JPS58117990A - Furnace building method for lining structure in high-temperature vessel - Google Patents
Furnace building method for lining structure in high-temperature vesselInfo
- Publication number
- JPS58117990A JPS58117990A JP204282A JP204282A JPS58117990A JP S58117990 A JPS58117990 A JP S58117990A JP 204282 A JP204282 A JP 204282A JP 204282 A JP204282 A JP 204282A JP S58117990 A JPS58117990 A JP S58117990A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- bricks
- temperature
- brick
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Blast Furnaces (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、高炉、転炉等の内張9構造体の構築に当り、
主体となる耐火レンガの損傷、特にその熱心力による割
れが生じないように改善した新しい築炉手段の提供に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides for the construction of lining structures for blast furnaces, converters, etc.
The present invention relates to the provision of a new means for building a furnace that is improved so as to prevent damage to the main refractory bricks, particularly cracking caused by the zeal of the bricks.
例えば高炉のように内張りとして耐火レンガによる構造
体を用い九高温審器(炉)においては、その内I]l)
のレンガの損傷が容器(炉)の寿命あるいは改修時期を
決定しているといっても過言でなく、またそのレンガの
損傷は熱心力による割れの発生が菖要な因子となってい
る事は周知である。For example, in a high-temperature furnace (furnace) that uses a refractory brick structure as the lining, such as a blast furnace,
It is no exaggeration to say that the damage to the bricks determines the lifespan of the container (furnace) or the time for repairs, and it is also true that cracks caused by the force of the brick are a major factor in the damage to the bricks. It is well known.
今この耐火レンガにおける割れの間lidついて説WA
fると、第1図(A) (b) において、(&)は耐
火レンガ単体を中心から2分した、の部分モデル図、(
b)はFEM分割図を示しているが、高炉胴部の場合、
その内張夛構造体は複数個の耐火レンガ(1)を用いて
円環状に組立てられ、また外殻の鉄皮(2)とレンガ(
1)との間はスタンプ(3)を用いて接合されるのが通
例である。ここで耐火レンガ単体の−の部分のみを示し
たのは、挿入された熱膨張吸収用の目地を考慮し、その
対称性から丁の部分のみをモデルとして示したものであ
る。(a) (b)両図においてC−C線はセンタライ
ンを示している。このようなモデルにおいて、高炉運転
に訃ける昇温中に、@1図e)において点線が初期形状
、実線が高温時形状を示すように、レンガ(1)の内側
面のみの温度が上昇して熱膨張を起すのであり、(a)
図においてfは目地厚みを示している。この熱膨張に当
シ、耐火レンガ(1)は隣接レンガ(1)と互いに接触
することになるが、その接触状態は第2図に示す通シで
、図示のようにその隣接レンガとの接触する領域は、図
に圧縮カモデル図を示すように、内面側の約iのWX坂
ではσ方向に圧縮力Pを受ける。従ってθ方向に前記部
分的な圧縮力を受ければ、圧縮力の作用している領域と
、作用していないl[の境界E点(レンガ内面側からL
O長さ)、即ち特異点Eのr方向に引張応力crが、第
4図の分布図に示すように発生し、引張強度6′″Bを
越えることにより、前記内側面の特異点Eから割れが発
生するのである。Now there is a theory about the lid between the cracks in this refractory brick WA
In Fig. 1 (A) and (b), (&) is a partial model diagram of a single refractory brick divided into two from the center, (
b) shows the FEM split diagram, but in the case of the blast furnace barrel,
The inner lining structure is assembled in a circular shape using a plurality of refractory bricks (1), and the outer shell (2) and bricks (
1) is usually joined using a stamp (3). The reason why only the negative part of the firebrick itself is shown here is to take into consideration the inserted joints for absorbing thermal expansion, and because of its symmetry, only the negative part is shown as a model. (a) (b) In both figures, the line CC indicates the center line. In such a model, during the temperature rise caused by blast furnace operation, the temperature of only the inner surface of the brick (1) increases, as shown in Figure 1 (e), where the dotted line shows the initial shape and the solid line shows the shape at high temperature. (a)
In the figure, f indicates the joint thickness. Due to this thermal expansion, the refractory brick (1) comes into contact with the adjacent brick (1), but the contact state is as shown in Figure 2, and the contact with the adjacent brick is as shown in the figure. As shown in the compression force model diagram in the figure, the area subjected to compression force P in the σ direction is applied to the WX slope of approximately i on the inner surface side. Therefore, if the partial compressive force is applied in the θ direction, the area where the compressive force is acting and the boundary point E between the area where the compressive force is acting and l[ where it is not acting (L from the inner surface of the brick)
O length), that is, a tensile stress cr is generated in the r direction of the singular point E as shown in the distribution diagram in Figure 4, and by exceeding the tensile strength 6''B, Cracks occur.
本発明はこのような割れ発生のメカニズムに着目し、こ
れを耐火レンガと目地による内張多構造体の築炉内容を
改醤するととくよって、有効的確に割れを防゛止するよ
うにしたものであ夛、従ってその特徴とする処は、高炉
、転炉等の内張りとして耐火レンガ構造体を用いる高温
容器において、前記内張9構造体の耐火レンガと目地に
よる構築に当り、容器(炉)内(高温)側の目地厚み(
レンガ間隙間)を厚く、容器(炉)外(低温)側の目地
厚み(レンガ間隙間)を薄くし、隣接レンガ間の1つの
接触面内で目地厚み(レンガ闇隙閣寸法)を変化させて
その構築を行なう点にある。The present invention focuses on the mechanism of such cracking, and changes the content of the furnace construction of a multi-structure lined with refractory bricks and joints, thereby effectively and accurately preventing cracking. Therefore, its characteristics are that in high-temperature containers that use refractory brick structures as the lining of blast furnaces, converters, etc., when constructed using the refractory bricks and joints of the lining 9 structure, the container (furnace) Joint thickness on the inner (high temperature) side (
The joint thickness (gap between bricks) on the outside (low temperature) side of the container (furnace) is made thinner, and the joint thickness (brick gap dimension) is changed within one contact surface between adjacent bricks. The point is to carry out its construction.
以下図示の実施例に基いて本発明を詳述すると、先に述
べた耐火レンガ(1)における割れのメカニズム説明に
当り、特異点Σにおける引gk応力を決定するものは、
圧縮力Pそのものでなく、圧縮力Pの勾配である。第5
図はその関係グフフ図を示しており、縦軸は発生引張応
力6’rを示し、横軸は側圧勾配Po / Lを示して
いるが、曲線イの示すよう(、圧縮力Pの勾配が急であ
れば引張応力は増大し、勾配を緩やかとすれば引張応力
の減少することは明瞭である。The present invention will be described in detail below based on the illustrated embodiment. In explaining the mechanism of cracking in the firebrick (1) mentioned above, what determines the tensile gk stress at the singular point Σ is:
It is not the compressive force P itself, but the gradient of the compressive force P. Fifth
The figure shows a diagram of the relationship, the vertical axis shows the generated tensile stress 6'r, and the horizontal axis shows the lateral pressure gradient Po / L. As shown by curve A (, the gradient of compressive force P It is clear that if the slope is steep, the tensile stress increases, and if the slope is gentle, the tensile stress decreases.
即ち圧縮力Pの減少、引張応力どrの減少のためには、
熱間での隣接レンガ(1) (1)間の接触面積を大き
くすればよく、この丸めKは熱間での膨張代を見込んで
、耐火レンガと目地による築炉を行なえばよい事になる
。先にも述べ九ように、熱間での耐火レンガ温度は、そ
の内面側がよシ高温で外面側はこれに比し低温となるの
であるから、この熱間での耐火レンガ内面側と外面側に
おける熱膨張差に見h・うように、相隣る耐火レンガ間
における隙間(目地厚さ)を変犯した構築が考えられる
事になる。本発明はこのような構築内容を特徴とするも
のであ夛、第6図にその基本的な1例を従来法と対比し
て示す、即ち同図(凰)は本発明方法を示し、同図(b
)は従来法を示しているが、本発明では図示のように、
相隣る耐火レンガ(1) (1)間において、その相対
する接合側面(IliXI&)における隙間(目地)を
取るに当シ、炉内@に肉う部分(高温部分)では大きく
取)、炉外側に向う部分(低温部分)では小1<取るの
でiD、即ちこの事は同時に目地の厚さにおいて炉内側
に向う目地は厚く、炉外側に向う目地は薄くなるのであ
夛、その隙間(目地)全長に亘る厚薄(大小)は、炉内
側から炉外側に向って逓減してゆくものとする。That is, in order to reduce the compressive force P and the tensile stress r,
It is sufficient to increase the contact area between adjacent bricks (1) (1) in hot conditions, and this rounding K should be constructed using refractory bricks and joints, taking into account the expansion allowance in hot conditions. . As mentioned earlier, the temperature of the refractory brick in hot conditions is higher on the inner surface and lower on the outer surface. As can be seen from the difference in thermal expansion in h. The present invention is characterized by such construction contents, and FIG. 6 shows a basic example thereof in comparison with the conventional method. Figure (b
) shows the conventional method, but in the present invention, as shown in the figure,
When taking gaps (joints) between adjacent refractory bricks (1) (1) at their opposing joint sides (IliXI&), make sure to make the gaps (joints) larger in the areas that go inside the furnace (high temperature areas), In the part facing the outside (low temperature part), take a small value of 1 < iD, that is, at the same time, in terms of the joint thickness, the joint facing the inside of the furnace is thicker, and the joint facing the outside of the furnace is thinner, so the gap between them (the joint ) Thickness and thinness (large and small) over the entire length shall gradually decrease from the inside of the furnace to the outside of the furnace.
第6図(a)において、これを高炉の場合で具体的に例
示すると、(勾図において、炉内に向うレンガ(1)に
おける内面側において、そのレンガ巾:la、温度:T
a、レンガ隙間:/a、ムム1間の熱間での縮み率:ε
aとし、また炉外に向うレンガ(1)における外面側に
おいて、そのレンガ巾:lb、温度:Tb、レンガ隙間
:fb、 BB“関の熱間の縮み率:εbとし、また熱
膨張率をαとすれば、本発明の目的を達成するためには
、εa−εbとすれば、内面側でも外面側でも相隣る接
合側面(Ia)(1m)は一様に接触し、先に述べた圧
縮力Pの勾配を減少し、従って引張応力を減少させるこ
とが可能である。To specifically illustrate this in the case of a blast furnace in FIG. 6(a), (in the gradient diagram, on the inner surface side of the brick (1) facing into the furnace, the brick width: la, the temperature: T
a, Brick gap: /a, Hot shrinkage rate between Mumu 1: ε
a, and on the outer surface side of the brick (1) facing outside the furnace, the brick width: lb, the temperature: Tb, the brick gap: fb, the hot shrinkage rate of BB": εb, and the coefficient of thermal expansion. In order to achieve the purpose of the present invention, if α is εa - εb, then the adjacent joining surfaces (Ia) (1 m) are in uniform contact with each other on both the inner and outer sides, as described above. It is possible to reduce the slope of the compressive force P and thus the tensile stress.
、−、o’h/clb =カニj−
!b−Tb
式を満たせばよい事になる。高炉の場合、その/a+0
.8 fb 、 Ta + 1500℃、 ’rb +
250℃ 程度のものとすれば、efa //b
中5程度が望ましい目地厚さくレンガ間隙間寸法)とな
シ、このさいある程度の巾を見込んで、1.5 <J’
a // b < 8.0範囲が有効と考えられ、この
ような範囲内で先に述べたように@地厚み(レンガ間隙
間)を炉内側から炉外11IK向って逓減的に逐次変化
させて、その耐火レンガと目地による築炉を順次行なっ
てゆけばよい事になる。,-, o'h/clb = crab j-! It is sufficient if the b-Tb formula is satisfied. In the case of a blast furnace, its/a+0
.. 8 fb, Ta + 1500℃, 'rb +
If the temperature is about 250℃, efa //b
It is desirable that the joint thickness be around medium 5 (the width of the gap between the bricks).
The range of a // b < 8.0 is considered to be effective, and within this range, as mentioned earlier, the soil thickness (gap between bricks) is gradually changed from the inside of the furnace to the outside of the furnace. Then, all you have to do is build the furnace using the refractory bricks and joints one by one.
本発明は以上の通)で、この築炉内容によれば、耐火レ
ンガにおける割れの発生を有効的11に防止し、従って
レンガの損傷、これによる炉の寿命の短縮や改修時期の
頗繁な繰り返しをなくし、比較的長期に亘る稼動を保証
できることになる。特に本発明では従来の耐火レンガを
その11用い、単に相隣る耐火レンガ(1)(1)間に
おける目地厚み(レンガ間隙間)を第6図(al) K
示した従来法における炉内外に亘る全長において同−目
地厚み(同一隙間と相遺し、第6 II (a) K示
すように変化させるのみでよい九め、5J!施に当って
格別の困難もなく春易に実施できるとともに、その有効
性の点で大いに優れたものであシ、第5図に示した圧縮
力Pの勾配を減少させることにより、圧縮カP従ってま
たこれに基く引張応力frを減少させることにより、そ
の効果は的確であり、築炉の資材的、工数的にも別設の
不利を生じることもなく、高温容器における耐火レンガ
使用の内gkg構造体の改善策として利点穴である。The present invention is as described above, and according to this furnace construction content, it is possible to effectively prevent the occurrence of cracks in refractory bricks, thereby preventing damage to the bricks, shortening the lifespan of the furnace, and frequent repairs. This eliminates repetition and ensures relatively long-term operation. Particularly, in the present invention, conventional firebricks (11) are used, and the joint thickness (gap between bricks) between adjacent firebricks (1) (1) is simply calculated as shown in Fig. 6 (al) K.
In the conventional method shown above, the joint thickness is the same over the entire length extending inside and outside the furnace (same gap), and it is only necessary to change it as shown in Section 6 II (a) K. By reducing the gradient of the compressive force P shown in FIG. 5, the compressive force P and the resulting tensile stress fr The effect is precise, and there is no disadvantage in terms of materials and man-hours for furnace construction, and it is an advantageous measure for improving the gkg structure of using refractory bricks in high-temperature containers. It is.
第1図は耐火レンガにおける熱変形の解析モデル図、第
2図は同高温時のレンガ接触状態説明図、第3図は同レ
ンガ内側面に働く圧縮カモデル図、第4図は同引張応力
分布図、第5図は引張応力と偏圧勾配の関係グラフ図、
第6図は本発明方法冥施例と従来法との対比説明図であ
る。
(1)・・・耐火レンガ、(2)・・・鉄皮、(3)−
スタンプ、(Im)・・・接合側辺。
特許出願人 株式会社神戸製−所Figure 1 is an analytical model diagram of thermal deformation in a refractory brick, Figure 2 is an explanatory diagram of the brick contact state at the same high temperature, Figure 3 is a model diagram of the compressive force acting on the inner surface of the brick, and Figure 4 is the tensile stress distribution of the same brick. Figure 5 is a graph of the relationship between tensile stress and partial pressure gradient,
FIG. 6 is a diagram illustrating a comparison between an embodiment of the method of the present invention and a conventional method. (1)...Firebrick, (2)...Iron shell, (3)-
Stamp, (Im)...Joining side. Patent applicant: Kobe Seisakusho Co., Ltd.
Claims (1)
用いる高温置部において、前記内張シ構造体の耐火レン
ガと目地による構築に当)、容器(炉)内(高温)側の
目地厚み(レンガ間隙間)を厚く、容器(炉)外(低温
)@01地厚み(レノff1ll11間)を薄くし、隣
接レンガ間の1つの接触面内で目地厚み(レンガ間隙間
寸法)を変化させてその構築を行なうことを特徴とする
高温IFIIIKおける内張り構造体の築炉方法。1'i & In high-temperature storage parts that use refractory brick structures as the lining of furnaces, converters, etc., the joints on the (high temperature) side of the container (furnace) Increase the thickness (gap between bricks), reduce the thickness of the ground outside the container (furnace) (low temperature) @01 (between reno ff1ll11), and change the joint thickness (dimension of the gap between bricks) within one contact surface between adjacent bricks. A method for constructing a lining structure in a high-temperature IFIIIK, the method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57002042A JPS6050272B2 (en) | 1982-01-07 | 1982-01-07 | Furnace construction method for lining structure in high-temperature container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57002042A JPS6050272B2 (en) | 1982-01-07 | 1982-01-07 | Furnace construction method for lining structure in high-temperature container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58117990A true JPS58117990A (en) | 1983-07-13 |
JPS6050272B2 JPS6050272B2 (en) | 1985-11-07 |
Family
ID=11518264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57002042A Expired JPS6050272B2 (en) | 1982-01-07 | 1982-01-07 | Furnace construction method for lining structure in high-temperature container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050272B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243371A (en) * | 2001-02-19 | 2002-08-28 | Nippon Steel Corp | Refractory lining and method for manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5544102U (en) * | 1978-09-14 | 1980-03-22 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5278255A (en) * | 1976-07-20 | 1977-07-01 | Showa Yuka Kk | Ethylenic resin composition |
-
1982
- 1982-01-07 JP JP57002042A patent/JPS6050272B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5544102U (en) * | 1978-09-14 | 1980-03-22 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243371A (en) * | 2001-02-19 | 2002-08-28 | Nippon Steel Corp | Refractory lining and method for manufacturing the same |
JP4648552B2 (en) * | 2001-02-19 | 2011-03-09 | 新日本製鐵株式会社 | Refractory lining and construction method thereof, and RH tank bottom provided with the refractory lining |
Also Published As
Publication number | Publication date |
---|---|
JPS6050272B2 (en) | 1985-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3044499A (en) | Refractory ceramic pipe for fusible material | |
US4340360A (en) | Fire brick for a rotary kiln | |
JPS58117990A (en) | Furnace building method for lining structure in high-temperature vessel | |
JP3679443B2 (en) | Unstructured refractory lining structure for chaotic cars | |
US2532190A (en) | Refractory brick, blocks, or like elements | |
US2024595A (en) | Furnace structure | |
US4453352A (en) | Refractory brick with expansion allowance | |
CN104229799A (en) | Carbon disulfide reaction furnace of novel material | |
JPS6049834B2 (en) | composite cooler | |
CN212954895U (en) | High-density refractory silica brick | |
JPS60169082A (en) | Method of constructing furnace wall | |
JP2002194417A (en) | Wear lining structure in converter for steelmaking | |
CN203586810U (en) | Reinforced fixed wear-resistant precast brick | |
JPS5910973B2 (en) | hot stove wall structure | |
JPS61281804A (en) | Iron receiving port of torpedo ladle car | |
JPS59226106A (en) | Vertical furnace | |
JPH0336884B2 (en) | ||
JPH01127610A (en) | Stave cooler and method for inserting brick in stave cooler as cast-in | |
JPS5810960Y2 (en) | Scrap bag for preheating | |
JPS6317992Y2 (en) | ||
CN204574802U (en) | A kind of aluminium alloy smelting resistance furnace | |
CN208805051U (en) | Kiln chimney refractory brick | |
JPS61124513A (en) | Method for lining inner wall of converter | |
JPS5919568Y2 (en) | Molten steel container | |
SU632885A1 (en) | Rotary furnace lining |