JPS58120610A - Preparation of polypropylene having improved transparency - Google Patents

Preparation of polypropylene having improved transparency

Info

Publication number
JPS58120610A
JPS58120610A JP57002256A JP225682A JPS58120610A JP S58120610 A JPS58120610 A JP S58120610A JP 57002256 A JP57002256 A JP 57002256A JP 225682 A JP225682 A JP 225682A JP S58120610 A JPS58120610 A JP S58120610A
Authority
JP
Japan
Prior art keywords
polymerization
propylene
titanium
compound
titanium trichloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57002256A
Other languages
Japanese (ja)
Inventor
Takashi Kanbayashi
隆 神林
Kiyoshi Inoue
潔 井上
Eiji Yamamoto
山本 栄次
Takeo Inoue
武夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57002256A priority Critical patent/JPS58120610A/en
Publication of JPS58120610A publication Critical patent/JPS58120610A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To prepare the titled polymer having high bulk density and excellent transparency, and useful for a food container, etc., in high yield, by the continuous two-stage polymerization of propylene under specific conditions using a catalyst composed of a Ti compound such as titanium trichloride and an organic Al compound. CONSTITUTION:The objective polymer is prepared by the continuous polymerization of propylene using a catalyst composed of (A) a catalyst component containing a titanium compound selected from titanium trichloride, a titanium trichloride composition and a titanium compound supported by or chemically bonded to a carrier, and (B) an organic aluminum compound (e.g. diethylaluminum chloride). The polymerization is carried out in two steps comprising the first step polymerization wherein 5-35wt% of the total polymerizing amount is polymerized at <=65 deg.C and the second step polymerization at 70-90 deg.C.

Description

【発明の詳細な説明】 方法であり、且つ、パウダーの嵩比重および収率の良好
なプロピレン重合体を与える方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for providing a propylene polymer having a good bulk specific gravity of powder and a good yield.

更に詳説すれば、本発明の実施により得られる重合体は
特にフイルム、又は食品容器用ブローグレードに適した
プロピレン重合体であ名。
More specifically, the polymer obtained by practicing the present invention is a propylene polymer particularly suitable for film or blow grade for food containers.

従来、フィルム、又は食品容器用ブローグレードポリプ
ロピレンとしては、プロピレンの単独重合による方法が
とられていたが、透明性が充分でないという欠点があっ
た。
Conventionally, blow-grade polypropylene for films or food containers has been produced by homopolymerizing propylene, but this method has the drawback of insufficient transparency.

また、製品の収率を向上させ、且つ、触媒活性を向上さ
せる為には、従来、特開昭54−141894、特開昭
54−142291の技術が提示されていた。
Furthermore, in order to improve the yield of the product and the catalyst activity, techniques disclosed in JP-A-54-141894 and JP-A-54-142291 have been proposed.

前者は、三塩化チタンと有機アルミニウム化合物を不活
性有機溶剤中で予め接触させ、次いでプロピレン又ハプ
ロピレンと他のd−オレフィンとを予備重合させた後に
、プロピレン又はプロピレンと他のび一オレフインとの
重合を行なうことを特徴とする重合方法であり、後者は
上記予備重合の後に更に予備重合に於けるより高い温度
でプロピレン又はプロピレンとび一オレフインとを前重
合させた後に本重合を行うことを特徴とする重合方法で
ある。これらの重合方法によれば、確かに製品の収率、
触媒活性ともに向上するが、予電合量又は前重合量の全
重合量に対する割合が小さいために本重合における重合
温度を上昇させることができず、充分に透明性に優れた
プロピレン重合体を製造することは不可能である。
The former method involves contacting titanium trichloride with an organoaluminum compound in an inert organic solvent, then prepolymerizing propylene or hapropylene with another d-olefin, and then polymerizing propylene or propylene with another d-olefin. It is a polymerization method characterized by carrying out polymerization, and the latter is characterized by carrying out main polymerization after prepolymerizing propylene or propylene and an olefin at a higher temperature than in the prepolymerization after the above prepolymerization. This is a polymerization method. According to these polymerization methods, it is true that the product yield,
Although both catalytic activity is improved, the polymerization temperature in the main polymerization cannot be increased because the ratio of the amount of pre-electrification or the amount of pre-polymerization to the total amount of polymerization is small, and a propylene polymer with sufficiently excellent transparency is produced. It is impossible to do so.

本発明は、透明性をさらに改良すると共に、製品収率を
大きく向上させたもので、フィルム、食品容器用ブロー
グレードとして種々の有用な効果を発揮するものである
。以下本発明について詳説する。
The present invention further improves transparency and greatly increases product yield, and exhibits various useful effects as a blow grade for films and food containers. The present invention will be explained in detail below.

本発明は、(N三塩化チタンもしくは三塩化チタン組成
物または(Blチタン化合物を担持もしくは化学結合さ
せた担体触媒成分のいずれかのチタンを有効成分とする
触媒成分と(C)有機アルミニウム化合物とからなる触
媒を用いてプロピレンを連続的に重合させる際に、第1
段目の重合として全重合量の5〜35重量%を65℃以
下の温度で行い、次いで70〜90℃の温度でプロピレ
ンを重合させることを特徴とする、透明性に優れたポリ
プロピレンを収率良く得る方法である。
The present invention comprises a catalyst component having titanium as an active ingredient, either a (N titanium trichloride or a titanium trichloride composition, or a carrier catalyst component supported or chemically bonded with a Bl titanium compound), and (C) an organoaluminum compound. When propylene is continuously polymerized using a catalyst consisting of
As the polymerization step, 5 to 35% by weight of the total polymerization amount is carried out at a temperature of 65°C or lower, and then propylene is polymerized at a temperature of 70 to 90°C, yielding polypropylene with excellent transparency. This is a good way to get it.

本発明の方法は共にプロビレ、ンのホモポリマーを重合
させる点で共通する第1段重合と第2段重合とに分かれ
る。しかし 第1段重合では65℃以下の比較的低い温度で、全重合
量の5〜35重量%の範囲でプロピレンの高結晶性ホモ
ポリマーを重合させる。この段階を設けることによって
、高温重合である第2段重合時のスラリー性状を良好に
保つことができ、連続重合運転を円滑に行なうことがで
き、また嵩比重の大きい製品を高収率で得ることができ
る。他方第2段重合では、70〜90℃の高温でプロピ
レンのホモポリマーを重合させる。この段階を設けるこ
とによって非常に透明性に優れたポリマーを得ることが
できる。
The method of the present invention is divided into a first stage polymerization and a second stage polymerization, both of which have the common point of polymerizing a homopolymer of propylene. However, in the first stage polymerization, a highly crystalline homopolymer of propylene is polymerized at a relatively low temperature of 65° C. or lower in an amount ranging from 5 to 35% by weight of the total polymerization amount. By providing this stage, it is possible to maintain good slurry properties during the second stage polymerization, which is high-temperature polymerization, and it is possible to perform continuous polymerization operations smoothly, and to obtain products with high bulk specific gravity in high yield. be able to. On the other hand, in the second stage polymerization, a homopolymer of propylene is polymerized at a high temperature of 70 to 90°C. By providing this step, a polymer with extremely excellent transparency can be obtained.

なお、第1段重合と第2段重合の間や、各重合操作の前
後に他の段階の重合を行なうことは、必ずしも本発明の
目的に沿う結果をもたらすものでハナい。プロピレン単
独で、しかも第1段重合の前にその’Ao量程度を行な
うことは格別本発明の効果を損うものではないが、他の
段階や、他のオレフィンと共重合させることは一般的に
言って好ましいことではない。
Note that performing other stages of polymerization between the first stage polymerization and the second stage polymerization, or before and after each polymerization operation does not necessarily bring about results that meet the objectives of the present invention. Although it does not particularly impair the effects of the present invention to carry out propylene alone and in the amount of 'Ao' before the first stage polymerization, it is common to carry out copolymerization at other stages or with other olefins. That's not a good thing to say.

本発明に使用する三塩化チタンもしくは三塩化チタン組
成物とは、オレフィンの重合用に使用されるものであれ
ば特に制限は無い。例えば、四塩化チタンを水素で還元
して得られる三塩化チタン、四塩化チタンを金属で還元
して得られる三塩化チタンと金属ハライドとの共晶体、
および四塩化チタンを有機アルミニウム化合物で還元し
て得られる三塩化チタン組成物、又はこれらの三塩化チ
タンを特定のエーテル化合物で処理した後、更に四塩化
チタンで処理した三塩化チタン組成物、或いは、更にこ
れらに粉砕、洗浄、その他種々の前処理を施したもの等
があげられる。
The titanium trichloride or titanium trichloride composition used in the present invention is not particularly limited as long as it is used for olefin polymerization. For example, titanium trichloride obtained by reducing titanium tetrachloride with hydrogen, a eutectic of titanium trichloride and metal halide obtained by reducing titanium tetrachloride with a metal,
and a titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound, or a titanium trichloride composition obtained by treating these titanium trichlorides with a specific ether compound and then further treating with titanium tetrachloride, or , and those obtained by subjecting these to pulverization, washing, and various other pretreatments.

本発明に使用されるチタン化合物を担持または化学結合
させた担体触媒成分とは、オレフィンの重合用に使用さ
れるものであれば特に制限は無い。
The carrier catalyst component on which a titanium compound is supported or chemically bonded to be used in the present invention is not particularly limited as long as it is used for olefin polymerization.

例えば、シリカ、アルミナ、酸化硼素、マグネシウム化
合物(マグネシウムハライド、マグネシウムヒドロキシ
ハライド、水酸化マグネシウム、炭酸マグネシウム、酸
化マグネシウム等)等をその壕ま、あるいは必要により
前処理したものに四塩化チタン、三塩化チタン、あるい
は三塩化チタン組成物を担持または化学結合させたもの
等があげられる。また担体として使用するマグネシウム
ノ・ライドは、例えば、有機マグネシウム化合物とノ・
ロゲン化シランとの反応により合成したもの、あるいは
、マグネシウムノ・ライドを一旦、アルコール等に溶解
させたのち析出させたものでも構わない。
For example, silica, alumina, boron oxide, magnesium compounds (magnesium halide, magnesium hydroxyhalide, magnesium hydroxide, magnesium carbonate, magnesium oxide, etc.), etc. are used in the trench, or if necessary, pretreated, titanium tetrachloride, trichloride, etc. Examples include those in which titanium or a titanium trichloride composition is supported or chemically bonded. In addition, the magnesium compound used as a carrier is, for example, an organomagnesium compound and compound.
It may be one synthesized by reaction with a rogensated silane, or one prepared by dissolving magnesium oxide in alcohol or the like and then precipitating it.

これらのチタンを有効成分とする触媒成分については、
四塩化チタンを有機アルミニウム化合物で還元して得ら
れる三塩化チタン組成物、又はこの三塩化チタン組成物
を特定のエーテル化合物で処理した後更に四塩化チタン
で処理した三塩化チタン組成物、或いは、有機マグネシ
ウム化合物とハロゲン化シランとの反応により合成した
マグネシウムハライド、又はマグネシウムノ・ライドを
一旦アルコールなどに溶解させた後、析出させたマグネ
シウムハライドに四塩化チタンを担持したものなどを言
っており、一般的に言ってオレフィンを重合した際生成
したポリオレフィンの粒度分布が狭く、又球状或いはそ
れに近いポリオレフインを製造し得るチタンを有効成分
とする触媒成分を使用し本発明の方法で重合すれは高収
率で製品を得ることができ・るものである。
Regarding these catalyst components containing titanium as an active ingredient,
A titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound, or a titanium trichloride composition obtained by treating this titanium trichloride composition with a specific ether compound and then further treating it with titanium tetrachloride, or It refers to magnesium halide synthesized by the reaction of an organomagnesium compound and a halogenated silane, or a magnesium halide that is precipitated after dissolving magnesium in alcohol or the like, and then supports titanium tetrachloride. Generally speaking, the particle size distribution of polyolefins produced when olefins are polymerized is narrow, and polymerization using the method of the present invention using a catalyst component containing titanium as an active ingredient, which can produce polyolefins that are spherical or close to spherical, has a high yield. You can get the product at a reasonable rate.

とりわけ、チタンを主成分とする触媒成分として四塩化
チタンを有機アルミニウム化合物で還元して得られる三
塩化チタン組成物、又は、との三塩化チタンを特定のエ
ーテル化合物で処理した後、更に四塩化チタンで処理し
た三塩化チタン組成物を使用し本発明の方法で重合すれ
ば高収率で製品を得ることができる。
In particular, a titanium trichloride composition obtained by reducing titanium tetrachloride as a catalyst component mainly composed of titanium with an organoaluminum compound, or a titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound as a catalyst component, or a titanium trichloride composition obtained by treating titanium trichloride with a specific ether compound, and then further reducing the titanium tetrachloride composition with a specific ether compound. If a titanium trichloride composition treated with titanium is used and polymerized by the method of the present invention, a product can be obtained in high yield.

本発明に使用される有機アルミニウム化合物としては、
例えば、トリエチルアルミニウム、トリインブチルアル
ミニウム、トリーn−プロピルアルミニウム、ジエチル
アルミニウムモノクロライド、ジエチルアルミニウムモ
ノブロマイド、ジエチルアルミニウムモノアイオダイド
、ジエチルアルミニウムモノエトキサイド、ジインブチ
ルアルミニウムモノイソブトキサイド、ジエチルアルミ
ニウムモノハイドライド、ジイソブチルアルミニウムモ
ノバイトライド、エチルアルミニウムセスキクロライド
などがあげられ、これらの1種又は2種以上を用いるこ
とができる。
The organoaluminum compounds used in the present invention include:
For example, triethylaluminum, triimbutylaluminum, tri-n-propylaluminum, diethylaluminium monochloride, diethylaluminum monobromide, diethylaluminum monoiodide, diethylaluminium monoethoxide, diimbutylaluminum monoisobutoxide, diethylaluminum mono Examples include hydride, diisobutylaluminum monobitride, and ethylaluminum sesquichloride, and one or more of these can be used.

本発明に使用する触媒成分としては、前記(AJ三塩化
チタンもしくは三塩化チタン組成物、又は(B)チタン
化合物を担持もしくは化学結合させた担体触媒成分のい
ずれかのチタンを有効成分とする触媒成分と(q有機ア
ルミニウム化合物の2成分を用いることが必要であるが
、これらの成分以外に必要に応じて第3成分を添加して
も構わない。この第3成分は、一般に電子供与体と称さ
れるエーテル類、アルコール類、エステル類、アミン類
、有機リン化合物などであり、これらの1種又は2種以
上を用いるものである。
The catalyst component used in the present invention is a catalyst containing titanium as an active component, such as the above-mentioned (AJ titanium trichloride or titanium trichloride composition, or (B) a carrier catalyst component supported or chemically bonded with a titanium compound). It is necessary to use two components, the component and (q) organoaluminum compound, but in addition to these components, a third component may be added as necessary.This third component is generally an electron donor and These include ethers, alcohols, esters, amines, organic phosphorus compounds, etc., and one or more of these are used.

本発明において、第1段重合における重合温度は65℃
以下、好ましくFi40−55℃である。
In the present invention, the polymerization temperature in the first stage polymerization is 65°C.
Below, Fi is preferably 40-55°C.

65℃を越えると結晶性が低下し、第2段重合における
スラリー性状が悪化し重合の連続運転が困難になる。他
方、温度がこの温度より低すぎると重合活性が低く、工
業生産上不利となる。
When the temperature exceeds 65°C, crystallinity decreases, the slurry properties in the second stage polymerization deteriorate, and continuous operation of the polymerization becomes difficult. On the other hand, if the temperature is too low than this temperature, the polymerization activity will be low, which will be disadvantageous in industrial production.

また、第1段重合での重合割合は、全重合量の5〜35
重量%である必要がある。この部分が5重量%以下の場
合は第2段目重合部でのスラリー性状が不良となり連続
重合が困難である。また、この部分が35重量%以上の
場合は透明性が不良となり、本発明の目的に適しなくな
る。
In addition, the polymerization ratio in the first stage polymerization is 5 to 35 of the total polymerization amount.
Must be in weight percent. If this portion is less than 5% by weight, the properties of the slurry in the second stage polymerization section will be poor and continuous polymerization will be difficult. Furthermore, if this portion is 35% by weight or more, the transparency will be poor and it will not be suitable for the purpose of the present invention.

本発明において、第2段重合での重合温度は70−90
℃である。70℃以下では透明性が不良となシ、本発明
の目的に適したものは得られない。
In the present invention, the polymerization temperature in the second stage polymerization is 70-90
It is ℃. If the temperature is below 70°C, the transparency will be poor and it will not be possible to obtain a material suitable for the purpose of the present invention.

また90℃以上になるとポリマーが膨潤し連続重合が困
難になる。
Moreover, if the temperature exceeds 90°C, the polymer will swell and continuous polymerization will become difficult.

本発明における重合は不活性溶剤又は液状プロピレンの
存在下に行われ、重合圧力は50気圧以下、好ましくは
常圧ないし45気圧で実施される。
The polymerization in the present invention is carried out in the presence of an inert solvent or liquid propylene, and the polymerization pressure is 50 atm or less, preferably normal pressure to 45 atm.

更に、本発明の重合は一般的には水素の存在下に、分子
量の調節を行なって、透明性に悪影響を与え、フィッシ
ュアイの原因ともなる高分子量重合体の生成を防止して
行なうことが好都合である。
Furthermore, the polymerization of the present invention can generally be carried out in the presence of hydrogen by controlling the molecular weight to prevent the formation of high molecular weight polymers that adversely affect transparency and cause fish eyes. It's convenient.

本発明の方法により重合されたプロピレン重合体は透明
性が良好であシ、フィルム又は食品容器用ブローグレー
ド等に適し、産業上非常に有用であると共に、重合時の
スラリー性状が良好で製品の収率も向上し、工業生産上
非常に有利な方法である。
The propylene polymer polymerized by the method of the present invention has good transparency and is suitable for blow grade for films or food containers, making it very useful industrially. The yield is also improved, making it a very advantageous method for industrial production.

本発明を一層明瞭に説明する為、以下に実施例を示すが
、本発明の範囲はこれにより制限されるものではない。
EXAMPLES In order to explain the present invention more clearly, Examples are shown below, but the scope of the present invention is not limited thereby.

実施例1 直列に連なる2基の重合槽を用いそれぞれで第1段重合
と第2段重合の2段の重合を行った。第1段重合槽は容
量200形であり、第2段重合槽は容量500沼でちる
Example 1 Using two polymerization tanks connected in series, two stages of polymerization, ie, first stage polymerization and second stage polymerization, were carried out in each. The first stage polymerization tank has a capacity of 200, and the second stage polymerization tank has a capacity of 500.

(第1段重合) 容量200−eの第1段重合槽に各装入速度をヘプタン
100−Vhr、活性化三塩化チタン組成物45?/h
 r、ジエチルアルミニウムクロフィト72 f/hr
 。
(First Stage Polymerization) Into the first stage polymerization tank with a capacity of 200-e, each charging rate was set to 100-Vhr of heptane and 45-Vhr of activated titanium trichloride composition. /h
r, diethylaluminum crophyte 72 f/hr
.

プロピレン27.9 Kv/hr  として、また、鼠
相水素濃度が107容量チとなるように水素を連続的に
装入し50℃ 6.1 K/Gの条件で連続的に重合を
行った。
Hydrogen was continuously charged at 27.9 Kv/hr of propylene and hydrogen concentration was 107 by volume in the rat phase, and polymerization was carried out continuously at 50° C. and 6.1 K/G.

(第2段重合) 容量5002の第2段重合槽に第1段重合スラリーを1
27.9 Ky/hrで連続的に移液し、ヘプタンを装
入速度344/h 、プロピレンを同じ(53Kg/h
rで連続的に装入し、また気相水素濃度が193容量係
となるように水素を連続的に装入し75℃6、7 K1
0で連続的に重合を行った。
(Second stage polymerization) One volume of the first stage polymerization slurry was placed in a second stage polymerization tank with a capacity of 5002.
Continuous liquid transfer at 27.9 Ky/hr, heptane charging rate 344/h, propylene at the same rate (53 Kg/h
Hydrogen was charged continuously at 75℃6,7K1 so that the gas phase hydrogen concentration was 193% by volume.
Polymerization was carried out continuously at 0.

重合スラリーは第2段重合槽に続く后処理槽に連続的に
移液し、メタノールを274/hr装入して重合を停止
させ、通常の方法により精製、沢過、乾燥して、65.
1 Kg/h rのパウダー状重合体を得た。
The polymerization slurry is continuously transferred to a post-treatment tank following the second stage polymerization tank, methanol is charged at 274/hr to stop the polymerization, and it is purified, filtered, and dried by a conventional method.
A powdery polymer of 1 Kg/hr was obtained.

又、′f″i液中の非結晶性重合体は1.9 Kg/’
h rであり、製品収率は972チであった。
Also, the amount of amorphous polymer in 'f''i liquid is 1.9 Kg/'
hr, and the product yield was 972 h.

尚、第1段重合部及び第2段重合部における重合叶の割
合は19対81であった。
The ratio of polymerization leaves in the first-stage polymerization section and the second-stage polymerization section was 19:81.

このパウダー状重合体に、2.6−ジーt−ブチル−P
−クレゾール01重量%、ステアリン酸カノシ/ウム0
1重量%、ジ−ラウリル−チオ−ジ−プロピオネ−10
05重量%、ブロッキング防止剤004重量%、滑剤0
.1重量% を均一に混合し、ペレット状に押出した后、Tダイ製膜
機によp製膜した。得られた厚さ60μのフィルムを用
いてかすみ度、ヤング率を測定した。
This powdery polymer contains 2,6-di-t-butyl-P.
- Cresol 01% by weight, Kanosy/um stearate 0
1% by weight, di-lauryl-thio-di-propione-10
05% by weight, anti-blocking agent 004% by weight, lubricant 0
.. After uniformly mixing 1% by weight and extruding into pellets, a P film was formed using a T-die film forming machine. The degree of haze and Young's modulus were measured using the obtained film having a thickness of 60 μm.

結果は、それぞれ23%、88.1 Kg/mtlであ
った。
The results were 23% and 88.1 Kg/mtl, respectively.

また、このパウダー状重合体に、2.6−ジーt−ブチ
ル−P−クレゾール0.15重量%、ステアリン酸カル
シウム01重量%、ジ−ラウリル−チオ−ジ−プロピオ
ネート01重量%、ブロッキング防止剤035重量%、
オレイルアマイド0,2重量%を均一に混合し、ベレッ
ト状に押出した后、インフレーション製膜機により製膜
した厚さ60μのインフレーションフィルムを用いてか
すみ度、ヤング率を測定し、それぞれ3.5%、87.
8 Kg/*dであった。
In addition, this powdery polymer contains 0.15% by weight of 2.6-di-t-butyl-P-cresol, 01% by weight of calcium stearate, 01% by weight of di-lauryl-thio-di-propionate, and 035% by weight of an antiblocking agent. weight%,
After uniformly mixing 0.2% by weight of oleylamide and extruding it into a pellet shape, the degree of haze and Young's modulus were measured using a 60μ thick blown film formed by an inflation film forming machine, and each was 3.5. %, 87.
It was 8 Kg/*d.

実施例2 実施例1において、第1段重合におけるプロピレン装入
速度を9.0 Kg/hr、重合圧力を1.9 K10
、第2段重合槽へのスラリー移液速度109.0 Kg
/h rとし、第2段重合におけるプロピレン装入速度
を75、1 Kg/hr、重合圧力を7.8 K/Gと
した以外は実施例1と同様に重合テストを実施し、表−
1に示した重合条件を得、また得た重合体についての物
性測定を行った結果も表1に示した。
Example 2 In Example 1, the propylene charging rate in the first stage polymerization was 9.0 Kg/hr, and the polymerization pressure was 1.9 K10.
, slurry transfer rate to the second stage polymerization tank 109.0 kg
A polymerization test was conducted in the same manner as in Example 1, except that the propylene charging rate in the second stage polymerization was 75.1 Kg/hr, and the polymerization pressure was 7.8 K/G.
The polymerization conditions shown in 1 were obtained, and the physical properties of the obtained polymer were measured. The results are also shown in Table 1.

実施例3 実施例1において、第1段重合における活性化三塩化チ
タン組成物装入速度k 60 ?/hr 、ジエチルア
ルミニウムクロライド装入速度を96 t/hr 。
Example 3 In Example 1, the activated titanium trichloride composition charging rate k 60 in the first stage polymerization? /hr, and the diethylaluminum chloride charging rate was 96 t/hr.

プロピレン装入速度39.6 Kg/hr 、重合圧力
を7.4に10、第2段重合槽へのスラリー移液速度1
39.6Kt)/hr  とし、第2段重合におけるプ
ロピレン装入速度42.4 Kg/hr、重合圧力を4
.2 K/Gとした以外は実施例1と同様に重合テスト
を実施した。物性測定を行った結果と、得られた重合条
件を表−1に示した。
Propylene charging rate: 39.6 Kg/hr, polymerization pressure: 7.4 to 10, slurry transfer rate to the second stage polymerization tank: 1
39.6 Kt)/hr, the propylene charging rate in the second stage polymerization was 42.4 Kg/hr, and the polymerization pressure was 4.
.. A polymerization test was carried out in the same manner as in Example 1 except that the temperature was 2 K/G. Table 1 shows the results of physical property measurements and the polymerization conditions obtained.

比較例1 実施例1において、第1段重合におけるプロピレン装入
速度2.5 Kg/hr、重合圧力0.1 K/Gとし
、第2段重合におけるプロピレン装入速度82.9 K
g/h r、重合圧力を8.2 K/G、第2段重合槽
へのスラリー移液速度+ 02.4 K9/hrとした
以外は実施例1と同様に重合テストを実施し、得られた
重合体の物性測定も行った。結果は表−1に示した。
Comparative Example 1 In Example 1, the propylene charging rate in the first stage polymerization was 2.5 Kg/hr, the polymerization pressure was 0.1 K/G, and the propylene charging rate in the second stage polymerization was 82.9 K.
A polymerization test was conducted in the same manner as in Example 1, except that the polymerization pressure was 8.2 K/G, and the slurry transfer rate to the second stage polymerization tank was +0.2 K9/hr. The physical properties of the polymer were also measured. The results are shown in Table-1.

比較例2 実施例1において、第1段重合における活性化三塩化チ
タン組成物装入速度を89.4 S’/hr、ジエチル
アルミニウムクロライド装入速度を1430f/hr、
プロピレン装入速度43.3 Kg/hr 、重合圧力
f 6.5 K10、第2段重合槽へのスラリー移液速
度143、3 Kg/hrとし、第2段重合におけるプ
ロピレン装入速度28.0 Kg/hr、重合圧力を2
.3 K/Gとした以外は実施例1と同様に重合テスl
−を実施し、得られた重合体の物性測定も行って表−1
の結果を得た。
Comparative Example 2 In Example 1, the charging rate of activated titanium trichloride composition in the first stage polymerization was 89.4 S'/hr, the charging rate of diethylaluminum chloride was 1430 f/hr,
The propylene charging rate was 43.3 Kg/hr, the polymerization pressure was f 6.5 K10, the slurry transfer rate to the second stage polymerization tank was 143.3 Kg/hr, and the propylene charging rate in the second stage polymerization was 28.0. Kg/hr, polymerization pressure 2
.. Polymerization test l was carried out in the same manner as in Example 1 except that 3 K/G was used.
- was carried out, and the physical properties of the obtained polymer were also measured.
I got the result.

実施例4 実施例1において、第1段重合におけるプロピレン装入
速度17. OK9/hr 、重合温度63℃、重合圧
力4.5 K/G、気相水素濃度48容量チ、第2段重
合槽へのスラリー移液速度117.0 Kg/hrとし
、第2段重合におけるプロピレン装入速度653Kg/
hr 、重合圧カフ、 2 K10とした以外は実施例
】と同様に重合テストを実施し、得られた重合体の物性
測定も行って表−1の結果を得た。
Example 4 In Example 1, the propylene charging rate in the first stage polymerization was 17. OK9/hr, polymerization temperature 63°C, polymerization pressure 4.5 K/G, gas phase hydrogen concentration 48 volume, slurry transfer rate to the second stage polymerization tank 117.0 Kg/hr, and Propylene charging speed 653Kg/
A polymerization test was carried out in the same manner as in Example except that hr, polymerization pressure cuff, and 2K10 were used, and the physical properties of the obtained polymer were also measured, and the results shown in Table 1 were obtained.

実施例5 実施例1において、第1段重合におけるプロピレン装入
速度33.8 Kg/hr、重合圧力を7.1 K/G
とし、第2段重合におけるプロピレン装入速度45.4
Kg/hr、重合温度80℃、重合圧カフ、 6 K/
G ;気相水素濃度12容量チ、第2段重合槽へのスラ
リー移液速度133.8 Kg/hrとした以外は実施
例1と同様に重合テストを実施し、得られた重合体の物
性測定を行って表−1の結果を得た。
Example 5 In Example 1, the propylene charging rate in the first stage polymerization was 33.8 Kg/hr, and the polymerization pressure was 7.1 K/G.
and the propylene charging rate in the second stage polymerization is 45.4
Kg/hr, polymerization temperature 80℃, polymerization pressure cuff, 6 K/
G: A polymerization test was carried out in the same manner as in Example 1, except that the gas phase hydrogen concentration was 12 volumes, and the slurry transfer rate to the second stage polymerization tank was 133.8 Kg/hr, and the physical properties of the obtained polymer were The measurements were carried out and the results shown in Table 1 were obtained.

比較例3 実施例1において、第1段重合における、プロピレン装
入速度8.3 Kg/h r 、重合温度70℃、重合
圧力2.3 K/G、気相水素濃度3.2容量チ、第2
段重合槽へのスラリー移液速度108.2 Kg/hr
 、第2段重合におけるプロピレン装入速W 75.8
 Kg/hr、重合圧カフ、 7 K/Gとした以外は
実施例1と同様に重合テストを実施し、得られた重合体
の物性測定を行って表−1の結果を得た。
Comparative Example 3 In Example 1, in the first stage polymerization, the propylene charging rate was 8.3 Kg/hr, the polymerization temperature was 70°C, the polymerization pressure was 2.3 K/G, and the gas phase hydrogen concentration was 3.2 volumes. Second
Slurry transfer rate to stage polymerization tank 108.2 Kg/hr
, propylene charging speed W in second stage polymerization 75.8
A polymerization test was carried out in the same manner as in Example 1 except that the polymerization pressure cuff was 7 Kg/hr, and the physical properties of the obtained polymer were measured, and the results shown in Table 1 were obtained.

比較例4 実施例1において、第1段重合におけるプロピレン装入
速度31.9 Kg/hr 、重合圧力6.9 K/G
、第2段重合におけるプロピレン装入速度54.0 K
g/h r 。
Comparative Example 4 In Example 1, the propylene charging rate in the first stage polymerization was 31.9 Kg/hr, and the polymerization pressure was 6.9 K/G.
, propylene charging rate in the second stage polymerization 54.0 K
g/hr.

重合温度60℃、重合圧力6.4 K10、気相水素濃
度5.9容量係、第2段重合槽へのスラリー移液速度1
31.9 Kg/hrとした以外は実施例1と同様に重
合テストを実施し、得られた重合体の物性測定も行って
表−1の結果を得た。
Polymerization temperature: 60°C, polymerization pressure: 6.4 K10, gas phase hydrogen concentration: 5.9 volume, slurry transfer rate to the second stage polymerization tank: 1
A polymerization test was carried out in the same manner as in Example 1 except that the rate was 31.9 Kg/hr, and the physical properties of the obtained polymer were also measured, and the results shown in Table 1 were obtained.

比較例5 実施例1において、第1段重合は行わず、容量5001
の第2段重合槽のみを用い、ヘプタン13447h r
、活性化三塩化チタン組成物45 Vhr、ジエチルア
ルミニウムクロライド72fI/hr、プロピレン85
.9 Kg/hr、気相水素濃度が193容量チとなる
ように水素を連続的に装入し75℃ 8.4 K/(]
で連続的に重合を行い、その他は実施例1と同じように
物性測定も行って表−1の結果を得た。
Comparative Example 5 In Example 1, the first stage polymerization was not performed and the capacity was 5001
Using only the second stage polymerization tank, heptane 13447hr
, activated titanium trichloride composition 45 Vhr, diethylaluminium chloride 72 fI/hr, propylene 85
.. 9 Kg/hr, hydrogen was continuously charged so that the gas phase hydrogen concentration was 193 volumes, and the temperature was 75°C 8.4 K/(]
The polymerization was carried out continuously, and the physical properties were also measured in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例6 実施例5にお−いて、Tダイフィルム及びインクレージ
ョンフィルム製膜の為にパウダー状重合体をペレット状
に押出す際に公知の核剤であるジベンジリデンソルピ「
−ル02重量%を添加し、その他は実施例1と同じよう
に物性測定も行って表−1の結果を得た。
Comparative Example 6 In Example 5, a known nucleating agent, dibenzylidene solpi, was used when extruding the powder polymer into pellets for forming T-die films and inkjet films.
The physical properties were measured in the same manner as in Example 1 except that 2 wt.

かすみ度に於いて本発明の効果に達していなかったこと
が明らかである。
It is clear that the effect of the present invention was not achieved in terms of haze level.

Claims (1)

【特許請求の範囲】[Claims] (N三塩化チタンもしくは三塩化チタン組成物または(
B)チタン化合物を担持もしくは化学結合させた担体触
媒成分のいずれかのチタンを有効成分とする触媒成分と
(C1有機アルミニウム化合物とからなる触媒を用いて
プロピレンを連続的に重合させる際に、全重合量の5〜
35重量%を65℃以下の温度で第1段目の重合を行い
、次いで70〜90℃の温度でプロピレンを重合させる
ことを特徴とする、透明性に優れたポリプロピレンの製
造方法。
(N titanium trichloride or titanium trichloride composition or (
B) When propylene is continuously polymerized using a catalyst consisting of a catalyst component containing titanium as an active component and a (C1 organoaluminum compound), the carrier catalyst component supports or chemically bonds a titanium compound. Polymerization amount of 5~
A method for producing polypropylene with excellent transparency, characterized by carrying out a first stage polymerization of 35% by weight at a temperature of 65°C or lower, and then polymerizing propylene at a temperature of 70 to 90°C.
JP57002256A 1982-01-12 1982-01-12 Preparation of polypropylene having improved transparency Pending JPS58120610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002256A JPS58120610A (en) 1982-01-12 1982-01-12 Preparation of polypropylene having improved transparency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002256A JPS58120610A (en) 1982-01-12 1982-01-12 Preparation of polypropylene having improved transparency

Publications (1)

Publication Number Publication Date
JPS58120610A true JPS58120610A (en) 1983-07-18

Family

ID=11524275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002256A Pending JPS58120610A (en) 1982-01-12 1982-01-12 Preparation of polypropylene having improved transparency

Country Status (1)

Country Link
JP (1) JPS58120610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985515A (en) * 1986-08-18 1991-01-15 Mitsubishi Petrochemical Company, Ltd. Process for polymerization of α-olefin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330681A (en) * 1976-09-02 1978-03-23 Mitsui Petrochem Ind Ltd Preparation of polyalpha-olefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330681A (en) * 1976-09-02 1978-03-23 Mitsui Petrochem Ind Ltd Preparation of polyalpha-olefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985515A (en) * 1986-08-18 1991-01-15 Mitsubishi Petrochemical Company, Ltd. Process for polymerization of α-olefin

Similar Documents

Publication Publication Date Title
JPS6020405B2 (en) Manufacturing method of low density polyethylene
JP3358441B2 (en) Polypropylene block copolymer
US5521251A (en) Propylene random copolymer composition
JPH0372509A (en) Olefin polymerization catalyst and preparation of ethylene polymer therewith
JP5206395B2 (en) Polypropylene copolymer and film comprising the same
JP4655344B2 (en) PROPYLENE COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND FILM COMPRISING THE PROPYLENE COPOLYMER
JPH0693061A (en) Polypropylene block copolymer and film therefrom
US5654372A (en) Polypropylene composition and the film thereof
JPH0673132A (en) Polypropylene random copolymer and film therefrom
JP3569737B2 (en) Method for producing propylene-based random copolymer
JPS58120610A (en) Preparation of polypropylene having improved transparency
JP4310832B2 (en) Propylene-based resin sheet and molded body using the same
JPH0428727B2 (en)
JPS6169822A (en) Production of block propylene copolymer
JP2733060B2 (en) Propylene copolymer composition
JPH1121318A (en) Propylene-based copolymer for foaming, its formable particle and foam
JP3569740B2 (en) Propylene random copolymer and film and laminate using the same
JP3141705B2 (en) Propylene random copolymer composition
JPS5928574B2 (en) Method for producing polyolefin
JP3163787B2 (en) Modified polypropylene block copolymer
JP3569738B2 (en) Method for producing propylene-based random copolymer
JPH01272612A (en) Production of propylene copolymer composition
JP2646104B2 (en) Propylene copolymer composition
JP2010053341A (en) Polypropylene based resin composition, and film comprising it
JPS59149909A (en) Propylene copolymer