JPS58118801A - Extraordinarily hygroscopic cellulose derivative - Google Patents
Extraordinarily hygroscopic cellulose derivativeInfo
- Publication number
- JPS58118801A JPS58118801A JP57000054A JP5482A JPS58118801A JP S58118801 A JPS58118801 A JP S58118801A JP 57000054 A JP57000054 A JP 57000054A JP 5482 A JP5482 A JP 5482A JP S58118801 A JPS58118801 A JP S58118801A
- Authority
- JP
- Japan
- Prior art keywords
- degree
- substitution
- cellulose
- groups
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Colloid Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は超吸湿性セルロース鋳導体に関する。[Detailed description of the invention] The present invention relates to superhygroscopic cellulose cast conductors.
更に評しくに自重の50倍以上の水を吸収し得る新規な
セルロース誘導体に関するものである。本発明の目的を
工水、含塩水、血液1体液を極めて良く吸収し、しかも
・水性ゲルを形成するため、ゲル中に麺体等を捕縛し1
こり水溶性物の分別ができる全(新規なセルロース誘導
体を提供する事にある。More particularly, the present invention relates to a novel cellulose derivative capable of absorbing 50 times or more of its own weight in water. The purpose of the present invention is to absorb industrial water, saline water, and blood extremely well, and to form an aqueous gel.
The purpose of the present invention is to provide a novel cellulose derivative that can separate solid and water-soluble substances.
健米、超吸湿性材料として使用されているセルロース誘
導体はカルボキ7メチルセルp−スやカルボキシエチル
セルロース、ヒドロキシエチルセルロース、ヒドロキシ
プロピル等いずれも散水性l1ilfaをもつ誘導体を
何らかの手段で部分架橋したものに限られている。The cellulose derivatives used as super hygroscopic materials are limited to partially cross-linked derivatives with water-dispersible properties such as carboxy7-methylcellulose, carboxyethylcellulose, hydroxyethylcellulose, and hydroxypropyl by some means. ing.
他方、水をよく吸収はするという視点に立つと、セルロ
ース自体の構造を物理的又は化学的手法によってより無
定形化する拳によっても前記の目的はある根皮達成でき
る。又、セルロース化学に!!!’。On the other hand, from the viewpoint of good water absorption, the above purpose can also be achieved by making the structure of cellulose itself more amorphous by physical or chemical methods. Also, cellulose chemistry! ! ! '.
知した者であれば極めて低置換度、例えは0.4以下の
すべてのセルロース誘導体にははアルカリ可溶性であっ
て水にある程度膨潤する事は困却である。又、セルロー
ス誘導体の置換基が疎水性であってもある種の誘導体で
はその置換度が0,4−゛0.9位で水に可溶であるの
でこれを何らかの手段によって架橋すれば高吸水性材料
と成し得る事は容易に類推される。ここに置換度とはセ
ルロース分子を構成するグルコース単位の2.3.6位
にある3つのθB基の水素を他の基で置換した場合のグ
ルコース単位当り含まれる平均の置換基の数をいう。前
記した置換度範囲(0,9以))のセルロース誘導体が
水に対して極め叱親相性が強いという事実は、その誘導
体の置換基が疎水性の場合、一義的にを工凡米セルロー
ス分子中にある親水性OH基を有効な水吸収部位とする
点にある。つまり、置換基の導入によって、元来セルロ
ース分子中に存在しにθHJPりン°グ酸素間の水素結
合を破壊し残存OH基をより自由にする事によっている
。従って、かかる誘導体が水に対して強い相互作用をも
つためrc+工、残存するOH基が平均でグルコース単
位当り21以上必要である事を示している。Those in the know know that all cellulose derivatives with an extremely low degree of substitution, for example, 0.4 or less, are soluble in alkali and are difficult to swell in water to some extent. In addition, even if the substituents of cellulose derivatives are hydrophobic, some derivatives are soluble in water at the degree of substitution at the 0,4-0.9 positions, so if they are crosslinked by some means, they can become highly absorbent. It is easy to analogize what can be done with synthetic materials. The degree of substitution here refers to the average number of substituents contained per glucose unit when the hydrogens of the three θB groups at positions 2, 3, and 6 of the glucose unit constituting the cellulose molecule are replaced with other groups. . The fact that cellulose derivatives with the above-mentioned substitution degree range (0.9 or higher) has an extremely strong affinity for water means that if the substituent of the derivative is hydrophobic, the cellulose derivative has a unique affinity with the cellulose molecule. The point is that the hydrophilic OH groups inside serve as effective water absorption sites. That is, by introducing the substituent, the hydrogen bonds between the θHJP ring oxygens that originally exist in the cellulose molecule are broken, and the remaining OH groups are made more free. This indicates that, since such derivatives have a strong interaction with water, an average of 21 or more remaining OH groups per glucose unit is required.
従って疎水性基の置換度が2.0以上の良のでは、水に
対して全く親和性をなくしてしまう。セルロースの分子
構造を変化するとか置換度が0.4以1の誘導体となし
吸湿性材料化する方法では本発明の目的とする自重の5
0倍以上の水を吸収する事は不可能である。又、イオン
性置換基をもつセルロース誘導体、特に高置換のものや
、前記した0、4〜0.9の疎水性置換基による置換度
をもつセルロース誘導体でを1架IIlするという事な
しには。Therefore, if the degree of substitution of the hydrophobic group is 2.0 or more, there will be no affinity for water at all. In the method of making cellulose into a hygroscopic material by changing its molecular structure or converting it into a derivative with a degree of substitution of 0.4 or more,
It is impossible to absorb 0 times more water. In addition, cellulose derivatives having ionic substituents, especially highly substituted ones, and cellulose derivatives having a degree of substitution with hydrophobic substituents of 0, 4 to 0.9, as described above, can be used without one frame IIl. .
水を強く吸収し、しかも完全に水に溶けないという材料
を得る番は不可能である。It is impossible to obtain a material that strongly absorbs water and is completely insoluble in water.
鎖と水との熱力学的相互作用という視点に立って祠力的
に検討を加えた結果、実に鴬ろ(べき事に。As a result of a thorough investigation from the perspective of the thermodynamic interaction between the chain and water, we found that it was indeed the right thing to do.
疎水性置換基の置換度が20以上の誘導体、つまり従来
、水に対して全く親和性の乏しい誘導体でもその自重の
50倍という水を吸収し得る誘導体を見い出し本発明に
至ったものである。The present invention was achieved by discovering a derivative having a degree of substitution of a hydrophobic substituent of 20 or more, that is, a derivative that can absorb 50 times its own weight of water even though it has conventionally had no affinity for water.
321Jち、本発明はカルボキシル基、スルホン酸基。321J, the present invention is a carboxyl group, a sulfonic acid group.
三級アミノ基、水酸基を含まない疎水性基の置換度が2
.0以上で、かつカルボキシル基又はスルホン酸基及び
その塩を含むアニオン性基の[換度が0.4以)の水性
ゲルを形成するセルロース酵導体にある。The degree of substitution of hydrophobic groups that do not include tertiary amino groups or hydroxyl groups is 2.
.. 0 or more and anionic groups containing carboxyl groups or sulfonic acid groups and salts thereof [conversion degree is 0.4 or more], and is a cellulose fermentation conductor that forms an aqueous gel.
本発明でいう疎水性置換基とは、2以上のe−e連鎖を
もちしかもそれらがセルロースに対して、エステル又は
エーテルの型で結合しり置換基で。The hydrophobic substituent used in the present invention is a substituent that has two or more ee chains and is bonded to cellulose in the form of an ester or ether.
チック基) −(C)IJX−Cps (x≧1) 、
−cn、ca、cN 。tic group) -(C)IJX-Cps (x≧1),
-cn, ca, cN.
1
−c−Na−h (kt:アロマテツク、C2以上のア
ルキル&)である。1-c-Na-h (kt: aromatech, C2 or higher alkyl &).
例えハ、セルロースアセテート、セルロースピロビオネ
ート、セルロースブチレート、それらの混合エステル、
セルロースの高級脂肪酸エステル。For example, cellulose acetate, cellulose pyrovionate, cellulose butyrate, mixed esters thereof,
Higher fatty acid ester of cellulose.
セルロースフタレート、セルロースフタレートアセテー
ト、エチルセルロース、セルロースの高級アルキルエー
テル、シアノエチルセルロース、各釉モノインシアネー
トとセルロースの反応物等に見い出される置換基4をい
う。Refers to substituent 4 found in cellulose phthalate, cellulose phthalate acetate, ethyl cellulose, higher alkyl ethers of cellulose, cyanoethyl cellulose, and the reaction product of each glaze monoincyanate and cellulose.
一方、アニオン性置換基とは、−(CH,) C0OH
−so、h
中に−COOH、−80,)i基及びその塩を含むt洪
基をさす。好適にはセルロース骨格に容易に尋人できる
カルボキシ声メチル基、カルボキシエテル基。On the other hand, the anionic substituent is -(CH,) C0OH
-so, h refers to a t Hongki containing -COOH, -80,)i group and its salt. Preferred are carboxymethyl groups and carboxyether groups that can easily be attached to the cellulose skeleton.
スルホン酸基が用いられる。本発明者等の検討の結果、
一般に前述した疎水性置換基をもつ誘導体も分子の局所
的視点に立てば分子内で分極している。かかる疎水基が
置換度で20以上になると。Sulfonic acid groups are used. As a result of studies by the inventors,
Generally, the aforementioned derivatives having hydrophobic substituents are also polarized within the molecule from a local viewpoint of the molecule. When such hydrophobic groups have a degree of substitution of 20 or more.
固体状態では多分、分子間9分子内レベルで置換基同志
又は置換基と残存OH基間で相互作用しておりこの様な
状態では、智質中の大部分の疎水性を換基は電子状動的
にも安定しており、もはや、外部からの水の攻撃に対し
ても感応性が少ない。In the solid state, substituents or substituents and residual OH groups probably interact at the intramolecular level, and in such a state, the substituents replace most of the hydrophobicity in the electrolyte with the electronic form. It is dynamically stable and is no longer sensitive to external water attacks.
しかし、残存0)1基のうちわずかな部位がイオン性置
換基に代わると事情は代わることが’Aノ明した。However, it became clear that the situation would change if a small portion of the remaining 0) group was replaced by an ionic substituent.
この事情を本発明の一例であるセルローススルフェート
について説明する。This situation will be explained regarding cellulose sulfate, which is an example of the present invention.
111は安定な分子間尺♂5内相互作用のためこれがH
loに対してバリアーとなっている状態。t2Jはアニ
オン性基の存在でアセチル基を反撥しa、o4包合する
分子のすき間を作ると伴にアセチル基をよりイオン性化
し、 H,00分子への接近が極めて容易となり多量の
H,Oをひきつけ、ひいては水性ゲルを形成し得る事を
示している。(す(21は分子内レベルでの模様を示し
ているが勿論1分子間でも起こると考えられ、この為、
本発明の新規なセルロース誘導体が極めて良く水を吸収
すると考えられる。本発明の新規なセル・ロースa纏体
と率に置換度を0.4以上のイオン性セルロース誌導体
と比して前者で疎水性置換基間の占める相互作用空間は
後者でのOH基OH基間の占める相互作用空間よ。111 is a stable intermolecular scale ♂5 interaction, so this is H
A state that acts as a barrier against lo. t2J repels the acetyl group due to the presence of anionic groups, creating a gap between the molecules that encapsulate a and o4, and at the same time makes the acetyl group more ionic, making it extremely easy to approach the H,00 molecule, resulting in a large amount of H, This shows that it can attract O and thus form an aqueous gel. (21 shows the pattern at the intramolecular level, but of course it is thought that it also occurs between one molecule, and for this reason,
It is believed that the novel cellulose derivatives of the present invention absorb water very well. Comparing the novel cellulose aggregates of the present invention with ionic cellulose conductors with a degree of substitution of 0.4 or more, the interaction space occupied between hydrophobic substituents in the former is OH groups in the latter. It's the interaction space occupied by the bases.
り人で前者の方が水を抱接する能力か太き(・事は明ら
かであ躬この仮説がある程度上しい拳は疎水性@鎖が局
所的にも分極度の小さいアルキル基のみからなる本発明
の*aなセルロース誘導体か水を抱合する効果が他の本
発明のセルロース誘導体に比して小さい事からも傍証さ
れる。The former has a stronger ability to embrace water (it is clear that this hypothesis is superior to some extent). This is also supported by the fact that the *a cellulose derivative of the invention has a smaller effect of conjugating water than other cellulose derivatives of the invention.
本発明のセルロース誘導体は柚々の方法によって製造で
きる。The cellulose derivative of the present invention can be produced by Yuzu's method.
本発明に使用するセルロースは木材パルプ、コツトンリ
ンター等をそのまま使用しても又、機械的に粉砕し友も
のキ・、アミ、7+アミド類等で前処理したものキ・、
リン酸等で処理したいわゆる無定形部分の多いセルロー
ス等いずれの種類のものでもよい。1合度も特に限定さ
るべきものではないが、通常100以上のものを使用す
る。又、あらかじめ疎水性1111sをもつセルロース
I導体を常法により合成し、これにイオン性@鎗を与え
る反応剤と反応せしめる事によっても得られる。当然、
この逆でもよい。The cellulose used in the present invention may be made from wood pulp, cotton linters, etc. as is, or may be mechanically pulverized and pretreated with friends, amide, 7+ amides, etc.
Any type of cellulose, such as cellulose with a large amorphous portion treated with phosphoric acid or the like, may be used. The degree of 1 degree is not particularly limited either, but a value of 100 or more is usually used. It can also be obtained by synthesizing in advance a cellulose I conductor having hydrophobicity 1111s by a conventional method and reacting it with a reactant that gives ionic properties. Of course,
The opposite is also possible.
一方、疎水性111鎮を与える反応剤とイオン性@鎖を
与える反応剤とを同時にセルロー′スに導入する事もh
」能である。例えば、ジメチルホルムアミド処理し1こ
綿リンター(重合度100,0 )とジメチルホルムア
ミド(DMF)が存在した状態で酢酸中に分散せしめ無
水酢識と濃硫酸又DMI’:/、湾錯体で反応させると
本発明のセルロースアセテートスルフェートを得る事が
出来るし、又、アルカリセルロースにアクリロニトリル
上モノクロル酢酸を゛作用するとセルロースシアノエチ
レート力ルポキシメチレートを得る。On the other hand, it is also possible to simultaneously introduce a reactant that gives a hydrophobic 111 chain and a reactant that gives an ionic chain into cellulose.
” It is Noh. For example, one cotton linter treated with dimethylformamide (degree of polymerization 100.0) is dispersed in acetic acid in the presence of dimethylformamide (DMF), and then reacted with anhydrous vinegar, concentrated sulfuric acid, or DMI':/, bay complex. The cellulose acetate sulfate of the present invention can be obtained using the same method, and cellulose cyanoethylate rupoxymethylate can be obtained by treating alkali cellulose with monochloroacetic acid on acrylonitrile.
上記の如くして得られる本発明の超吸水性セルロース向
導体は、自重の50倍以上の水を吸収し。The superabsorbent conductor for cellulose of the present invention obtained as described above absorbs 50 times or more of its own weight of water.
体液、血畝吸収材とし利用でき、水性ゲルを形成し得る
場合には、ゲル爆発担体、エマルジョ/安定剤、増粘剤
、mt体捕縛剤、水浴性高分子分別担体等として広範な
用途が期特出きる。It can be used as an absorbent for body fluids and blood ridges, and if it can form an aqueous gel, it can be used in a wide range of applications such as gel explosive carriers, emulsion/stabilizers, thickeners, mt body trapping agents, and water-bathable polymer fractionation carriers. Special period available.
身重、本発明を実施例にて示す。The present invention will be illustrated in Examples.
実施例1
レオニア社製、高αセルロースパル7(DP−1OQO
)1001をジメチルホルムアミド(DMF”) 40
1に分散し30分攪拌後、過剰のDMFを圧搾除去し1
量200tのケークを得1こ。このケークを1600C
Cの酢酸水に分散後、無水酢酸380 C(:と、DM
F/ 80゜錯体(21モル比)60ccを加え、25
℃で2日間放置後、40℃に昇温し、3時間後に透明液
を得L0この浴液は水を急激に吸収し、極めて離晶性の
少ないゲルとなった。この液を水で順次DMF。Example 1 High α Cellulose Pal 7 (DP-1OQO manufactured by Leonia)
) 1001 to dimethylformamide (DMF”) 40
After dispersing in 1 and stirring for 30 minutes, excess DMF was squeezed out and 1
One piece of cake weighing 200 tons was obtained. This cake at 1600C
After dispersing C in acetic acid water, acetic anhydride 380 C (: and DM
Add 60cc of F/80° complex (21 molar ratio),
After being left for 2 days at 0.degree. C., the temperature was raised to 40.degree. C., and after 3 hours a transparent liquid was obtained L0. This bath solution rapidly absorbed water and became a gel with extremely low crystallinity. This solution was diluted with water and DMF sequentially.
酢酸を脱溶媒し、真空乾燥し、白いフレークを得た。こ
の物をアルカリで脱アセチル化し中和滴定によって結合
酢酸量を定量後、更に脱アセチル化物を塩緻中で煮沸し
、結合硫酸量ケバリウム塩として定量し、置換度換算し
たところ、疎水性アセチル置換度は262、親水性硫酸
置換度は0.23であった。上記に得られたフレークは
自重の200倍の水及び160倍の生理食塩水を吸収保
持した。勿−このものはアセトン可溶であつ1こ。The acetic acid was removed and dried under vacuum to obtain white flakes. After deacetylating this product with an alkali and quantifying the amount of bound acetic acid by neutralization titration, the deacetylated product was further boiled in salt solution, the amount of bound sulfuric acid was determined as kebarium salt, and when the degree of substitution was converted, it was found that hydrophobic acetyl substitution The degree of substitution was 262, and the degree of hydrophilic sulfuric acid substitution was 0.23. The flakes obtained above absorbed and retained 200 times their own weight in water and 160 times their own weight in physiological saline. Of course, this stuff is soluble in acetone.
央m例2
D P =600に祠整したすyター100j41k1
%カセイソーダ水#!液に浸漬後、圧搾して250iの
ケークとした。これにインプロパツールに5%線度で齢
解し1こモノクロル1rIit11浴液300ノを加え
60℃で5時間反応後、溶媒を留去した。生成物を約5
倍量のアクリロニトリル中に投入し、50℃で4時間反
応し、酢酸で中和後、過剰のアクリロニトリルな貿去せ
しめ残渣をメタノール中に投与した。ゲル状沈殿物を遠
心分離器にて分離後、真空乾燥した。得られた物質は赤
外分jtAIR)M析の結果、CN基とCC00N基を
含む物質である事を確認後、N含mを原子分析(Cハ)
で、ぺOONm基含量ころ、シアノエチル置換度2.4
.カルボキシメチル基0.26であった。この物質はア
セトン、ピリジンに可溶であった。この物’Jlは自重
の90倍の水を吸収し1こ〇
実施例3
型駒エテルセルo−ス(100e p s 、’DS=
2.3水不溶)100りをジメチルホルムアミド(DM
F) l 00 )と混合(49モル1モル)錯体35
?を加え10℃で4時間反応せしめた。この温液を水中
に投与し1こところ、ゲル状沈殿物を得1こ。このゲル
状物を遠心分離にて捕集層、凍結乾燥し1こ。こ0ノ物
は11の約60倍の水及び30倍の生理食塩水を吸入し
た。Middle example 2 Suyter 100j41k1 adjusted to D P = 600
% Caustic Soda Water #! After immersing it in the liquid, it was pressed into a 250i cake. To this was added 300 g of a bath solution of 1 monochlor 1rIit11 aged at 5% linearity in an inproper tool, and after reaction at 60° C. for 5 hours, the solvent was distilled off. The product is about 5
The mixture was poured into twice the volume of acrylonitrile, reacted at 50° C. for 4 hours, neutralized with acetic acid, and the excess acrylonitrile was poured into methanol. The gel precipitate was separated using a centrifuge and then dried under vacuum. After confirming that the obtained substance contains CN groups and CC00N groups as a result of infrared spectroscopy (JtAIR)M analysis, atomic analysis (C) of N-containing m was carried out.
So, the peOONm group content is 2.4, and the degree of cyanoethyl substitution is 2.4.
.. The number of carboxymethyl groups was 0.26. This substance was soluble in acetone and pyridine. This material 'Jl absorbs 90 times its own weight of water and is 100 times its own weight.
2.3 Water-insoluble) 100% dimethylformamide (DM
F) l 00 ) mixed with (49 mol 1 mol) complex 35
? was added and reacted at 10°C for 4 hours. When this warm solution was administered into water, a gel-like precipitate was obtained. This gel-like material is centrifuged to collect the collection layer, and then freeze-dried. This animal inhaled approximately 60 times more water and 30 times more physiological saline than 11.
エチル基宮量は、”MsthOd in Carboh
ydrateChemistry”履(“メンードイン
カーボハイドレート ケミストリー′″l)アール・
エル・ライストラ−編、アカデミツク7ルス(R,L、
WhjsterAcademic Pres’s、19
63ンのp307に恢って**、硫酸基は実施例1記載
り方法によって測定しに0その結果、得られた生成物は
エチル置換度22゜硫酸置換度0.17であった。The basic amount of ethyl is “MsthOd in Carboh”.
ydrateChemistry”
Edited by Elle Lystra, Academic 7 Rus (R,L,
Whjster Academic Pres's, 19
According to p307 of 63 N, the sulfate group was determined to be 0 according to the method described in Example 1. As a result, the obtained product had a degree of ethyl substitution of 22° and a degree of sulfuric acid substitution of 0.17.
比較例1
実施flI3で、DMF/80. 錯体量を200 )
として他を同−一反応条件で反応せしめた。得られた物
のエチル置換度は2.1′で、硫酸11換度は0.76
で、完全に水に可溶であり、形体を保持出来なかつ1こ
。Comparative Example 1 In implementation flI3, DMF/80. The amount of complex is 200)
The others were reacted under the same reaction conditions. The degree of ethyl substitution of the obtained product was 2.1', and the degree of sulfuric acid 11 substitution was 0.76.
However, it is completely soluble in water and cannot retain its shape.
比較例2
置換度24の市販セルロースアセテート(イーストマン
1)100)をジメチルアセトアミド(DMA e )
】50?に浴解し、DMF/ SO3錯体70ノを室温
で2時間反応させに0この反応液をメタノールに投与し
1こ後、長時間静止し沈殿しks分を採取した。Comparative Example 2 Commercially available cellulose acetate (Eastman 1) 100) with a degree of substitution of 24 was converted into dimethylacetamide (DMA e )
]50? The mixture was dissolved in a bath, and 70 g of the DMF/SO3 complex was reacted at room temperature for 2 hours. The reaction solution was added to methanol, and after that, it was allowed to stand still for a long time to precipitate, and the ks fraction was collected.
このもののアセチル置換度は1.8.硫酸i1換度は0
.38であったが、完全水可溶性であった。The degree of acetyl substitution of this product is 1.8. Sulfuric acid i1 conversion degree is 0
.. 38, but it was completely water soluble.
以上、実施例で示し1こ如く1本発明のセルロース誘導
体は疎水性基と親水性基(イオン性基)との置換度の組
合せによって極めて高吸水性能をもつものであって、穐
々の形態に成形できゲルとしての利用分野や、イオン交
換能を喪する分野、吸湿性を要する分野、体温吸収分野
等広範な相違に膜+繊、維の形でも利用できる。As shown in the examples above, the cellulose derivative of the present invention has extremely high water absorption performance due to the combination of the degree of substitution of hydrophobic groups and hydrophilic groups (ionic groups), It can also be used in the form of a membrane + fiber or fiber in a wide variety of fields, including fields where it can be used as a gel, fields where ion exchange ability is lost, fields where hygroscopicity is required, and fields where body temperature is absorbed.
特許出願人 旭化gI業株式会社Patent applicant Asahi Kagyo Co., Ltd.
Claims (1)
つカルボキシル基又i寡スルホン酸基及びその塩を含む
アニオン性基の置換度が0.4以1の水性ゲルヲ形aす
るセルロース誘導体[Claims] Carboxyl group, sulfonic acid group, tertiary amino group. Cellulose in the form of an aqueous gel in which the degree of substitution of hydrophobic groups that do not contain hydroxyl groups is 2.0 or more, and the degree of substitution of anionic groups that include carboxyl groups or oligosulfonic acid groups and their salts is 0.4 or more. derivative
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57000054A JPS58118801A (en) | 1982-01-05 | 1982-01-05 | Extraordinarily hygroscopic cellulose derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57000054A JPS58118801A (en) | 1982-01-05 | 1982-01-05 | Extraordinarily hygroscopic cellulose derivative |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58118801A true JPS58118801A (en) | 1983-07-15 |
JPS625441B2 JPS625441B2 (en) | 1987-02-05 |
Family
ID=11463518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57000054A Granted JPS58118801A (en) | 1982-01-05 | 1982-01-05 | Extraordinarily hygroscopic cellulose derivative |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58118801A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000014155A1 (en) * | 1998-09-08 | 2000-03-16 | University Of Strathclyde | Erodible solid hydrogels for delivery of biologically active materials |
JP2015507917A (en) * | 2012-01-27 | 2015-03-16 | セラニーズ アセテート,エルエルシー | Substituted cellulose acetate and method of use |
JP2015510004A (en) * | 2012-01-27 | 2015-04-02 | セラニーズ アセテート,エルエルシー | Substituted cellulose acetate and method of use |
JP2015510395A (en) * | 2012-01-27 | 2015-04-09 | セラニーズ アセテート,エルエルシー | Substituted cellulose acetate and method of use |
JP2017519637A (en) * | 2015-05-06 | 2017-07-20 | スンシル ユニバーシティー リサーチ コンソーシアム テクノ−パーク | Process for producing hydrocolloids with various ranges of hydrophobicity |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0879826B1 (en) * | 1996-11-27 | 2002-10-23 | Kao Corporation | Polysaccharide derivatives and hydraulic compositions |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50144752A (en) * | 1974-05-10 | 1975-11-20 | ||
JPS538751A (en) * | 1976-07-12 | 1978-01-26 | Nec Home Electronics Ltd | Load control device |
JPS5534279A (en) * | 1978-12-28 | 1980-03-10 | Kohjin Co Ltd | Preparation of carboxymethyl ethyl cellulose |
JPS55118902A (en) * | 1979-03-06 | 1980-09-12 | Daicel Chem Ind Ltd | Preparation of ethylcarboxymethylcellulose |
JPS55118901A (en) * | 1979-03-06 | 1980-09-12 | Daicel Chem Ind Ltd | Preparation of ethylcarboxymethylcellulose |
JPS56143201A (en) * | 1980-04-11 | 1981-11-07 | Kohjin Co Ltd | Etherification of carboxymethyl cellulose |
-
1982
- 1982-01-05 JP JP57000054A patent/JPS58118801A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50144752A (en) * | 1974-05-10 | 1975-11-20 | ||
JPS538751A (en) * | 1976-07-12 | 1978-01-26 | Nec Home Electronics Ltd | Load control device |
JPS5534279A (en) * | 1978-12-28 | 1980-03-10 | Kohjin Co Ltd | Preparation of carboxymethyl ethyl cellulose |
JPS55118902A (en) * | 1979-03-06 | 1980-09-12 | Daicel Chem Ind Ltd | Preparation of ethylcarboxymethylcellulose |
JPS55118901A (en) * | 1979-03-06 | 1980-09-12 | Daicel Chem Ind Ltd | Preparation of ethylcarboxymethylcellulose |
JPS56143201A (en) * | 1980-04-11 | 1981-11-07 | Kohjin Co Ltd | Etherification of carboxymethyl cellulose |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000014155A1 (en) * | 1998-09-08 | 2000-03-16 | University Of Strathclyde | Erodible solid hydrogels for delivery of biologically active materials |
JP2015507917A (en) * | 2012-01-27 | 2015-03-16 | セラニーズ アセテート,エルエルシー | Substituted cellulose acetate and method of use |
JP2015510004A (en) * | 2012-01-27 | 2015-04-02 | セラニーズ アセテート,エルエルシー | Substituted cellulose acetate and method of use |
JP2015510395A (en) * | 2012-01-27 | 2015-04-09 | セラニーズ アセテート,エルエルシー | Substituted cellulose acetate and method of use |
JP2017519637A (en) * | 2015-05-06 | 2017-07-20 | スンシル ユニバーシティー リサーチ コンソーシアム テクノ−パーク | Process for producing hydrocolloids with various ranges of hydrophobicity |
Also Published As
Publication number | Publication date |
---|---|
JPS625441B2 (en) | 1987-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1227118A3 (en) | Method of producing derivatives of cyclodextrins | |
EP0020183B1 (en) | Poly-ion complex, process for its preparation and shaped articles prepared therefrom | |
EP0018131B1 (en) | Crosslinked, carboxyalkylated and deacetylated derivative of chitin, process for preparation thereof, and use thereof as an adsorbent material | |
DE68904617T2 (en) | IODIC POLYMERS WITH DEXTRAN SKELETONS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS CONTRAST AGENTS. | |
JPS58118801A (en) | Extraordinarily hygroscopic cellulose derivative | |
US4304905A (en) | Method for preparing a carboxyalkylated chitin and a derivative thereof | |
US7396923B2 (en) | Method for the sulfonation of compounds comprising free hydroxyl (OH) groups or primary or secondary amines | |
CN112940150A (en) | Method for preparing heparin calcium from heparin sodium | |
JPH02145601A (en) | Anti-hiv agent | |
JP2901176B2 (en) | Low viscosity chitosan and method for producing the same | |
JPS627701A (en) | Process for partial hydrolysis | |
US5512672A (en) | Curdlan sulfate | |
JPS5829801A (en) | Production of n-acylated chitosan | |
US3651041A (en) | Acid ion exchangers derived from agarose | |
EP0416565B1 (en) | Method for producing deoxycelluloses | |
CN111961230A (en) | Arabinoxylan hydrogel with pH responsiveness and preparation method thereof | |
JP2007099902A (en) | Alginic acid derivatives, polyacrylic acid derivatives, and production methods thereof | |
JP2511675B2 (en) | Method for producing polyoxyethylenated chitin | |
JPH02107601A (en) | Novel chitosan compound, production thereof and use as humectant | |
RU2765951C1 (en) | Method of purifying hyaluronate from endotoxins | |
JPH03170435A (en) | High-molecular electrolytic complex for treating and preventing virus-caused diseases | |
JPH0632804A (en) | Production of chitin derivative | |
JPS62275102A (en) | Production of aminated cyclodextrin polymer | |
JPS624043B2 (en) | ||
JP2511676B2 (en) | Process for producing oxide of polyoxyethylenated chitin |