JPS58121843A - Signal transmission system with optical fiber - Google Patents

Signal transmission system with optical fiber

Info

Publication number
JPS58121843A
JPS58121843A JP57004220A JP422082A JPS58121843A JP S58121843 A JPS58121843 A JP S58121843A JP 57004220 A JP57004220 A JP 57004220A JP 422082 A JP422082 A JP 422082A JP S58121843 A JPS58121843 A JP S58121843A
Authority
JP
Japan
Prior art keywords
signal
output
amplifier
optical fiber
variable gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57004220A
Other languages
Japanese (ja)
Other versions
JPH0133058B2 (en
Inventor
Yukio Koyama
小山 行雄
Takahiro Asai
孝弘 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57004220A priority Critical patent/JPS58121843A/en
Publication of JPS58121843A publication Critical patent/JPS58121843A/en
Publication of JPH0133058B2 publication Critical patent/JPH0133058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6972Arrangements for reducing noise and distortion using passive filtering

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain signals with high quality, by providing a means controlling the gain of a variable gain amplifier with an output of a differential amplifier, and obtaining a signal being reduced interference noise component from the amplifier. CONSTITUTION:An output signal of a photo diode 9 is led to a branching filter 12, an output from an output terminal 12 of the filter 12 is led to the variable gain amplifier 17, the output from an output terminal 14 of the filter 12 is led to the differential amplifier 16 to a reference terminal 15 of which a positive level DC voltage is applied, and the output of the amplifier 16 is given to a gain control input terminal 18 of the amplifier 17. That is, the degree of interference caused in the transmission system is detected by checking the component around DC of the reception signal and the disturbance of transmission signals is corrected by using this method.

Description

【発明の詳細な説明】 本発明は光ファイバによる信号伝送システムに係り、特
に広帯域で、しかも高品質の信号を得るのに好適な光フ
ァイバによる信号伝送システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal transmission system using an optical fiber, and more particularly to a signal transmission system using an optical fiber suitable for obtaining a wide band and high quality signal.

従来、広帯域信号、例えば、V)(F放送TV多重信号
を光信号に変換して光ファイバを通して伝送する場合、
信号伝送システムは第1図に示す構成としである。すな
わち、端子1に人力した人力電気信号を駆動回路2に導
いて増幅した後、その信号でレーザダイオード3を駆動
する。この場合、レーザダイオード3からの発光出力が
人力電気信号と線形関係になるように、レーザクイオー
ド3のバイアス点や人力信号振幅を適切に設定するよう
にする。レーザダイオード3からの発光出力は結合部4
、光コネクタ5を介して薯ファイバ6に入射させて伝送
し、光フアイバ6カ・らの光信号を尤コネクタ7、結合
部8を介してフォトダイオード9で受光して上記光信号
を光パワーに比例した電流に変換し、その電流を増幅器
10で増幅して、端子11から所定レベルの電気信号を
取り出すようにしである。
Conventionally, when converting a wideband signal, for example, a V) (F broadcast TV multiplex signal) into an optical signal and transmitting it through an optical fiber,
The signal transmission system has the configuration shown in FIG. That is, after a human-powered electric signal inputted to the terminal 1 is guided to the drive circuit 2 and amplified, the laser diode 3 is driven by the signal. In this case, the bias point of the laser diode 3 and the amplitude of the human power signal are appropriately set so that the light emission output from the laser diode 3 has a linear relationship with the human power electric signal. The light emission output from the laser diode 3 is connected to the coupling part 4
, the optical signal from the optical fiber 6 is received by the photodiode 9 via the connector 7 and the coupling part 8, and the optical signal is converted into optical power. This current is amplified by an amplifier 10, and an electrical signal of a predetermined level is extracted from a terminal 11.

しかし、上記した光ファイバによる信号伝送システムに
は次に示す大きな欠陥がある。すなわち、ヘ レーザダイオード3よシ光ファイバ6に入射する光信号
は結合部4、光コネクタ5での反射現象のため逆進し、
レーザダイオード3に再入射し、このため、発光機能が
乱され、発光波長や発光出力が変化してしまう。この結
果、発光出力に強度変調がかかることになる。
However, the signal transmission system using optical fibers described above has the following major drawbacks. That is, the optical signal entering the optical fiber 6 from the laser diode 3 travels backwards due to the reflection phenomenon at the coupling part 4 and the optical connector 5.
The light enters the laser diode 3 again, thereby disturbing the light emitting function and changing the light emitting wavelength and light emitting output. As a result, intensity modulation is applied to the light emission output.

いま、端子1への人力電気信号を、 (1+mf(t)l(2)ω。t ここに、m:ビデオ信号変調度 f(t):ビデオ信号 ω。:キャリア角周波数 とすると、光信号は、 CI +K (1+mf (t ) )−ω、t)oo
s(,1stここに、k:光変調度 ωe:尤・キャリア角周波数 で表わされるが、レーザクイオード3の動作が、上記し
た理由で不安定になると、(1+n(t))が上式に掛
は合された形となり、 (1+n(t))(1+k(1+mf(t))cog、
。t、)cos、et ここに、 n (t) :ノイズ信号 で表わされるようになり、これを光検波すると、(1+
n(t))(:1+k(1+mf(t))cosωo 
t ) = 1 +n (t ) 十k (1+ m 
f (t ) )aysto (、t+kn(tH1+
mf(t))cosω。
Now, if the human electric signal to terminal 1 is (1+mf(t)l(2)ω.t), where m: video signal modulation degree f(t): video signal ω.: carrier angular frequency, then the optical signal is CI +K (1+mf (t)) - ω, t)oo
s(, 1st, where k: optical modulation degree ωe: carrier angular frequency) If the operation of the laser diode 3 becomes unstable for the reasons mentioned above, (1+n(t)) becomes The sum of the numbers becomes (1+n(t))(1+k(1+mf(t))cog,
. t,) cos, et Here, n (t): It comes to be expressed as a noise signal, and when this is optically detected, (1+
n(t))(:1+k(1+mf(t))cosωo
t ) = 1 + n (t ) 1k (1+ m
f (t) ) aysto (, t+kn(tH1+
mf(t))cosω.

し−−−−−−(1) となる。(1)式の右辺の第1項「1」はDC成分、第
2項r】(t )はノイズ成分、第3項k(1+m f
 (t ) cnsto otは信号成分、第4項kn
(t>(1+mf(t))□□□ωo1はノイズと信号
の干渉成分である。
Then, it becomes (1). The first term "1" on the right side of equation (1) is a DC component, the second term r](t) is a noise component, and the third term k(1+m f
(t) cnsto ot is the signal component, the fourth term kn
(t>(1+mf(t))□□□ωo1 is an interference component between noise and a signal.

ここで、n(t)の性質としテに、その周波数スペクト
%ルが第2図に示すようになり、角周波数ωが小さい低
域ではパワーP(P−b/ω2+a0.1.bけ定電数
)が強く、ωが大きい高域になるほどパワーPか弱い。
Here, considering the nature of n(t), its frequency spectrum becomes as shown in Figure 2, and in the low range where the angular frequency ω is small, the power P(P-b/ω2+a0.1.b The higher the frequency (electronic number) is strong and ω is large, the weaker the power P is.

そして、実験結果によると、はとんどのエネルギーが数
MHz以内の周波数範囲に収っている。
According to experimental results, most of the energy falls within a frequency range of several MHz.

ここで問題としているのは、数十MI(2以上のいわゆ
るVHF帯におけるTV信号の多重伝送システムであり
、(1)式の右辺の第2項、第6項は高域フィルタで分
離可能であるが、第4項は、n(t)が低周波成分はど
強いので、ビデオ検波した後もkn(t)(1+mf(
t))の形で残ってしまい、もともと低域成分の強い(
1+mf(t))との積をとると、結局低域部妨害信号
が残ってしまうことになる。
The problem here is a multiplex transmission system for TV signals in the so-called VHF band of several tens of MI (2 or more), and the second and sixth terms on the right side of equation (1) can be separated by a high-pass filter. However, the fourth term is kn(t)(1+mf(
t)), which originally has a strong low frequency component (
1+mf(t)), the low-frequency interference signal ends up remaining.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、妨害雑音成分を軽減し、高品質の信号を得る
ことができる光ファイバによる信号伝送システムを提供
することにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a signal transmission system using optical fibers that can reduce interference noise components and obtain high quality signals.

本発明の第1の特徴は、光ファイバからの光信号を電流
信号に変換するフォトダイオードの出力を分波器に通し
て低域成分と高゛域成分とに分離し、この高域成分は可
変利得増幅器の人力とし、上記低域成分は正レベル直流
電圧を印加しである差動増幅器に与え、この差動増幅器
の出力で上記可変利得増幅器の利得を制御して上記可変
利得増幅器より妨害雑音成分を軽減した信号を得る手段
を具備する構成とした点にある。第2の特徴は、さらに
光信号を発生するレーザダイオ、−ドに人力電気信号と
これと周波数帯域が異なるパイロット正弦波信号とを加
算した信号を与える手段を設け、上配分波器の前後には
高域フィルタを設け、また、上記分波器と上記差動増幅
器との間には、振幅検波回路を設は之構成とした点にあ
る。
The first feature of the present invention is that the output of a photodiode that converts an optical signal from an optical fiber into a current signal is passed through a demultiplexer to separate it into a low frequency component and a high frequency component. The above low-frequency component is manually powered by a variable gain amplifier, and a positive level DC voltage is applied to the above low-frequency component to a differential amplifier, and the output of this differential amplifier controls the gain of the above variable gain amplifier, and the above variable gain amplifier interferes with the interference. The present invention is configured to include means for obtaining a signal with reduced noise components. The second feature is that the laser diode that generates the optical signal is further provided with a means for giving a signal that is the sum of a human-powered electric signal and a pilot sine wave signal with a different frequency band, and is provided before and after the upper splitter. A high-pass filter is provided, and an amplitude detection circuit is provided between the duplexer and the differential amplifier.

以下本発明を第3図、第5図に示した実施例および第4
図、第6図を用いて詳細に説明する。
The present invention will be described below with reference to the embodiments shown in FIGS. 3 and 5 and the embodiments shown in FIG.
This will be explained in detail using FIG.

第3図は本発明の光ファイバによる信号伝送システムの
一実施例を示す構成図であり、第1図と同一部分は同じ
符号で示し、ここでは説明を省略する。第3図において
は、フォトダイオード9の出力信号を分波器12に導き
、分波器12の出力端子16からの出力は可変利得増幅
器17に導き、一方、分波器12の出力端子14からの
出力は、基準端子15に正のレベルのDC電圧が印加し
である差動増幅器16VC導き、差動増幅器16の出与
えるようにしである。
FIG. 3 is a block diagram showing an embodiment of the optical fiber signal transmission system of the present invention. The same parts as in FIG. In FIG. 3, the output signal of the photodiode 9 is guided to a branching filter 12, the output from the output terminal 16 of the branching filter 12 is guided to a variable gain amplifier 17, and the output signal from the output terminal 14 of the branching filter 12 is guided to a variable gain amplifier 17. The output of the differential amplifier 16 is such that a DC voltage of a positive level is applied to the reference terminal 15, and the output of the differential amplifier 16 is outputted from the differential amplifier 16VC.

第4図は第3図の動作を説明するための波形図1   
   で、端子1に第4図(a)の伝送すべき信号21
を印加すると、フォトダイオード9の出力電源は、(1
)式で示されるので、第4図(b)の22で示されるよ
うに、本来の信号k(1+mf(t)lemθノ、、t
、DC付近の妨害信号N+n(t))、本来の信号の近
傍に生じるkn(t)(1’+mf(t)cosω。t
なる妨害信号の和になっている。そこで、まず、帯域の
差異を利用して妨害信号n、(を斤取り出すため、フォ
トダイオード9の出力信号を分波器12に導いて、分波
器12からk(1+n(t))N+mf(t))で示さ
れる出力を得て、この出力を端子16から可変利得増幅
器17に導き、一方、[1+n(t))で示される出力
を得て、この出力を端子14から差動増幅器16に与え
る。差動増幅器16には正のレベルのDC電圧が印加し
であるから、差動増幅器16の出力として第4図(C)
に23で示しi(1+n(t )lに比例した電圧が得
られる。この出力電圧は可変利得増幅器17の利得制御
入力端子18に与えであるから、可変利得増幅器17の
増幅利得が変わり、端子11には第4図(d)に24で
示したk(1+n”(t)1(1+mf(t))aos
ω。tなる信号が出力される。
Figure 4 is a waveform diagram 1 to explain the operation of Figure 3.
Then, the signal 21 to be transmitted in FIG. 4(a) is connected to the terminal 1.
is applied, the output power of the photodiode 9 is (1
), the original signal k(1+mf(t)lemθ, , t
, interference signal N+n(t)) near DC, kn(t)(1'+mf(t)cosω.t) occurring near the original signal.
It is the sum of the interference signals. Therefore, first, in order to take out the interference signal n, (by using the difference in the band), the output signal of the photodiode 9 is guided to the duplexer 12, and from the duplexer 12 k(1+n(t))N+mf( t)) is obtained and this output is led from the terminal 16 to the variable gain amplifier 17, while an output shown as [1+n(t)) is obtained and this output is led from the terminal 14 to the differential amplifier 16. give to Since a positive level DC voltage is applied to the differential amplifier 16, the output of the differential amplifier 16 is as shown in FIG. 4(C).
A voltage proportional to i(1+n(t)l) is obtained as indicated by 23. Since this output voltage is applied to the gain control input terminal 18 of the variable gain amplifier 17, the amplification gain of the variable gain amplifier 17 changes and the terminal 11, k(1+n''(t)1(1+mf(t))aos shown at 24 in FIG. 4(d)
ω. A signal t is output.

ところで、一般に1n(t)1<:1であるので、可変
利得増幅器17の出力はyBemwω。tで示さノLる
By the way, since 1n(t)1<:1 generally, the output of the variable gain amplifier 17 is yBemwω. Indicated by t.

すなわち、伝送系で生じ友妨害の度合を受信信号のDC
付近の成分を調べることによって検知し、これを用いて
で伝送信号の乱れを補正するようにしである。したがっ
て、本発明の実施例によれば、妨害雑音信号を軽減した
高品質の信号を得ることができる。
In other words, the degree of interference that occurs in the transmission system is determined by the DC of the received signal.
This is detected by examining nearby components, and this is used to correct disturbances in the transmitted signal. Therefore, according to the embodiment of the present invention, a high quality signal with reduced interference noise signals can be obtained.

第5図は本発明の他の実施例を示す構成図で、第1図、
第3図と同一部分は同じ符号で示しである。本発明のポ
イントは、伝送系において生じ几妨害信号n(t)を主
信号(1+m f (t ) ) ・(IJ Otとの
帯域の差を利用して抽出し、これを用いて補正を行うこ
とにあわ、第3図においては、妨害信号を抽出するのに
分波器12を用いているが、第5図においては、下記の
ようにしである。すなわち駆動回路2の前後に加算器2
7を設け、(1+m f(t ) l・(2)ω(,1
で示される入力電気信号25にこれと周波数帯域が異な
るmp(2)ωptで示されるパイロット正弦波信号2
6を加え合せ、加算器27の出力端子1を経て駆動回路
2に人力し、レーザダイオード6、結合部4、光コネク
タ5、光ファイバ6、元コネクタ7、結合部8、フォト
ダイオード9よシなる光伝送系を通して、フォトダイオ
ード9の出力として、 (1+n(t)l(1+k(1+mf(t)coaa+
gt−1−mpaosa+pt)) なる信号を得るようにしである。この信号は、(1)D
O付近の成分 1+n(t) (2)  信号スペクトル付近の成分 (1+n(t))kmf(t)aoi+ω。t(3)ハ
イロットアスペクトル付近の成分(1+n(t))km
pco[la+ptの3種よりなるが、いずれの帯域も
異なるようにω。、ωpを設定し、(1)〜(3)の各
成分をフィルタで分離できるようにし、フォトダイオー
ド9の出力を最初に高域フィルタ28を通し、まず、上
記(1)の成分を除去し、次に分波器29で(2)、(
6)の成分を分離するようにした。そして、この中で(
2)の成分による出力30は可変利得増幅器17に導ひ
き、(3)の成分による出力31は、振幅検波回路32
を通して(1−1−r>(t))なる妨害波成分を得て
、この妨害波成分を差動増幅器16に与え、第3図と同
様、差動増幅器16の出力を可変利得増幅器17の利得
制御入力端子18に与え、可変利得増幅器17の増幅利
得を変えて、信号スペクトル付近の成分(1+n(t)
)kmf(t)cma+otよシ妨害波n(t)Q除去
するようにしである。なお、実際のVHF多重伝送シス
テムでは、第6図に示すように、9’0−222MHz
帯を用いて12チヤンネルの伝送を行うので、パイロッ
ト信号としては200M HZ位が好ましい。第5図の
ように苧ても第3図の場合と同様の効果が得られる。
FIG. 5 is a configuration diagram showing another embodiment of the present invention, and FIG.
The same parts as in FIG. 3 are indicated by the same reference numerals. The key point of the present invention is to extract the interference signal n(t) generated in the transmission system using the difference in band from the main signal (1+m f (t) ) (IJOt), and use this to perform correction. Particularly, in FIG. 3, the duplexer 12 is used to extract the interference signal, but in FIG.
7 and (1+m f(t) l・(2)ω(,1
A pilot sine wave signal 2 shown as mp(2)ωpt which has a different frequency band from the input electric signal 25 shown as
6 is added together and inputted to the drive circuit 2 via the output terminal 1 of the adder 27, and then the laser diode 6, the coupling part 4, the optical connector 5, the optical fiber 6, the original connector 7, the coupling part 8, the photodiode 9, etc. Through the optical transmission system, as the output of the photodiode 9, (1+n(t)l(1+k(1+mf(t)coaa+
gt-1-mpaosa+pt)). This signal is (1)D
Component near O 1+n(t) (2) Component near signal spectrum (1+n(t))kmf(t)aoi+ω. t(3) component near the high lot a spectrum (1+n(t))km
It consists of three types: pco[la+pt, but each band has a different ω. , ωp so that each of the components (1) to (3) can be separated by a filter, and the output of the photodiode 9 is first passed through the high-pass filter 28 to remove the component (1) above. , then (2), (
The components of 6) were separated. And in this (
The output 30 resulting from the component (2) is guided to the variable gain amplifier 17, and the output 31 resulting from the component (3) is guided to the amplitude detection circuit 32.
to obtain an interference wave component (1-1-r>(t)), give this interference wave component to the differential amplifier 16, and as in FIG. It is applied to the gain control input terminal 18, and the amplification gain of the variable gain amplifier 17 is changed to obtain the component (1+n(t)) near the signal spectrum.
)kmf(t)cma+ot and the interference wave n(t)Q is removed. In addition, in an actual VHF multiplex transmission system, as shown in FIG.
Since 12-channel transmission is performed using the band, the pilot signal is preferably about 200 MHz. The same effect as in the case of FIG. 3 can be obtained by using ramie as shown in FIG. 5.

以上説明したように、本発明によれば、妨害雑音成分を
軽減し、高品質の信号を得ることができ、しかも、特殊
な回路を用いないので簡単に実現できるという効果があ
る。
As explained above, according to the present invention, interference noise components can be reduced and high quality signals can be obtained, and furthermore, since no special circuit is used, the present invention can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光ファイバによる信号伝送システムの構
成図、第2図は伝送路で発生する雑音スペクトルを示す
線図、第3図は本発明の光ファイバによる信号伝送シス
テムの一実施例を示す構成図、第4図は第3図の動作を
説明するための波形図、第5図は本発明の他の実施例を
示す構成図、第6図は第5図におけるパイロット配置を
示す図である。 2:駆動回路、6:レーザダイオード、4.8=結合部
、5,7:光コネクタ、6:光ファイバ、9:フォトダ
イオード、12.29:分波器、16:差動増幅器、1
7:可変利得増幅器、27:加算器、28:高域フィ′
ルタ、32:振幅検波回路。 f l  圀 rzEJ’ ω  3 m ノ5t6 枦 4 図 7′5  詔 rt、、IEJ (84ΣεハイH,ン
Fig. 1 is a block diagram of a conventional signal transmission system using optical fibers, Fig. 2 is a diagram showing the noise spectrum generated in the transmission path, and Fig. 3 is an embodiment of the signal transmission system using optical fibers of the present invention. 4 is a waveform diagram for explaining the operation of FIG. 3, FIG. 5 is a configuration diagram showing another embodiment of the present invention, and FIG. 6 is a diagram showing the pilot arrangement in FIG. 5. It is. 2: Drive circuit, 6: Laser diode, 4.8 = Coupling unit, 5, 7: Optical connector, 6: Optical fiber, 9: Photodiode, 12.29: Duplexer, 16: Differential amplifier, 1
7: Variable gain amplifier, 27: Adder, 28: High frequency filter
Router, 32: Amplitude detection circuit. f l 圀rzEJ' ω 3 m ノ5t6 枦 4

Claims (1)

【特許請求の範囲】 1、 人力電気信号によって変調され友レーザダイオー
ドからの光信号を光ファイバに、入射して伝送し、前記
光ファイバからの光信号をフォトダイオードを用いて電
流信号に変換rるようにしてなるものにおいて、前記フ
オI−タイオードの出力を分波器に通して低域成分と高
域成分とに分離し、該高域成分は可変利得増幅器の人力
とし、前記低域成分は正レベル直流電圧を印加しである
差動増幅器に与え、該差動増幅器の出力で前記可変利得
増幅器の利得を制御して前記可変利得増幅器より妨害雑
音成分を軽減した信嬉゛を得る手段を具備していること
を特徴とする光ファイバによる信号伝送システム。 2、人力電気信号によって変調されたレーザダイオード
からの光信号を光ファイバに入射して伝送し、前記光フ
ァイバからの光信号をフォトダイオードを用いて電流信
号に変換するようにしてなるものにおいて、前記レーザ
ダイオードに前記人力電気信号とこれと周波数帯域が異
なるパイロット正弦波信号とを加算した信号を与える手
段と、前記フォトゲイトの出力を高域フィルタを通して
から分波器に通して低域成分と高域成分とに分離し、該
高域成分は可変利得増幅器の人力とし、前記低域成分は
振幅検波回路を通してから正レベル直流電圧を印加しで
ある差動増幅器に与え、該差動増幅器の出力で前記可変
利得増幅器の利得を制御して前記可変利得増幅器より妨
害雑音成分を軽減した信号を得る手段とを具備して込る
ことを特徴とする尤ファイバによる信号伝送システム。
[Claims] 1. An optical signal modulated by a human-powered electric signal from a laser diode is input into an optical fiber and transmitted, and the optical signal from the optical fiber is converted into a current signal using a photodiode. In the device, the output of the photodiode is passed through a duplexer to separate it into a low frequency component and a high frequency component, the high frequency component is inputted to the variable gain amplifier, and the low frequency component is means for applying a positive level DC voltage to a differential amplifier, controlling the gain of the variable gain amplifier with the output of the differential amplifier, and obtaining a signal with reduced interference noise components than the variable gain amplifier. A signal transmission system using optical fiber, characterized by comprising: 2. An optical signal from a laser diode modulated by a human-powered electric signal is transmitted by entering an optical fiber, and the optical signal from the optical fiber is converted into a current signal using a photodiode, means for providing a signal obtained by adding the human-powered electric signal and a pilot sine wave signal having a different frequency band to the laser diode, and passing the output of the photogate through a high-pass filter and then a splitter to separate low-frequency components. The high-frequency component is input to a variable gain amplifier, and the low-frequency component is passed through an amplitude detection circuit and then applied with a positive level DC voltage to be applied to a differential amplifier. A signal transmission system using an optical fiber, comprising: means for controlling the gain of the variable gain amplifier at the output to obtain a signal with reduced interference noise components from the variable gain amplifier.
JP57004220A 1982-01-14 1982-01-14 Signal transmission system with optical fiber Granted JPS58121843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004220A JPS58121843A (en) 1982-01-14 1982-01-14 Signal transmission system with optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004220A JPS58121843A (en) 1982-01-14 1982-01-14 Signal transmission system with optical fiber

Publications (2)

Publication Number Publication Date
JPS58121843A true JPS58121843A (en) 1983-07-20
JPH0133058B2 JPH0133058B2 (en) 1989-07-11

Family

ID=11578518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004220A Granted JPS58121843A (en) 1982-01-14 1982-01-14 Signal transmission system with optical fiber

Country Status (1)

Country Link
JP (1) JPS58121843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137657U (en) * 1983-03-02 1984-09-13 松下電器産業株式会社 optical receiver
FR2621753A1 (en) * 1987-10-13 1989-04-14 Thomson Csf Automatic gain-control device and receiver including such a device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479124B2 (en) 1994-08-12 2003-12-15 ミハル通信株式会社 AGC method for CATV optical receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137657U (en) * 1983-03-02 1984-09-13 松下電器産業株式会社 optical receiver
FR2621753A1 (en) * 1987-10-13 1989-04-14 Thomson Csf Automatic gain-control device and receiver including such a device

Also Published As

Publication number Publication date
JPH0133058B2 (en) 1989-07-11

Similar Documents

Publication Publication Date Title
US5282074A (en) Optical amplification repeating system
JP3072259B2 (en) Low bias heterodyne optical fiber communication link
US4303855A (en) System for separating an optical signal from ambient light
US6031648A (en) Automatic gain control for free-space optical telecommunications links
JPS58121843A (en) Signal transmission system with optical fiber
JP2748891B2 (en) Optical amplifier
US20050095994A1 (en) Transmitting and receiving device
US4885460A (en) Device to detect frequency converted signals with high efficiency
JPH0117614B2 (en)
JPH0115179B2 (en)
JPH02235449A (en) Optical communication system
EP0822675B1 (en) Light transmission method and apparatus
JPH0661947A (en) Optical space transmission system
JP2655862B2 (en) Optical transmission equipment
JPH05260019A (en) Coherent scm optical transmission method and optical transmitter, optical receiver and optical transmission system used for executing the same
JPH0329211B2 (en)
JPH10126339A (en) Optical transmission system
JPH05167535A (en) Optical communication method
JPH06268594A (en) Optical noise source
JPH1117657A (en) Optical transmitter
JPS60105335A (en) Optical signal transmitter
JPS5922456A (en) Optical modulating system
JPS6017409A (en) Optical coupler
JPS59122248A (en) Transmitting method of analog signal
JPH0127637B2 (en)