion-resistant reinforced concrete - Google Patents

Corrosion-resistant reinforced concrete

Info

Publication number
JPS5812222B2
JPS5812222B2 JP52008758A JP875877A JPS5812222B2 JP S5812222 B2 JPS5812222 B2 JP S5812222B2 JP 52008758 A JP52008758 A JP 52008758A JP 875877 A JP875877 A JP 875877A JP S5812222 B2 JPS5812222 B2 JP S5812222B2
Authority
JP
Japan
Prior art keywords
corrosion
concrete
wax
reinforced concrete
corrosion inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52008758A
Other languages
Japanese (ja)
Other versions
JPS5394333A (en
Inventor
原田良夫
中森正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52008758A priority Critical patent/JPS5812222B2/en
Publication of JPS5394333A publication Critical patent/JPS5394333A/en
Publication of JPS5812222B2 publication Critical patent/JPS5812222B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は高められた腐食防止性を有す鉄筋コンクリー
トに関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to reinforced concrete with enhanced corrosion protection.

鉄筋コンクリートは経済的な構造材料として広く償用さ
れており、今後も港湾施設、一般建築用材料として着々
用途が拡大される傾向にある。
Reinforced concrete is widely used as an economical structural material, and its use as a material for port facilities and general construction will continue to expand steadily.

しかし昨今、大気や河川・海め汚染が進むにしたがって
、従来半永久的な寿命を有するものと考えられていたコ
ンクリートが、予想よりはるかに短期間で破壊される現
象が敬見されはじめだ。
However, in recent years, as the air, rivers, and oceans have become increasingly polluted, concrete, which was previously thought to have a semi-permanent lifespan, is now being observed to be destroyed in a much shorter period of time than expected.

構造物の重要な地位を占め信頼性の高いコンクリートの
破壊は重大な災害を誘発するおそれがあり、早急に対策
を確立する必要がある。
Destruction of concrete, which occupies an important position in structures and is highly reliable, may cause serious disasters, and countermeasures must be established immediately.

コンクリートの破壊原因は次のように考えられ、細孔を
通しての腐食性物質の浸入が最大原因と考えられる。
The causes of concrete failure are thought to be as follows, and the main cause is thought to be the infiltration of corrosive substances through the pores.

(1)コンクリートのアルカリ(初期のアルカリ度はp
H12〜13)が雨水に洗われたり、大気中のイオウ酸
化物、窒素酸化物あるいは炭酸ガスなどの酸性ガスと反
応して次第に中性化してくる。
(1) Alkalinity of concrete (initial alkalinity is p
H12-13) are washed away by rainwater or react with acidic gases such as sulfur oxides, nitrogen oxides, or carbon dioxide gas in the atmosphere, and gradually become neutralized.

(2)中性化と共に一方ではコンクリートに亀裂が発生
する。
(2) Along with carbonation, on the other hand, cracks occur in concrete.

(3)亀裂を通して(1)の現象が更に促進される。(3) The phenomenon of (1) is further promoted through the cracks.

(4)中性化あるいは酸性化したコンクリート中の鉄筋
はサビを発生し、腐食が進行する。
(4) Reinforcing bars in neutralized or acidified concrete develop rust and corrosion progresses.

(5)腐食の進行によって体積が膨張し、コンクリート
の亀裂が進展する。
(5) As corrosion progresses, the volume expands and cracks in the concrete develop.

(6)腐食の進行、亀裂の発展が重複しコンクリートが
破壊する。
(6) The progress of corrosion and the development of cracks overlap, leading to concrete destruction.

(7)最近はコンクリート用砂材として良質の川砂が欠
乏する傾向にあるため、海砂を使用することが多いが、
この場合(1)項の現象がなくても鉄筋の腐食が進行す
ることとなる。
(7) Recently, there has been a shortage of good quality river sand as a sand material for concrete, so sea sand is often used.
In this case, corrosion of the reinforcing bars will progress even if the phenomenon described in item (1) does not occur.

コンクリートの腐食を防止する方法としてコンクリート
中に亜硝酸ナトリウム、安息香酸ナトリウム等の腐食防
止剤を添加する方法が提案されているが、この種の薬剤
を単純にコンクリート中に添加しても固化する以前に流
出したり、固化した後でも雨水による流出が多く経済的
な点はもとより流出水の安全衛生Kも問題がある。
Adding corrosion inhibitors such as sodium nitrite and sodium benzoate to concrete has been proposed as a method to prevent concrete from corroding, but even if these types of agents are simply added to concrete, it will harden. Even after it has previously flowed out or solidified, there is a lot of runoff due to rainwater, which poses problems not only from an economic point of view but also from the safety and health of the runoff.

上記のような問題点を改良すべく種々棲討を重ねた結果
、金属粉末の固化物や軽石などの多孔性物体中にあらか
じめ腐食防止剤を含ませ、きらにこの上に低融点のワッ
クスでコーティングしたものをコンクリート用骨材とし
て、砂や砂利の一部に混入して使用する方法が上記の目
的を達成し得ることを見出して本発明に到達した。
As a result of various efforts to improve the above-mentioned problems, we found that a porous object such as solidified metal powder or pumice was pre-impregnated with a corrosion inhibitor, and a low melting point wax was applied on top of this. The inventors have discovered that the above object can be achieved by using a coated material as an aggregate for concrete by mixing it with a portion of sand or gravel, and have thus arrived at the present invention.

多孔性物体としては金属の焼結体、アルミナや軽石など
の酸化物や多孔性の自然石が用いられ、腐食防止剤とし
ては前出の亜硝酸ナトリウムや安息香酸ナトリウムが用
いられる。
As the porous object, a sintered metal, an oxide such as alumina or pumice, or a porous natural stone is used, and as the corrosion inhibitor, the aforementioned sodium nitrite or sodium benzoate is used.

多孔性物体に腐食防止剤を含ませる方法としては、亜硝
酸ナトリウムや安息香酸ナトリウムのような腐食防止剤
の水溶液中に、多孔質物体を浸漬し、その細孔中に腐食
防止剤を十分浸透させた後、多孔性物体を取出し乾燥さ
せるのが一般的である。
To impregnate a porous object with a corrosion inhibitor, the porous object is immersed in an aqueous solution of a corrosion inhibitor such as sodium nitrite or sodium benzoate, and the corrosion inhibitor is sufficiently penetrated into the pores of the porous object. After drying, the porous object is generally removed and dried.

又これにワックスを被覆させる方法としては、上記のよ
うにして腐食防止剤を含ませた多孔性物体を溶融したワ
ックス中に浸漬して取出す方法が一般的である。
A common method for coating this with wax is to immerse the porous object impregnated with the corrosion inhibitor in the molten wax as described above and then take it out.

多孔性物体に含浸させる腐食防止剤の量は、コンクリー
ト容積に対して11以下でも十分効果があり、その含浸
量が多ければ防食性はよくなるが、余り多量であるとコ
ストアップにつながり、かつ或る場合にはコンクリート
の強度の低下を起こすので、上限量は実験によって定め
るべきである。
The amount of corrosion inhibitor impregnated into the porous object is sufficiently effective even if it is less than 11% of the concrete volume, and the higher the impregnated amount, the better the corrosion protection, but if the amount is too large, it will lead to an increase in cost, and The upper limit of the amount should be determined by experiment, as this will cause a decrease in the strength of the concrete.

更にワックス被覆層の厚さも特に制限はないが、施行場
所に適したように定めるべきである。
Further, the thickness of the wax coating layer is not particularly limited, but should be determined as appropriate for the application site.

本発明のコンクリートは次のような効果を有する。The concrete of the present invention has the following effects.

(1)多孔質物体中に封じ込めた腐食防止剤はセメント
と水を混和させたとき徐々に溶出するので効果が持続す
る。
(1) The corrosion inhibitor sealed in the porous object gradually dissolves when cement and water are mixed, so the effect lasts.

(2)ワックスで封入された腐食防止剤はコンクリート
混和中には水との接触を断たれているので溶出すること
はない。
(2) Corrosion inhibitors encapsulated in wax do not come into contact with water during concrete mixing, so they do not elute.

このコンクリートを流し込んだ当初の環境はpH12〜
13でこの状態では鉄筋は腐食しないので腐食防止剤は
不要である。
The initial environment when this concrete was poured had a pH of 12~
13, the reinforcing bars do not corrode in this state, so no corrosion inhibitor is required.

(3)コンクリートが固化する際に発生する水利反応(
セメントと水の反応)によって熱が発生したり、コンク
リートとして使用中、太陽熱などによってワックスが溶
けると、その内部に封じ込められていた腐食防止剤が水
分の存在によってはじめて溶け始め、鉄錆の発生を防止
する。
(3) Water use reaction that occurs when concrete hardens (
When wax is melted by heat generated by the reaction between cement and water, or by sunlight during use as concrete, the corrosion inhibitor sealed inside begins to melt due to the presence of moisture, causing iron rust to occur. To prevent.

なお水分の浸入がなければ溶けないが、水分の浸入がな
けれ一鉄筋は腐食しない。
It should be noted that if there is no infiltration of moisture, it will not melt, but if there is no intrusion of moisture, the reinforcing steel will not corrode.

(4)溶出したワックスはコンクリート申の微細な孔を
充填するので、鉄筋の腐食を促進さする雨水や酸性ガス
の細孔からの侵入を物理的に防止し防食効果を向上させ
る。
(4) Since the eluted wax fills the fine pores of the concrete, it physically prevents rainwater and acid gases that accelerate the corrosion of reinforcing bars from entering through the pores, thereby improving the anticorrosion effect.

(5)使用するワックスの融点は水利反応の程度やコン
クリートか使用される地域の気象条件によって適当に選
択することができる。
(5) The melting point of the wax used can be appropriately selected depending on the degree of water use reaction and the weather conditions of the region where the concrete is used.

(6)直射日光による昇温効果が期待できないところで
はコンクリートの外部を軽くバーナなどで加熱すること
によってワックスの溶出を促すことが可能である。
(6) In places where the temperature-raising effect of direct sunlight cannot be expected, wax elution can be promoted by lightly heating the outside of the concrete with a burner or the like.

(7)ワックスで腐食防止剤を封入した多孔性物体は通
常の保管状態で雨水に曝されても内部の防止剤が流出せ
ず衛生的である。
(7) A porous object in which a corrosion inhibitor is sealed with wax is sanitary because the inhibitor inside does not flow out even if it is exposed to rainwater under normal storage conditions.

(8)ワックスは化学的に安定であり如何なる腐食防止
剤とも反応せず安定である。
(8) Wax is chemically stable and does not react with any corrosion inhibitor.

実施例 比較のための供試コンクリートとして市販のポートラン
ドセメントに月1砂または川砂および食塩(海砂を模擬
)を添加したものを材料として水を添加しよく混和した
後、直径15mmの軟鋼を埋設した試験ブロックを作製
した。
Sample concrete for comparison of examples was made by adding Tsuki1 sand or river sand and salt (simulating sea sand) to commercially available Portland cement. After adding water and mixing well, mild steel with a diameter of 15 mm was used. A buried test block was prepared.

ブロック寸法は一辺が25mm,長さ100mmの中央
に15wngX60mmの軟鋼棒を封じ込めたものであ
る。
The block size is 25 mm on one side and 100 mm in length, with a 15 wng x 60 mm mild steel rod sealed in the center.

また上記(1)〜(3)の組成のものに亜硝酸ソーダ(
4)および安息香酸ナトリウN(B)を各々共通量包含
させたもの、更にその上に融点55℃のパラフィンをコ
ーティングした鉄の焼結金属(直径5m)を10〜15
個添加して試験ブロックを作製したものを本発明品とし
て準備した。
In addition, sodium nitrite (
4) and sodium benzoate N (B) in a common amount, and further coated with paraffin having a melting point of 55°C.
The product of the present invention was prepared by adding each of these components to prepare a test block.

上記の試験ブロックについてセメントが固化した後約4
週間室内で放置したものケ供試材として次のような条件
下においた。
After the cement has set for the above test block, approximately 4
The specimens were left indoors for a week and were placed under the following conditions.

(1)海水中に1ク年浸漬 (2)802 100ppm,湿度80〜100%を倉
む60℃のガラス槽中に6ケ月放置 (3)大気中に1ケ年放置 以上の試験後コンクリートを破壊して軟鋼を取出し、軟
鋼の腐食発生量(サビを発生しているものは塩酸で洗浄
し試験前後の重量差をもって腐食量とした)を測定する
ことによって本発明の効果を判定した。
(1) Soaked in seawater for 1 year (2) Leaving for 6 months in a glass tank at 60°C containing 802 100 ppm and humidity of 80-100% (3) Leaving the concrete in the atmosphere for more than 1 year after testing The effectiveness of the present invention was determined by destroying the mild steel and measuring the amount of corrosion on the mild steel (those with rust were washed with hydrochloric acid and the difference in weight before and after the test was taken as the amount of corrosion).

この結果を第1表に示す。(注)@(1)の組成のコン
クリートを大気中で1カ年間放置した場合の軟鋼を 100としそれぞれの条件における 腐食量比で示した。
The results are shown in Table 1. (Note) The ratio of corrosion amount under each condition is shown as 100 for mild steel when concrete with the composition shown in (1) is left in the atmosphere for one year.

第1表から判るように、大気中のような緩慢な腐食環境
では本発明のみならず通常のコンクリート製法のもので
も軟鋼の腐食量は殆んど認められないが、海水中に1ケ
年浸漬したものでは腐食が進行し始め、更にSO2のよ
うな酸性の腐食性ガスが含まれている環境では軟鋼の腐
食が大きい。
As can be seen from Table 1, in a slow corrosive environment such as the atmosphere, there is almost no corrosion of mild steel, not only with the present invention but also with the conventional concrete method, but when immersed in seawater for 1 year, there is almost no corrosion of mild steel. Corrosion of mild steel begins to progress, and corrosion of mild steel is severe in environments containing acidic corrosive gases such as SO2.

またこれらの腐食の傾向は川砂を使用した場合に比べN
ailを添加した砂の場合が一層著しい。
Also, these corrosion tendencies are lower than when river sand is used.
This is even more remarkable in the case of sand to which ail has been added.

これに対し鉄の焼結体に腐食防止剤を封入したものは、
ワックスのコーティングの有無にかかわら?すぐれた耐
食性をコンクリートに付与しており、SOを含む環境で
も殆んど腐食は認められない。
On the other hand, a sintered iron body with a corrosion inhibitor sealed in it is
With or without wax coating? It provides concrete with excellent corrosion resistance, and almost no corrosion is observed even in environments containing SO.

ただワックスをコーティングしないものでは802環境
で僅かな腐食が発生したのみであった。
However, in the case where wax was not coated, only slight corrosion occurred in the 802 environment.

Claims (1)

【特許請求の範囲】[Claims] 1 セメントに砂利と砂との少なくともどちらか1方を
加えたものからなる骨材と、細孔部に腐食防止剤を有し
かつ外周がワックスで覆われた多孔質性物質とを加えて
成形したことを特徴とする鉄筋コンクリート。
1. Formed by adding aggregate made of cement with at least one of gravel and sand, and a porous substance that has a corrosion inhibitor in its pores and whose outer periphery is covered with wax. Reinforced concrete is characterized by:
JP52008758A 1977-01-31 1977-01-31 Corrosion-resistant reinforced concrete Expired JPS5812222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52008758A JPS5812222B2 (en) 1977-01-31 1977-01-31 Corrosion-resistant reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52008758A JPS5812222B2 (en) 1977-01-31 1977-01-31 Corrosion-resistant reinforced concrete

Publications (2)

Publication Number Publication Date
JPS5394333A JPS5394333A (en) 1978-08-18
JPS5812222B2 true JPS5812222B2 (en) 1983-03-07

Family

ID=11701818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52008758A Expired JPS5812222B2 (en) 1977-01-31 1977-01-31 Corrosion-resistant reinforced concrete

Country Status (1)

Country Link
JP (1) JPS5812222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422719U (en) * 1987-07-27 1989-02-06
JPH0214316U (en) * 1988-07-14 1990-01-29
JPH0334009U (en) * 1989-08-07 1991-04-03

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8510259D0 (en) * 1985-04-23 1985-05-30 Mobil Oil Ltd Treating aggregate
EP1547985A1 (en) * 2003-12-23 2005-06-29 Sika Technology AG Dry admixture for hydraulic binders
ES2747299T3 (en) * 2016-04-27 2020-03-10 Sika Tech Ag A multi-component composition to produce a corrosion inhibiting hydrogel
CN111606630B (en) * 2020-06-15 2021-12-17 陕西金磊混凝土有限公司 Steam-curing-free high-fluidity concrete and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948455A (en) * 1972-06-05 1974-05-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948455A (en) * 1972-06-05 1974-05-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422719U (en) * 1987-07-27 1989-02-06
JPH0214316U (en) * 1988-07-14 1990-01-29
JPH0334009U (en) * 1989-08-07 1991-04-03

Also Published As

Publication number Publication date
JPS5394333A (en) 1978-08-18

Similar Documents

Publication Publication Date Title
Söylev et al. Corrosion inhibitors for steel in concrete: State-of-the-art report
US4118242A (en) Process for manufacturing concrete of high corrosion resistance
Gonzalez et al. Protection of steel embedded in chloride-containing concrete by means of inhibitors
Zemajtis Modeling the time to corrosion initiation for concretes with mineral admixtures and/or corrosion inhibitors in chloride-laden environments
US5750053A (en) Corrosion inhibitor for reducing corrosion in metallic concrete reinforcements
Agboola et al. A review on corrosion in concrete structure: inhibiting admixtures and their compatibility in concrete
JPS5812222B2 (en) Corrosion-resistant reinforced concrete
Oueslati et al. The effect of SCMs on the corrosion of rebar embedded in mortars subjected to an acetic acid attack
EP0305393B1 (en) Inhibiting corrosion in reinforced concrete
KR100884578B1 (en) Chloride threshold value method for steel corrosion in concrete
CA2302871C (en) Corrosion inhibiting admixture for concrete
JPH0542388B2 (en)
Asaad et al. Corrosion inhibitors for reinforced concrete structures exposed to aggressive environments: a review
Al-Mutlaq Aspects of the use of electric arc furance dust in concrete
KR100364976B1 (en) Protecting agent of inorganic construction materials and method for manufacturing the same
JPS6321271A (en) Formation of protecting film on construction material
Oba et al. Chemical thermodynamics determination of corrosion threshold assessment of reinforced concrete structures
JPH07196350A (en) Hardened cement, protecting agent applied thereto and method for protecting hardened cement
JP6906949B2 (en) Method of suppressing alkali-silica reaction
JPS62241854A (en) Hydraulic material composition
Abdulsada Antal Kerpely Doctoral School of Materials Science and Technology
Saricimen Research to improve durability of reinforced concrete in aggressive environments
JPH11217942A (en) Repairing and preventive method of reinforcement corrosion due to salt damage of concrete structure
Uno Corrosion Susceptibility of Concrete Exposed to a Marine Environment
Gunasekara et al. Renovate RC structures with newly developed mortar, considering chloride binding and inverse diffusion phenomenon