JPS58119306A - Injection control of flocculant for water purifying plant - Google Patents

Injection control of flocculant for water purifying plant

Info

Publication number
JPS58119306A
JPS58119306A JP180482A JP180482A JPS58119306A JP S58119306 A JPS58119306 A JP S58119306A JP 180482 A JP180482 A JP 180482A JP 180482 A JP180482 A JP 180482A JP S58119306 A JPS58119306 A JP S58119306A
Authority
JP
Japan
Prior art keywords
water
alkalinity
flocculant
raw water
injection rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP180482A
Other languages
Japanese (ja)
Other versions
JPH0321239B2 (en
Inventor
Yukio Saito
幸雄 斉藤
Tetsuro Haga
鉄郎 芳賀
Shunsuke Nokita
舜介 野北
Masahiko Kashiwagi
柏木 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP180482A priority Critical patent/JPS58119306A/en
Publication of JPS58119306A publication Critical patent/JPS58119306A/en
Publication of JPH0321239B2 publication Critical patent/JPH0321239B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a better flocculation with a simple control system overcoming any sharp change in the quality of raw water due to rainfall or the like by injecting a flocculant after the control of quantity of an alkali agent injected based on two indicators of water quality that is the alkalinity of the raw water and the pH of a floculated water following the injection of the flocculant. CONSTITUTION:The alkalinity of a raw water 31 in a waterwell 4 is measured with an alkalinity meter 35 and a corrected alkalinity Al1 is determined with an arithmetic unit 37 from a chlorine injection rate DCl and an alkali agent injection rate DAl. An alkali agent injection rate DAl1 is determined with an arithmetic unit 43 from the turbidity Tu measured with a turbidimeter 34 and the corrected alkalinity Al1. On the other hand, the pH of a flocculated water is measured at the inlet of a floc formation pond 6 with a pH meter 41 and an alkali injection rate DAl2 is determined from the turbidity Tu with an arithmetic unit 42. The alkali injection rates DAl1 and DAl2 are compared with a comparator and after the larger value is choosed as the alkali injection rate DAl, an alkali injection rate Al is obtained from the value and the flow rate F of the raw water. The quantity CO of the flocculant injected is found from the flocculant injection rate DCO determined from the turbidity Tu and the corrected alkalinity Al1 and the flow rate F of the raw water.

Description

【発明の詳細な説明】 本発明は浄水場における凝集剤の注入制御方法に係り、
特に原水水質の変動にかかわらず常に安定した良質の水
を得るに好適な凝集剤の注入量制御方法に関する。
[Detailed description of the invention] The present invention relates to a method for controlling the injection of a flocculant in a water purification plant,
In particular, the present invention relates to a method for controlling the amount of coagulant to be injected, which is suitable for always obtaining stable, high-quality water regardless of fluctuations in raw water quality.

河川、湖等の取水源から取水される原水中には各種の不
純物が含まれており、これを飲料水又はその他の生活水
として利用するには不純物t−線除去る必要がある。不
純物は、主として濁質6色。
Raw water taken from water sources such as rivers and lakes contains various impurities, and in order to use it as drinking water or other domestic water, it is necessary to remove the impurities with T-rays. Impurities are mainly 6 colors of turbidity.

鉄、マンガン、微生物等で、これらは一般に原水中に分
散あるいは浮遊する粒子として、またはこれに吸着する
物質として存在している。この粒子を除去することが水
質向上にとって極めて重要である。粒子の除去法として
は、一般に凝集剤を添加して粒子を凝集させてフロック
化し、沈降及びろ過による方法が行なわれている。最近
では、取水源の広域化、取水源の悪化、取水量の増大に
ともなって凝集剤の注入制御に対する関心が高まってい
る。
Iron, manganese, microorganisms, etc. generally exist as particles dispersed or suspended in raw water, or as substances adsorbed thereto. Removing these particles is extremely important for improving water quality. As a method for removing particles, generally a coagulant is added to coagulate the particles to form flocs, followed by sedimentation and filtration. Recently, interest in coagulant injection control has increased as water intake sources become wider, the water intake sources deteriorate, and the amount of water intake increases.

浄水場での凝集剤注入制御の従来技術I′i、原水の濁
度、原水のアルカリ度等をパラメータとした凝集剤注入
率の演算式を前もって求めておき1着水井等で原水の濁
度及びアルカリ度等を計測して演算式に入力し、注入率
を求め注入する方式である。この凝集剤注入制御法#′
i、単に#集剤注入率を求めて注入する方式であり、#
集剤注入前の水質については何ら考M1を払っていない
うこの九め。
Conventional technology for coagulant injection control at water treatment plants I'i: A calculation formula for the coagulant injection rate using parameters such as turbidity of raw water and alkalinity of raw water is determined in advance, and the turbidity of raw water is calculated at one receiving well, etc. This method measures and inputs the alkalinity, etc. into the calculation formula, determines the injection rate, and performs injection. This flocculant injection control method #'
i. It is a method of simply calculating # drug collection injection rate and injecting, #
You're the ninth person who hasn't given any consideration to the water quality before injecting the concentrate.

降雨や季節変化等の原因により原水のアルカリ度が低減
して凝集剤が機能を十分に発揮できなくなフ凝集に失敗
する危険が高い。また、凝集剤注入率の演算式は、水質
変化の少ないケースが多い過去の運転データを回帰分析
等の数学的手法を用いて解析し求め九近似式であるため
、降雨等の原因によシ水質が大きく変化する場合には誤
差が大きくなり凝集剤の適正注入に失敗する危険も高い
Due to factors such as rainfall and seasonal changes, the alkalinity of the raw water decreases, making it impossible for the flocculant to perform its full function, and there is a high risk that flocculation will fail. In addition, the calculation formula for the flocculant injection rate is a nine-approximation formula that is obtained by analyzing past operation data, in which there are many cases where water quality changes are small, using mathematical methods such as regression analysis. If the water quality changes significantly, the error will increase and there is a high risk of failing to properly inject the flocculant.

原水のアルカリ度が低くすぎfcす、凝集剤の注入が不
適正であると原水中の懸濁粒子が凝集せずそのまま流出
して清澄水が得られなかったり、フロックが小さくなっ
てろ過池の目づtvを頻ばんにする欠点を有している。
If the alkalinity of the raw water is too low, or if the flocculant is improperly injected, the suspended particles in the raw water will not flocculate and flow out as is, making it impossible to obtain clear water, or the flocs will become small, causing problems in the filtration basin. It has the disadvantage of making me watch TV too often.

かかる欠点を改善するものとして1本出願人は共に特願
昭52−21562号(%開昭53−107148号)
を提案している。これ#i、原水アルカリ度。
In order to improve this shortcoming, the present applicant has filed Japanese Patent Application No. 52-21562 (%Kokai No. 53-107148).
is proposed. This #i is raw water alkalinity.

凝集水pH及び凝集水アルカリ度の三水質指標を。Three water quality indicators: coagulated water pH and coagulated water alkalinity.

凝集剤が機能を有効に発揮できる有効凝集領域と定峻す
る領域内に入るようアルカリ剤の注入量を制御したのち
、原水の濁度及び凝集剤注入前のアこの方法は、刻々変
化する水質の計測値にもとづいて、まずアルカリ度を適
正値に維持し、しかるのち凝集剤を注入するもので降雨
等による水質変化に対応した薬注制御が可能である。し
かしながら、この制御法ではアルカリ剤の注入量制御に
三つの水質を制御指標としているので制御系がやや複雑
になること、凝集水アルカリ度針を設置していない浄水
場では新たに設置する必要がおる等の実用上の問題点を
有している。
After controlling the injection amount of alkaline agent so that it falls within the effective flocculation area where the flocculant can effectively perform its function, this method is used to control the turbidity of the raw water and the water quality before the flocculant injection. Based on the measured values, the alkalinity is first maintained at an appropriate value, and then a flocculant is injected, making it possible to control chemical injection in response to changes in water quality due to rainfall, etc. However, this control method uses three water quality indicators to control the amount of alkaline agent injected, which makes the control system somewhat complicated, and water treatment plants that do not have coagulated water alkalinity needles will need to install a new one. However, there are some practical problems.

本発明は前記した従来技術の欠点を改善する九めになさ
れたものであり、その目的とするところは降雨等により
原水の濁度やアルカリ度等の水質が急変する場合にも簡
単な構成で凝集を良好に行える浄水場の凝集剤注入制御
方法を提供するにある。
The present invention has been made to improve the drawbacks of the prior art described above, and its purpose is to provide a simple structure that can be used even when the quality of water such as turbidity and alkalinity of raw water changes suddenly due to rainfall etc. An object of the present invention is to provide a method for controlling the injection of a flocculant in a water purification plant, which can perform flocculation well.

本発明は凝集剤が機能を十分に発揮できる有効凝集領域
と定義する水質領域が存在し、これが原水アルカリ度と
凝集水1)Hの二水質指標で表わされることを実験的に
明らかにしたことが動機となって生まれたものである。
The present invention has experimentally clarified that there is a water quality region defined as an effective flocculation region in which the flocculant can fully exert its function, and that this is expressed by two water quality indicators: raw water alkalinity and flocculated water 1) H. It was created as a motive.

刻々変化する原水のアルカリ度及び凝集水のpHを計測
器により検出し。
Measuring instruments detect the ever-changing alkalinity of raw water and the pH of flocculated water.

これら二水質指標が前記有効凝集領域内に入るようアル
カリ剤の注入量を制御したのち凝集剤を注入する。
After controlling the injection amount of the alkaline agent so that these two water quality indicators fall within the effective coagulation region, the coagulant is injected.

本発明は従来技術を改善すべく種々実験を行ない、かつ
検討を重ねぇ結果生まれ念ものである。
The present invention was conceived as a result of various experiments and repeated studies aimed at improving the prior art.

まず、第1図を用いて浄水プロセスの全体構成について
述べる。河川などの取水源1から取水され念原水は、ス
クリーン2で木片や石等が除去される。次いで沈砂池3
に供給され1粒径の大きい砂が除去され友のち1着水井
4に導びかれ、別途注入される前塩素12と混合され、
原水の殺菌と鉄、マンガン等の醸化が起こなわれる。し
かる後。
First, the overall configuration of the water purification process will be described using FIG. Nengen water is taken from a water source 1 such as a river, and wood chips, stones, etc. are removed by a screen 2. Next, sand settling pond 3
The sand with large grain size is removed and then led to the landing well 4 where it is mixed with pre-chlorine 12 which is separately injected.
Sterilization of raw water and fermentation of iron, manganese, etc. occur. After that.

必要によりアルカリ剤14が注入され、混和池5に入る
。混和池5では、凝集剤注入機15によって注入される
凝集剤16と水との混合が行なわれる。凝集剤が混和し
た水は次にフロック形成池6に入る。フロック形成池で
は原水中の微粒子と凝集剤との結合によシフロックの形
成が行なわれる。
An alkaline agent 14 is injected if necessary and enters the mixing basin 5. In the mixing basin 5, the flocculant 16 injected by the flocculant injector 15 and water are mixed. The water mixed with the flocculant then enters the floc formation pond 6. In the floc formation pond, sifloc is formed by the combination of fine particles in the raw water and flocculant.

咳フ鴛ツク含有原水は次いで沈殿池7に送られ。The raw water containing cough fluid is then sent to settling tank 7.

フロックの沈降分離が行なわれる。沈降分離できなかっ
た微細なフロックはろ過・池月でろ過分離される。濁質
の除去された処理水は5次−・に、消毒池9に送られ後
塩素18とアルカリ剤20の注入に、より雑菌の再発生
防止とpHの調整処理を行なった後、ポンプ10により
配水池に送られる。
Sedimentation separation of the flocs is carried out. Fine flocs that cannot be separated by sedimentation are separated by filtration and Ikezuki. The treated water from which turbidity has been removed is then sent to the disinfection pond 9, where it is injected with chlorine 18 and alkaline agent 20 to prevent the reoccurrence of bacteria and adjust the pH. The water is sent to the distribution reservoir.

次に本発明の理論的背景について述べる。凝集のメカニ
ズムFi、古くは負に帯電した懸濁粒子を正電荷の凝集
剤が電気的に中和し、中性となつ危粒子がファンデルワ
ース力等により結びついて起ると考えられていた。しか
し、最近の凝集理論によると凝集は単なる電気的な中和
にもとづく物理現象ではなく、以下に示すように化学反
応が主因であるとされる。すなわち、原水に注入されt
PAC(ポリ塩化アル<ニウム)や硫酸ばん上等の凝集
剤は解離し、アルミニウムイオンAjを生成する。この
アルミニウムイオンAtは、第2図に模式図を示すよう
に水中に遊離状態にある水酸イオンOH−よりは懸濁粒
子I)C吸着されて濃度が高くなっている水酸イオンO
H″″と優先的に化学反応し結合を生じてフロック化す
る。懸濁粒子を結びつける結合手の数が多くなると結合
力が増し強固で大きなフロックを形成するが、結合手が
少ないと懸濁粒子りを結びつける力が弱くなV。
Next, the theoretical background of the present invention will be described. Mechanism of flocculation Fi was previously thought to occur when negatively charged suspended particles were electrically neutralized by positively charged flocculants, and the neutral dangerous particles were bound together by van der Waals forces, etc. . However, according to recent aggregation theory, aggregation is not a physical phenomenon based on mere electrical neutralization, but is mainly caused by chemical reactions as shown below. That is, when injected into raw water, t
A flocculant such as PAC (polyaluminum chloride) or sulfuric acid is dissociated to produce aluminum ions Aj. As shown in the schematic diagram in Fig. 2, this aluminum ion At is more concentrated than the hydroxyl ion OH- which is free in the water and is adsorbed to the suspended particles I)C and has a higher concentration.
It chemically reacts preferentially with H″″ to form a bond and form a floc. When the number of bonds that bind suspended particles increases, the binding force increases and a strong and large floc is formed, but when there are few bonds, the force that binds suspended particles becomes weak.

外力によってフロックがくずれやすくなる。このため大
きなフロックは形成されない。懸濁粒子を結びつける結
合手の数は、第2図かられかるように凝集剤の量、すな
わちアルミニウムイオンAtの量にのみ依存するのでは
なく、結合相手である懸濁粒子りの表面に吸着されてい
る水酸イオンOH−の量にも依存することになる。懸濁
粒子りの表面に吸着されている水酸イオンOH”の量は
Flocks tend to collapse due to external forces. Therefore, large flocs are not formed. As shown in Figure 2, the number of bonds that bind suspended particles does not depend only on the amount of flocculant, that is, the amount of aluminum ions At, but also on the surface of the suspended particles that are the binding partner. It also depends on the amount of hydroxyl ion OH- present. What is the amount of hydroxyl ions (OH) adsorbed on the surface of suspended particles?

水中に遊離状態にある水酸イオンOH’″と吸着平衡の
状態にある。原水に凝集剤が注入されると水は酸性側に
移行し、水中の遊離の水酸イオンが消費され、これによ
って懸濁粒子の表面に吸着されている水酸イオンも少な
くなるので水の中にとの水酸イオンの消費させるものが
ないとよいフロックを形成できな°い。この凝集剤の注
入にともなう水酸イオンの消費を補う能力の大きさを示
すのが原水のアルカリ度である。したがって、沈降性の
よい大きいフロックを形成させるには原水アルカリ度を
限度以上に大きくする必要があると言える。
It is in adsorption equilibrium with the free hydroxyl ions OH''' in the water. When a coagulant is injected into the raw water, the water shifts to the acidic side, and the free hydroxyl ions in the water are consumed. Since the number of hydroxyl ions adsorbed on the surface of suspended particles decreases, good flocs cannot be formed unless there is something in the water that consumes the hydroxyl ions. The alkalinity of raw water indicates the capacity to compensate for the consumption of acid ions.Therefore, in order to form large flocs with good sedimentation properties, it is necessary to increase the alkalinity of raw water beyond the limit.

一方、アルミニウムイオンと粘土粒子表面に吸着されて
いる水酸イオンとの化学反応で生成する水酸化アルミニ
ウムは1両性水酸化物で次の(1)。
On the other hand, aluminum hydroxide, which is produced by a chemical reaction between aluminum ions and hydroxide ions adsorbed on the surface of clay particles, is an amphoteric hydroxide and is described in (1) below.

(2)式に示すように酸にもアルカリにも溶解する。As shown in formula (2), it dissolves in both acids and alkalis.

Aj(oH)s+3H′″→ Aj、””+3H!0 
 ・・・・・・(1)At (01()、 +0)(−
→ At(OH);     ・・・・・・(2)した
がって、生成した水酸化アルミニウムの溶解。
Aj(oH)s+3H′″→ Aj,””+3H!0
......(1) At (01(), +0)(-
→ At(OH); ・・・・・・(2) Therefore, the generated aluminum hydroxide is dissolved.

言いかえればフロックの解離を防止するにはフロック形
成後の、すなわち凝集水のpHを中性附近の適正値に維
持する必要があると言える。
In other words, in order to prevent dissociation of flocs, it is necessary to maintain the pH of the flocculated water after floc formation at an appropriate value near neutrality.

アルカリ度は水中の重炭醗塩、炭酸塩又は水酸化物等の
アルカリ分の量を示すものである。凝集水のアルカリ度
は、#L水に凝集剤が注入されてアルカリ分が消費され
た後に残留するアルカリ度を示すものである。フロック
が形成され几のちの凝集水にアルカリ度がおる値を持つ
と言うことは、凝集剤の解離により生成したアルミニウ
ムイオンと反応する懸濁粒子の表面に吸着されている水
酸イオンが充分にあると言うことを意味する。したがっ
て、前述した最近の凝集機構にしたがえば、凝集水のア
ルカリ度は少なくとも零以下にならないことが必要とな
る。しかしながら、凝集水アルカリ度が零におけるpH
Fi4.8である。pH値4.8は酸性で水酸化アルミ
ニウムは溶解してしまう。
Alkalinity indicates the amount of alkaline content such as heavy carbonate, carbonate, or hydroxide in water. The alkalinity of flocculated water indicates the alkalinity remaining after a flocculant is injected into #L water and alkaline content is consumed. The fact that flocs are formed and the flocculated water has an alkalinity value indicates that the hydroxyl ions adsorbed on the surface of the suspended particles react with the aluminum ions generated by the dissociation of the flocculant. It means that there is. Therefore, according to the recent flocculation mechanism described above, it is necessary that the alkalinity of the flocculated water does not fall below zero. However, the pH at zero alkalinity of the coagulated water
Fi4.8. A pH value of 4.8 is acidic and aluminum hydroxide will dissolve.

し九がって、凝集水アルカリ度の有効領域よりも凝集水
pHの有効領域の方がはるかに狭くなるのでpHに注目
すればよいと言える。
Therefore, the effective range of coagulated water pH is much narrower than the effective range of coagulated water alkalinity, so it can be said that attention should be paid to pH.

このことを具体的に説明する。This will be explained specifically.

凝集水のpHが4.8以上あるということは、#集剤注
入前に凝集剤と反応し得る濁質表面に吸着されている水
酸イオンが十分でめったことを示す。
The fact that the pH of the flocculated water is 4.8 or higher indicates that there are rarely enough hydroxide ions adsorbed on the surface of the suspended substance that can react with the flocculant before injection of the flocculant.

したがって、前述し九凝集メカニズムにしたがえば凝集
水のアルカリ度は、pH=4.8におけるアルカリ度、
すなわち零以上あればよいことになる。
Therefore, according to the nine flocculation mechanisms described above, the alkalinity of flocculated water is the alkalinity at pH=4.8,
In other words, it is sufficient if it is greater than or equal to zero.

しかし、フロックを形成する水酸化アルミニウムは両性
で、酸性でもアルカリ性でも溶解する。
However, the aluminum hydroxide that forms the flocs is amphoteric and dissolves in both acidic and alkaline conditions.

p H= 4.8では水酸化アルミニウムは溶解してし
まう。したがって、凝集水pHを水朦化アルミニウムが
溶解しない領域に維持するよう原水にアルカリ剤を注入
すれば凝集剤注入前の濁質表面に吸着されている水酸イ
オンをも十分な濃度に維持することができる。
At pH=4.8, aluminum hydroxide dissolves. Therefore, if an alkaline agent is injected into the raw water to maintain the pH of the coagulated water in a range where the aqueous aluminum does not dissolve, the hydroxide ions adsorbed on the turbid surface before the coagulant injection will also be maintained at a sufficient concentration. be able to.

以上述べたことをまとめると、凝集に大きく影響する水
質因子は原水アルカリ度と凝集水pHの二つになる。
To summarize what has been said above, there are two water quality factors that greatly affect flocculation: raw water alkalinity and flocculating water pH.

次に具体的実験例を用いて本発明を説明する。Next, the present invention will be explained using specific experimental examples.

〔実施例1〕河川沈降泥をもとに樟準濁質の調整法にし
九がって作成した濁質を実河川水に懸濁して原水を作成
し、硫酸ばん土f:#集剤としてジャーテスターにより
一連の凝集実験を行ない、凝集に及ぼす原水アルカリ度
及び凝集水pHの影響について調べた。なお、アルカリ
のy4贅には苛性ソーダを用いた。第3図に実験結果を
示す。図中。
[Example 1] Suspended matter created using the camphor semi-turbidity adjustment method based on river sediment was suspended in actual river water to create raw water, and used as a sulfuric acid agglomerate. A series of flocculation experiments were conducted using a jar tester to investigate the effects of raw water alkalinity and flocculating water pH on flocculation. Note that caustic soda was used for alkaline y4. Figure 3 shows the experimental results. In the figure.

熱印は良いフロックが形成されたが否かの一つの判定基
準となる上澄水濁度が2ppm 以下となり九実験点を
、0印は上澄水濁度が2ppm以下となつ九実験点を示
している。図より、良好なフロックが形成される水質領
域(有効凝集領域)が原水アルカリ度及び凝集水pHの
2つを座標軸として表わされ、この領域が原水濁度によ
って変化することがわかる。この領域外では凝集剤の注
入量の大小に関係なく良好なフロックは形成されていな
い。
The heat mark indicates the 9th experimental point where the supernatant water turbidity, which is one of the criteria for determining whether good flocs have been formed, is 2 ppm or less, and the 0 mark indicates the 9 experimental point where the supernatant water turbidity is 2 ppm or less. There is. From the figure, it can be seen that the water quality region where good flocs are formed (effective coagulation region) is expressed using the two coordinate axes of raw water alkalinity and coagulated water pH, and that this region changes depending on the raw water turbidity. Outside this region, good flocs are not formed regardless of the amount of coagulant injected.

これはアルカリ度が低いため強いフロックが形成されず
、又PHが適正でないtめ水酸化アルミニウムが溶解し
たためである。
This is because strong flocs were not formed due to the low alkalinity and the aluminum hydroxide was dissolved due to the inappropriate pH.

〔実施例2〕実施例1と同じ濁質、同じ装置を用いて凝
集水アルカリ度と凝集水pHとの関係について実験した
。実験結果を第4図に示す。図中。
[Example 2] Using the same suspended matter and the same apparatus as in Example 1, an experiment was conducted to examine the relationship between the alkalinity of the flocculated water and the pH of the flocculated water. The experimental results are shown in Figure 4. In the figure.

熱印が良好なフロックが形成され几実験点を示す。The heat mark indicates that a good floc is formed and the experimental point is solid.

図より、凝集水アルカリ度と凝集水pHとは一次的な関
係にあることがわかる。前記した凝集機構によれば、凝
集水アルカリ度は凝集に大きく影響する水質因子でない
ことになるが、仮りに影響があるにしても、この図の結
果より凝集水アルカリわかる。したがって、従来のよう
に有効凝集領域を表示するのに、原水アルカリ度、#集
水アルカリ度及び凝集水1)Hの3水質をとる必要がな
く。
From the figure, it can be seen that there is a linear relationship between the alkalinity of the coagulated water and the pH of the coagulated water. According to the flocculation mechanism described above, the alkalinity of flocculated water is not a water quality factor that greatly influences flocculation, but even if it were to be affected, the alkalinity of flocculated water is clear from the results of this figure. Therefore, it is not necessary to measure the three water qualities of raw water alkalinity, #collected water alkalinity, and flocculated water 1) H in order to display the effective flocculation area as in the past.

原水アルカリ度と凝集水1)Hの2水質をとればよいと
言える。
It can be said that it is sufficient to maintain two water qualities: raw water alkalinity and flocculated water 1) H.

〔実施例3〕実施例1と同じ濁質、同じ装置を用いて原
水濁度と上澄水濁度が2 ppm以下になる凝集剤注入
率との関係について実験した。実験結果を第5図に示す
。図よシ、凝集剤注入率は原水濁度及び原水アルカリ度
によって変わV、原水濁度及び原水アルカリ度が大きい
ほど大きくなることがわかる。
[Example 3] Using the same turbidity and the same equipment as in Example 1, an experiment was conducted to examine the relationship between raw water turbidity and flocculant injection rate at which the supernatant water turbidity was 2 ppm or less. The experimental results are shown in Figure 5. As shown in the figure, it can be seen that the flocculant injection rate varies depending on the raw water turbidity and raw water alkalinity, and increases as the raw water turbidity and raw water alkalinity increase.

次に本発明を実施する場合の一つの具体的実施例につい
て述べる。
Next, one specific example for carrying out the present invention will be described.

本発明になる凝集剤注入制御方式は、原水アルカリ度及
び凝集水pHが有効凝集領域と定義する水質領域内に入
るようアルカリの注入量を制御し九後、原水の濁度及び
原水のアルカリ度に応じて凝集剤を注入するものである
。有効凝集領域は実施例1K示す一線の内部になる。し
たがって、原水アルカリ度は第3図に示す特性曲線の最
小値以上あればよいこと和なるが、最小値では凝集水多
小大きくとって凝集水pHVC余裕をもtせる。
The flocculant injection control method of the present invention controls the injection amount of alkali so that the alkalinity of the raw water and the pH of the flocculated water fall within the water quality range defined as the effective flocculation range. A flocculant is injected according to the conditions. The effective aggregation area is within the line shown in Example 1K. Therefore, it is sufficient that the alkalinity of the raw water is equal to or higher than the minimum value of the characteristic curve shown in FIG. 3, but at the minimum value, the amount of flocculated water is increased to provide a pHVC margin for the flocculated water.

第6図に凝集水1)Hに制御上の余裕をもたせ次場合の
有効凝集領域の模式図を示す。図に示し九有効凝集領域
内で重要な意味をもつ領域は、原水アルカリ度及び凝集
水pHともに下限値である。なぜなら、凝集水pHには
上限値も存在するが、多くの河川水、湖水の場合、原水
のpHは中性で有効凝集領域内に存在するが、凝集剤や
塩素の注入により凝集水pHが酸性側に移行して有効凝
集領域からはずれるからである。
FIG. 6 shows a schematic diagram of the effective flocculation area in the following case where the flocculated water 1)H is given a margin for control. The region shown in the figure and having an important meaning within the nine effective flocculation regions is the lower limit value of both the raw water alkalinity and the flocculated water pH. This is because although there is an upper limit for the pH of flocculating water, in the case of most river and lake water, the pH of the raw water is neutral and within the effective flocculation range, but the pH of the flocculating water is increased by the injection of flocculant or chlorine. This is because it shifts to the acidic side and deviates from the effective aggregation region.

以下、第7図を用いて凝集剤注入制御法について詳述す
る。制御系はアルカリ剤注入制御系と凝集剤注入制御系
の二つから構成される。アルカリ剤注入制御系では、ま
ず凝集剤注入前の修正アルカリ度AL1を求める。ここ
で言う修正アルカリ度とは実施例1%の原水アルカリ度
に相当する。
The flocculant injection control method will be described in detail below using FIG. 7. The control system consists of two parts: an alkali injection control system and a flocculant injection control system. In the alkaline agent injection control system, first, the corrected alkalinity AL1 before the flocculant injection is determined. The corrected alkalinity here corresponds to the raw water alkalinity of 1% in Example.

原水31のアルカリ度を着水井4等でアルカリ変針35
により測定する。このアルカリ度は修正アルカリ度演算
器37に入力される。修正アルカリ度演算器37には別
途塩素注入率DC1及びアルカリ剤注入率DAjが入力
され、第8図に示す加減算が行なわれ修正アルカリ度A
11が求められる。ここで、Kはアルカリ剤のアルカリ
度換算係数を、また1、4は塩素lppm当夛のアルカ
リ度消費率を示す。修正アルカリ度At、は原水アルカ
リ度調整アルカリ剤注入率演算器43に出力される。原
水アルカリ度調整アルカリ剤注入率演算器43では、修
正アルカリfAz、と濁度計34により着水井4等で測
定され次濁度Tuの入力筒音もとに第9図に示すように
してアルカリ剤注入率DA4.が求められる。図に示す
関係はジャーテスト等によって求められ、修正アルカリ
度の限界値は第6図に示す原水アルカリ度の限界値麿。
Change the alkalinity of raw water 31 to 35 at landing well 4 etc.
Measured by This alkalinity is input to the corrected alkalinity calculator 37. The chlorine injection rate DC1 and the alkaline agent injection rate DAj are separately input to the corrected alkalinity calculator 37, and the addition and subtraction shown in FIG. 8 is performed to obtain the corrected alkalinity A.
11 is required. Here, K represents the alkalinity conversion coefficient of the alkaline agent, and 1 and 4 represent the alkalinity consumption rate per 1 ppm of chlorine. The corrected alkalinity At is output to the raw water alkalinity adjustment alkaline agent injection rate calculator 43. The raw water alkalinity adjustment alkaline agent injection rate calculator 43 uses the corrected alkali fAz and the turbidity Tu measured at the landing well 4 etc. by the turbidity meter 34 as shown in FIG. Injection rate DA4. is required. The relationship shown in the figure is obtained by a jar test, etc., and the limit value of the corrected alkalinity is the limit value of the raw water alkalinity shown in Figure 6.

b、c4IC相当する。b, c correspond to 4IC.

一方、凝集水pHはフロック形成池入口等でpH計41
により測定されpH調整アルカリ剤注入率演算器42に
出力される。pH調整アルカリ剤注入率演算器42でF
i、凝集水1)Hと原水濁度Tuをもとに第10図に示
す方法によりアルカリ剤注入率nAztを求める。図に
示す関係はジャーテスト等によって前もって求めておく
。図で、凝集水1)Hの限界値は原水濁度Tuによって
変化し、限界値は第6図に示す凝集水pHの限界値α。
On the other hand, the pH of the coagulated water is 41.
is measured and output to the pH adjustment alkaline agent injection rate calculator 42. F in the pH adjustment alkaline agent injection rate calculator 42
i. Coagulated water 1) Based on H and raw water turbidity Tu, determine the alkaline agent injection rate nAzt by the method shown in FIG. The relationship shown in the figure is determined in advance by a jar test or the like. In the figure, the limit value of flocculated water 1) H changes depending on the raw water turbidity Tu, and the limit value is the limit value α of the flocculated water pH shown in FIG.

β、γに相当する。原水アルカリ度牌整アルカリ剤注入
率演算器43からの出力値DAt、及びpHn整アルカ
リ剤注入率演算器42からの出力f*DA!tVi比較
演算器44に入力される。比較演算器44では第11図
に示すように、DAj。
Corresponds to β and γ. The output value DAt from the raw water alkalinity adjustment alkaline agent injection rate calculator 43 and the output f*DA from the pHn adjustment alkaline agent injection rate calculator 42! The signal is input to the tVi comparison calculator 44. In the comparison calculator 44, as shown in FIG. 11, DAj.

とDAt、の比較を行ない、いずれか大きい方がアルカ
リ剤注入率として出力される。アルカリ剤注入量演算器
45では、DAI、と流量計32からの出力値Fをもと
に、第12図に示す乗算を行ないアルカリ注入量Atを
アルカリ剤注入機46へ出力する。アルカリ剤注入機4
6では注入量Atに応じて原水へのアルカリ注入を行な
う。
and DAt are compared, and the larger one is output as the alkaline agent injection rate. The alkali injection amount calculator 45 performs the multiplication shown in FIG. 12 based on the DAI and the output value F from the flowmeter 32, and outputs the alkali injection amount At to the alkali injection machine 46. Alkaline injection machine 4
In step 6, alkali is injected into the raw water according to the injection amount At.

ルカリ度At1をもとに凝集剤注入率演算器38により
、813図に示す方法で凝集剤注入率DCOを求める。
The flocculant injection rate DCO is determined by the flocculant injection rate calculator 38 based on the degree of lubricity At1 using the method shown in FIG. 813.

この図に示す関係は実験例3の第5図に相当するもので
、ジャーテスト等により前もって求めておく。凝集剤注
入量演算器39では。
The relationship shown in this figure corresponds to FIG. 5 of Experimental Example 3, and is determined in advance by a jar test or the like. In the flocculant injection amount calculator 39.

DCOと流量計32からの出力値Fとをもとに第14図
に示す乗算を行ない峠悼割注x、zr’n@凝集剤注入
機40に出力する。凝集剤注入量4oは注入量COをも
とに原水への凝集剤の注入を行なう。
Based on the DCO and the output value F from the flowmeter 32, the multiplication shown in FIG. 14 is performed and outputted to the flocculant injector 40. The flocculant injection amount 4o is based on the injection amount CO, and the flocculant is injected into the raw water.

以上説明したように1本発明によれば、制御用水質指標
が2つになるので制御系が簡単となる。
As explained above, according to the present invention, there are two water quality indicators for control, which simplifies the control system.

ルカリ度針のメンテイナンスに要する労力を少なくする
ことができる。
It is possible to reduce the labor required for maintenance of the Lucariness needle.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は浄水プロセスを示す系統図、第2図は凝集の模
式図、第3図は有効凝集領域を示す実験結果の特性図、
第4図は凝集水アルカリ度と凝集水pHとの関係を示す
実験結果を示す特性図、第5図は凝集剤注入率と濁度と
の関係を示す実験結果を示す特性図、第6図は制御に使
用する有効凝集領域の模式図、第7図は本発明になる凝
集11i11注入制御方法の一実施例を示す構成図、第
8図から第14図は第7図における部品の詳細説明図で
おり、第8図は修正アルカリ度の演算式を示す図。 @9図は原水アルカリ度調整アルカリ剤注入率の決定方
法を示す図、1ilO図は凝集水pHR整アルカリ剤注
入率の決定方法を示す図、第11図はアルカリ剤注入率
の演算式を示す図、第12図はアルカリ剤注入量の演算
式を示す図、第13図は凝集剤注入率の決定方法、を示
す図、第14図は凝集剤注入率の演算式を示す図である
。 Tu・・・原水濁度、A/?・・・原水アルカリ度、D
CA・・・塩素注入率、DAA・・・アルカリ注入率、
Aβ1・・・修正アルカリ度、DA、#、・・・原水ア
ルカリ度調整アルカリ注入率、DCO・・・凝集剤注入
率、A1・・・アルカリ注入量、CO・・・凝集剤注入
量、pH・・・凝集水p H,D A J *・・・凝
集水pH1!ill贅アルカリ注入率、F・・・原水流
量、35・・・アルカリ置針、34・・・濁度計、41
・・・pH計、42.43・・・アルカリ注入率演算器
、38・・・凝集剤注入率演算器。 4・・・着水井、5・・・混和池、6・・・フロック形
成池、1g 3 図 ;疑−薬4(F’H,(−ラ ′$ 4 区 ;疑 集 イく !H(−] 第 F 図 0    20   4θ    60  80凝 A
1 古り 佳 入 牛(f’l)々9Y 乙 図 凝 栗 ノと;  /′tプ 茶 g 閃 茶 q 図 第 lo  Ill 第 72 図 $ 74 図
@Figure 1 is a system diagram showing the water purification process, Figure 2 is a schematic diagram of flocculation, and Figure 3 is a characteristic diagram of experimental results showing the effective flocculation area.
Figure 4 is a characteristic diagram showing experimental results showing the relationship between flocculating water alkalinity and flocculating water pH, Figure 5 is a characteristic diagram showing experimental results showing the relationship between flocculant injection rate and turbidity, and Figure 6 is a characteristic diagram showing experimental results showing the relationship between flocculant injection rate and turbidity. is a schematic diagram of the effective aggregation area used for control, FIG. 7 is a configuration diagram showing an example of the agglomeration 11i11 injection control method according to the present invention, and FIGS. 8 to 14 are detailed explanations of the parts in FIG. 7. FIG. 8 is a diagram showing a calculation formula for corrected alkalinity. @Figure 9 is a diagram showing how to determine the injection rate of alkaline agent to adjust raw water alkalinity, Figure 1ILO is a diagram showing how to determine the injection rate of alkaline agent to adjust the pH of coagulated water, and Figure 11 is a calculation formula for the injection rate of alkaline agent. 12 is a diagram showing a calculation formula for the amount of alkali agent injection, FIG. 13 is a diagram showing a method for determining the flocculant injection rate, and FIG. 14 is a diagram showing a calculation formula for the flocculant injection rate. Tu... Raw water turbidity, A/? ... Raw water alkalinity, D
CA...Chlorine injection rate, DAA...Alkali injection rate,
Aβ1... Corrected alkalinity, DA, #, Raw water alkalinity adjustment alkali injection rate, DCO... Coagulant injection rate, A1... Alkali injection amount, CO... Coagulant injection amount, pH ...Agglomerated water pH, D A J *...Agglomerated water pH 1! Illustrated alkali injection rate, F... Raw water flow rate, 35... Alkaline needle, 34... Turbidity meter, 41
...pH meter, 42.43...alkali injection rate calculator, 38...flocculant injection rate calculator. 4... Water landing well, 5... Mixing pond, 6... Floc formation pond, 1g 3 Figure; Suspect drug 4 (F'H, (-ra'$ 4 Ward; Suspect collection!H( -] Part F Figure 0 20 4θ 60 80 A
1 Old Kairi Cow (f'l) 9Y Otsu Zuko Chestnut Noto; /'tpucha g Sencha q Figure lo Ill Figure 72 Figure $ 74 Figure

Claims (1)

【特許請求の範囲】 1、原水に凝集剤を注入し原水中に懸濁している不純物
を凝集沈降させるようにした浄水場忙おいて、原水アル
カリ度と凝集剤注入後の凝集水PHを測定し、これら二
水質指標が特定の水質領域内に入るようアルカリ剤の注
入量を制御したのち凝集剤を注入するようにし定ことを
特徴とする凝集剤の注入制御方法。 2、前記二水質指標の特定水質領域は原水の濁度によっ
て変化させられることを特徴とする第1項記載の浄水場
の凝集剤注入制御方法。
[Claims] 1. At a water treatment plant where a coagulant is injected into raw water to coagulate and precipitate impurities suspended in the raw water, the alkalinity of the raw water and the pH of the coagulated water after the coagulant is injected are measured. A method for controlling the injection of a flocculant, characterized in that the injection amount of the alkaline agent is controlled so that these two water quality indicators fall within a specific water quality range, and then the flocculant is injected. 2. The flocculant injection control method for a water purification plant according to item 1, wherein the specific water quality range of the two water quality indicators is changed depending on the turbidity of the raw water.
JP180482A 1982-01-11 1982-01-11 Injection control of flocculant for water purifying plant Granted JPS58119306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP180482A JPS58119306A (en) 1982-01-11 1982-01-11 Injection control of flocculant for water purifying plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP180482A JPS58119306A (en) 1982-01-11 1982-01-11 Injection control of flocculant for water purifying plant

Publications (2)

Publication Number Publication Date
JPS58119306A true JPS58119306A (en) 1983-07-15
JPH0321239B2 JPH0321239B2 (en) 1991-03-22

Family

ID=11511757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP180482A Granted JPS58119306A (en) 1982-01-11 1982-01-11 Injection control of flocculant for water purifying plant

Country Status (1)

Country Link
JP (1) JPS58119306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220114A (en) * 1984-04-13 1985-11-02 Mitsubishi Electric Corp Treatment of water
JP2009113036A (en) * 2007-11-07 2009-05-28 Palo Alto Research Center Inc Dynamic processing system for water purification and method for dynamic processing in water purification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220114A (en) * 1984-04-13 1985-11-02 Mitsubishi Electric Corp Treatment of water
JP2009113036A (en) * 2007-11-07 2009-05-28 Palo Alto Research Center Inc Dynamic processing system for water purification and method for dynamic processing in water purification
US9862624B2 (en) 2007-11-07 2018-01-09 Palo Alto Research Center Incorporated Device and method for dynamic processing in water purification

Also Published As

Publication number Publication date
JPH0321239B2 (en) 1991-03-22

Similar Documents

Publication Publication Date Title
Yan et al. Relative importance of hydrolyzed Al (III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: a case study with the typical micro-polluted source waters
RU2564336C2 (en) System for feed of suspension of finely-ground caco3 for remineralisation of desalted and sweet water
KR101016392B1 (en) Coagulant compositions for water/wastewater treatment by using zirconium compounds and water/wastewater treatment method using the same
CN103342406B (en) Polymeric silicic acid-polyferric sulfate titanium inorganic macromolecular composite flocculant and preparation method and application thereof
CN103991984A (en) Fluoride-contained wastewater treatment method and device
TWI631081B (en) Installation for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate
JP5691709B2 (en) Water purification method and water purification device
CN101628749A (en) Macromolecular composite flocculant and preparation method and application thereof
CN110482754A (en) Shale gas fracturing outlet liquid processing method and processing unit
CN1266822A (en) Polyaluminium chloride and polyacrylamide compounded efficient flocculant and its preparing process
JP2012045441A (en) Method and apparatus for dewatering organic sludge
CN105036463A (en) Polyvinyl chloride centrifugal mother liquor wastewater pretreatment method
Xu et al. Influences of polysilicic acid in Al13 species on floc properties and membrane fouling in coagulation/ultrafiltration hybrid process
CN106477600A (en) A kind of tail salt removes magnesium apparatus
CN107324466A (en) Method is prepared in situ in a kind of river course water treatment coagulant
CN104724805A (en) Polymeric silicic acid and polymeric titanium chloride inorganic polymer composite flocculant (PTSC) and preparation method and application thereof
JPS58119306A (en) Injection control of flocculant for water purifying plant
CN103304058B (en) A kind for the treatment of process of cotton pulp wastewater
Mamchenko et al. The investigation of the efficiency of coagulants based on titanium when purifying water
CN104058489A (en) Cellulose compound water-treatment flocculant and application method thereof
CN109502826A (en) A kind of processing method of fluoride waste
JPH0411905A (en) Flocculant injection controller for water purifying plant
CN103613227A (en) Treatment method of feedwater raw water
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant
CN111977767B (en) Application method of xanthan gum and acacia gum mixed as water treatment coagulant aid