JPS58117504A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS58117504A
JPS58117504A JP7982A JP7982A JPS58117504A JP S58117504 A JPS58117504 A JP S58117504A JP 7982 A JP7982 A JP 7982A JP 7982 A JP7982 A JP 7982A JP S58117504 A JPS58117504 A JP S58117504A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
waveguide
fiber
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7982A
Other languages
Japanese (ja)
Inventor
Masahiro Sakakibara
榊原 雅博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP7982A priority Critical patent/JPS58117504A/en
Publication of JPS58117504A publication Critical patent/JPS58117504A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/3562Switch of the bypass type, i.e. enabling a change of path in a network, e.g. to bypass a failed element in the network
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3598Switching means directly located between an optoelectronic element and waveguides, including direct displacement of either the element or the waveguide, e.g. optical pulse generation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To obtain a less-loss optical switch which has improved array precision by providing plastic optical waveguides with curved optical waveguides so that respective light guides cross both surfaces of a base material mutually. CONSTITUTION:Optical fibers 26-29 are connected to the plastic optical waveguides 19 and 20 at a fixed part 24. When a movable part 23 is positioned as shown in a figure, a optical signal from an optical fiber for transmission is supplied to an optical receiver 5 through the optical fiber 26, optical waveguide 19, and optical fiber 27. The optical signal after signal processing is led out from an optical transmitter to the optical fiber for transmission through the optical fiber 28, optical waveguide 20, and optical fiber 29. Then when the movable part 23 moves as shown by an arrow A, the optical signal from the optical fiber 2 for transmission is led out to the optical fiber 2 for transmission again through the optical fiber 26, optical waveguid 21, and optical fiber 29 to obtain a by-pass state.

Description

【発明の詳細な説明】 発明の楓する技術分野 本発明は光ファイバを用い次システムに使用する光スィ
ッチに関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to an optical switch using optical fibers for use in the following systems.

従来技術とその問題点 第1図に光ファイバを用い九システムの一例を示ス。こ
のシステムは、マスターステーション1、光7アイバ2
、端末ステーション31,32.・3nより構成され、
端末ステーション31.32 ・3nは、光スィッチ4
、光受信器5、光送信@6、ステーション論理部7よシ
構成されている。このシステムの動作を簡単に説明する
と、マスターステーションlからの光信号は伝送用光7
アイパ2により伝送され光スィッチ4を介して光受信器
5によって電気信号に変換される。変換された電気信号
をステーション論理部7で必要な処理を行な込光送信器
6により光信号に変換し光スィッチ4を介して伝送用光
ファイバ2に導出し、次の端末ステーション32に光信
号を伝送する。このような再生中継方式のシステムにお
いては、端末ステージ曹ンの保守、修理2点噴等による
回線断の状態を防止するため、各端末ステーションには
光受信a5から光送信器6に至るルートをバイパスする
ための光スィッチが必要となる。このバイパス用光スィ
ッチとして第2図fa) 、 (b)に示すような構成
の光スィッチが提案されている。8.9は出力用光ファ
イバ、10.11は入力用光ファイバ、17は光路切換
用可動部である。可動部17中圧は光ファイバ8M10
.8−11,9→10,9−ellを接続するための光
ファイバ12,13,14,15が形成されている。毘
ファイバ12.13と14.15は同一方向に同一間隔
で配置されている。例えば出力用光ファイバ8には光受
信器5が、出力用光ファイノく9には伝送用光ファイバ
2が接続され、入力用光ファイバ10には伝送用光ファ
イバ2が、入力用光ファイバ11には光送信36が接続
されている。第2図(alの状態にoJ動部17が配置
されていると伝送用光ファイバ2よりの光信号は、光フ
ァイノ<10゜12.8を介して光受信器5に入力され
、信号処理を施こされ光送信6より光ファイバ11,1
4.9を介して伝送用光ファイバ2に接続され光信号は
再生中継される。9142図ta>の矢印人の方向に可
動部17を動かせば伝送用光ファイバ2からの光信号は
光ツアイパ10,15.9を介して再び伝送用光ファイ
バ2に接続されバイパス状態となる。また光送信器7か
らの光信号は光ファイバ11,13.8を介して光受信
65に接続され端末ステーション31゜323nの保守
点検が容易に可能となる。第2図(b)の矢印Bの方向
に可動$17を動かせば再び再生中継状態となる。この
ようなファイバ可動形バイパス用光スイッチにおいては
光ファイバ12,13゜14.15の整列精度によって
結合損失の劣化をきたす。また光ファイバ12,13,
14.15を曲り成形する必要がある。この曲シ成形の
手法として熱による成形が考えられるが、所望の曲りを
つけることが困難であるとともに光ファイバの強度劣化
を招くことにもなる。
Prior art and its problems Figure 1 shows an example of a nine-system system using optical fibers. This system consists of 1 master station, 7 optical fibers, and 2 optical fibers.
, terminal stations 31, 32 .・Composed of 3n,
Terminal stations 31, 32 and 3n are optical switches 4
, an optical receiver 5, an optical transmitter 6, and a station logic section 7. To briefly explain the operation of this system, the optical signal from the master station l is transmitted to the transmission optical 7
The signal is transmitted by the eyeper 2 and converted into an electrical signal by the optical receiver 5 via the optical switch 4. The converted electrical signal is subjected to necessary processing in the station logic section 7, converted into an optical signal by the optical transmitter 6, and guided to the transmission optical fiber 2 via the optical switch 4, and then transmitted to the next terminal station 32. transmit signals. In such a regenerative repeating system, each terminal station has a route from the optical receiver a5 to the optical transmitter 6 in order to prevent the line from being disconnected due to maintenance, repair, etc. of the terminal stage. An optical switch is required for bypass. As this bypass optical switch, an optical switch having a structure as shown in FIGS. 2(a) and 2(b) has been proposed. 8.9 is an output optical fiber, 10.11 is an input optical fiber, and 17 is a movable part for optical path switching. Movable part 17 medium pressure is optical fiber 8M10
.. Optical fibers 12, 13, 14, 15 are formed to connect 8-11, 9→10, 9-ell. The bifibers 12.13 and 14.15 are arranged in the same direction and at the same spacing. For example, the optical receiver 5 is connected to the output optical fiber 8, the transmission optical fiber 2 is connected to the output optical fiber 9, the transmission optical fiber 2 is connected to the input optical fiber 10, and the input optical fiber 11 is connected to the output optical fiber 8. An optical transmission 36 is connected to. When the oJ moving part 17 is placed in the state shown in FIG. is applied to the optical fiber 11, 1 from the optical transmission 6.
4.9 to the transmission optical fiber 2, and the optical signal is regenerated and relayed. If the movable part 17 is moved in the direction of the arrow in Fig. 9142, the optical signal from the transmission optical fiber 2 is connected to the transmission optical fiber 2 again via the optical fibers 10, 15.9, and a bypass state is established. Further, the optical signal from the optical transmitter 7 is connected to the optical receiver 65 via the optical fibers 11, 13.8, so that maintenance and inspection of the terminal stations 31.about.323n can be easily performed. If the movable $17 is moved in the direction of arrow B in FIG. 2(b), the regenerative relay state will be resumed. In such a fiber movable bypass optical switch, coupling loss is degraded due to alignment accuracy of the optical fibers 12, 13°, 14.15°. Also, optical fibers 12, 13,
It is necessary to bend and form 14.15. Heat forming is a possible method for forming this bend, but it is difficult to form the desired bend and also causes deterioration in the strength of the optical fiber.

発明の目的 本発明は上記の事情を考慮してなされたもので、その目
的とするところは整列精度を向上させるとともに再現性
の向上又曲9成形を容易としたことを%錐とした光スィ
ッチを提供することにある。
Purpose of the Invention The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to improve alignment accuracy, improve reproducibility, and facilitate curved 9-forming. Our goal is to provide the following.

発明の概要 すなわちプラスチック光導波路を選択的光重合法等によ
り母材の両面に各々の光導波路が互に交わらないように
曲り光導波路を形成し、整列精度を向ヒさせ低損失な光
スィッチを可能とする。
Summary of the invention: A plastic optical waveguide is formed into curved optical waveguides on both sides of a base material using a selective photopolymerization method or the like so that the optical waveguides do not intersect with each other, improving alignment accuracy and creating a low-loss optical switch. possible.

発明の実施例 以F図面を参照して本発明の一実施例を説明する。fA
J図(a)、 (bl 、 (el、第4図fa3 、
 (b)に本発明の一実施例を示t。
EMBODIMENT OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. fA
Figure J (a), (bl, (el, Figure 4 fa3,
(b) shows an embodiment of the present invention.

第3図の18はプラスチック光導波路母材、19゜21
) 、 21 、22はプラスチック先導波路、23は
可動部、24は固定部、25は位置合ぜ用パターンであ
る。第3図+a)は光スィッチを上面から見た状態の光
導波路の配列、183図(blは光スィッチを正面から
見た図、第3図IC)は光スィッチを下面から見た状態
の光導波路の配列である。′43図(a)の光導波路1
9.20は互いに交゛叉せず、所望の曲率をもって0字
に形成される。W2B図(C1においても光導波路21
 、22も同様に互いに交叉せず所望の曲率をもって0
字に形成される。光導波路の形状は、例えばグラスチッ
クファイバとの結合を考えると0、9 gas程度の正
方形に形成する。結合ファイバによって光導波路の形状
は決定される。
18 in Figure 3 is the plastic optical waveguide base material, 19°21
), 21 and 22 are plastic guide waveguides, 23 is a movable part, 24 is a fixed part, and 25 is a positioning pattern. Figure 3+a) is the arrangement of the optical waveguides when the optical switch is viewed from the top, and Figure 183 (bl is a diagram when the optical switch is viewed from the front, Figure 3IC) is the optical waveguide arrangement when the optical switch is viewed from the bottom. It is an array of wave paths. '43 Optical waveguide 1 in Figure (a)
9.20 do not intersect with each other and are formed into a zero shape with a desired curvature. W2B diagram (also in C1, the optical waveguide 21
, 22 similarly do not intersect with each other and have the desired curvature.
formed into a letter. The shape of the optical waveguide is, for example, formed into a square of about 0.9 gas in consideration of coupling with a glass fiber. The shape of the optical waveguide is determined by the coupling fiber.

光導波路19,20,21.22の配列の相互関係は第
3図+a)又は+C)に示す破線部で@3図fb)に示
すように上ドh向に相対向する位@IIC精度良く形成
する。
The mutual relationship between the arrangement of the optical waveguides 19, 20, 21, and 22 is as shown in the broken lines shown in Figure 3 +a) or +C) as shown in Figure 3 fb), where they face each other in the upward direction with good precision. Form.

位[&せの方法として、例えば透明な母材ならばはじめ
に形成した光導波路19.20をもとに裏面に光導波路
21.22のマスクを位置合せすることにより行なうこ
とができる。透明な母材でないときの位置合せ法として
は、位置合せ用パターン25を用いてこの部分の母材は
光導波路形成と同−手  ′法によって裏面まで透明に
し、光導波路21.22形成用マスクの位置合せ用パタ
ーン25をこの透明部が一致するよう位ltきrするこ
とにより精度良く位lit会せを行なうことができる。
For example, if the base material is transparent, this can be done by aligning a mask for the optical waveguides 21, 22 on the back surface based on the optical waveguides 19, 20 formed first. When the base material is not transparent, the alignment method is to use the alignment pattern 25, make this part of the base material transparent to the back side using the same method as for forming the optical waveguide, and use a mask for forming the optical waveguides 21 and 22. By positioning the alignment pattern 25 so that the transparent portions coincide with each other, alignment can be performed with high accuracy.

このようにプラスチック光導波路が形成されたプラスチ
ック光導波路母材18を第3図(a)又は(C)の破線
で示す位置で切断し可動部23と固定部24を形成する
。切断面社研層加工を施こされる。
The plastic optical waveguide base material 18 on which the plastic optical waveguide has been formed is cut at the position shown by the broken line in FIG. 3(a) or (C) to form the movable part 23 and the fixed part 24. The cut surface is subjected to a layered process.

第4図” + (” + (C1により上記のように形
成されたプラスチック光導波路によるスイッチ動作を説
明する。
FIG. 4"+("+(C1) explains the switching operation using the plastic optical waveguide formed as described above.

第4図fdlは本光スィッチをJ:面から見た図である
。光ファイバ26,27,28,2Jは、固定部24の
プラスチック光導波路19,2Qに接続され、例えば尤
ファイバ26は伝送用光ファイバ2に接続され、)tフ
ァイバ27は光受信55に接続され、光ファイバ28は
光送信器6に接続され、光ファイバ29は伝送用光ファ
イバ2に接続される。第4図(blの犬態に可動部23
が位置していると−きは伝送用丸ファイバ2からの光浦
号は毘ファイバ26、光導波路19、丸ファイバ27を
介して光受信45 vc 1#給され、信号処理された
・乃ちyt送信:惇6より再び丸1d号として光ファイ
バ28、光導波路20、毘)rイパ29をfして伝送用
光ファイバ2に導・・bされる。
FIG. 4fdl is a diagram of the present optical switch viewed from the J: side. The optical fibers 26, 27, 28, 2J are connected to the plastic optical waveguides 19, 2Q of the fixed part 24, for example, the optical fiber 26 is connected to the transmission optical fiber 2, and the )T fiber 27 is connected to the optical receiver 55. , the optical fiber 28 is connected to the optical transmitter 6, and the optical fiber 29 is connected to the transmission optical fiber 2. Fig. 4 (Movable part 23 in dog position of bl)
is located, the optical signal from the transmission round fiber 2 is supplied with optical reception 45 vc 1# via the bifiber 26, the optical waveguide 19, and the round fiber 27, and the signal is processed. : From Jun 6 again as circle 1d, the optical fiber 28, the optical waveguide 20, and the fiber 29 are guided to the transmission optical fiber 2.

つぎにu(動部23が矢印A方向に口■動すると第4図
+c1./)犬種とlす、伝送用光ファイバ2よりの′
N:、+5号・・よ毘ファイバ26、光導波路21.光
ファイバ29を介して再び伝送用光ファイバ2に導出さ
れバイパス状態となる。光送信器6と光受信器5は、光
ファイバ28、光導波路22、光ファイバ27を介して
接続される。
Next, when the moving part 23 moves in the direction of the arrow A, the dog breed is +c1.
N:, +5...Yobi fiber 26, optical waveguide 21. The light is led out again to the transmission optical fiber 2 via the optical fiber 29 and enters a bypass state. The optical transmitter 6 and the optical receiver 5 are connected via an optical fiber 28, an optical waveguide 22, and an optical fiber 27.

@4図(C)の矢印Bの方向に可動部23が可動すると
再び再生中継状態となる。
@4 When the movable part 23 moves in the direction of arrow B in FIG. 4(C), the regenerative relay state is entered again.

上記で説明した一連の動作を行なうことにより本光スィ
ッチはバイパス状MK低損失で切換えろことかり能で回
線断の状態を防止できる。
By performing the series of operations described above, this optical switch can switch the bypass-like MK with low loss and prevent line disconnection.

−5図は可動方法の他の方法を示す。Figure-5 shows another method of movement.

30は固定ブロック、31.32はストッパ、26゜2
7 、28 、29は光ファイバ、24は固定部、23
は可動部である。可動部23の光導波路端部と反対側を
固定ブロック30により固定し、光導波路端部側を外力
によってbT@さノ、切換え動作を行なわせる。“外力
として例えばソレノイド等で与えることが可能であり、
可動距離はストッパ31.32を最適に調整され固定さ
れる。
30 is a fixed block, 31.32 is a stopper, 26°2
7, 28, 29 are optical fibers, 24 is a fixed part, 23
is a moving part. The side of the movable part 23 opposite to the end of the optical waveguide is fixed by a fixed block 30, and the end of the optical waveguide is caused to perform a switching operation by an external force. “It is possible to apply an external force using a solenoid, etc.
The movable distance is optimally adjusted and fixed using stoppers 31 and 32.

この方法は特にプラスチック光導波路用光スィッチに適
している。
This method is particularly suitable for optical switches for plastic optical waveguides.

第3図fat 、 (bl 、 fclのようにプラス
チック光導波路を母材の両面に各々光導波路が互に交叉
しないように曲り光導波路を形成することにより整列精
度が同ヒするとともに、曲り成形を容易にすることが口
■能で低損失光スイッチを再現性よく実現できる。
By forming curved optical waveguides on both sides of the base material so that the optical waveguides do not intersect with each other, as shown in Figure 3 FAT, (BL, FCL), the alignment accuracy is the same, and bending can be easily formed. It is possible to easily and easily realize a low-loss optical switch with good reproducibility.

グラスチック光導波路の製法はE下面用の各々の光導波
路パターンの描かれたマスクを用意し、選択的光重合法
等により精度よく形成することが111丁能である。
The best way to manufacture a glass optical waveguide is to prepare a mask with each optical waveguide pattern drawn for the lower surface of E, and form it with high precision by selective photopolymerization or the like.

究明の効果 以ヒ説明したように本発明の光スィッチによればバイパ
ス機:・目を持たすことがでへるとともに、′N′、導
波路を交叉させる必要がなく光重合法によって光導波路
を形成できる。したが1)てマスク合止の奉で位1Mf
をとげることができ、容易に曲り光導波路も成形でき、
低損失化、低価格化かり能でちる。
Effects of Investigation As explained above, according to the optical switch of the present invention, it is possible to have a bypass device, and there is no need to cross the 'N' waveguides, and the optical waveguides can be formed by the optical polymerization method. Can be formed. However, 1) it was 1Mf when the mask was closed.
can be easily formed into curved optical waveguides.
Lower losses and lower prices.

発明の他の実施例 同番・迅明は上記した実施例に限定されるものではない
。即ち光導波路の形状、数、材料についても限定される
ものではなく、また人力用光ファイバ、出力用光ファイ
バの位置関係、および光送信器、光受信器、伝送用光フ
ァイバの接続状態も限定されるものでない。
Other embodiments of the invention The same numbers and details are not limited to the embodiments described above. In other words, there are no limitations on the shape, number, or material of the optical waveguides, and there are also limitations on the positional relationship of the manual optical fiber and the output optical fiber, and the connection state of the optical transmitter, optical receiver, and transmission optical fiber. It is not something that can be done.

ま九光導波路の境界面よりの散乱を防止するためコーテ
ィングを行なうことは言うに及ばなり0またバイパス用
光スィッチのみに限定されるもので!よなく他の光スィ
ッチにも適用される。
It goes without saying that a coating is applied to prevent scattering from the boundary surface of the optical waveguide, but it is also limited to the bypass optical switch! It also applies to other light switches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバを用いたシステム例を示し、第2 
in +al 、 (b)は従来の光ファイバを用い九
バイパス用光スイッチの構成例、第3図(al 、 (
bl 、 (cl、第4図(al 、 (bl 、 f
clは本発明の一実施例を示す図、第5図は本発明にお
ける可動部の他の例を示す図である。 l リモートステーション 31.32.・3n・ 端末ステーション2.8,9.
10,11.12.13.14.15・・光ファイバ1
9.20,21.22・・・光導波路25.26,27
.28・光7アイパ 18  光スィッチ (7J17)  代理人 弁理士 則 近 癒 佑 (
lt力a1名第  1  図 ! 第  2  図 第3図 第  4  図 第4図 へ 第  5  図
Figure 1 shows an example of a system using optical fiber;
in +al, (b) is an example of the configuration of a nine-bypass optical switch using conventional optical fibers.
bl, (cl, Fig. 4 (al, (bl, f)
cl is a diagram showing one embodiment of the present invention, and FIG. 5 is a diagram showing another example of the movable part in the present invention. l Remote Station 31.32.・3n・ Terminal station 2.8, 9.
10, 11.12.13.14.15...Optical fiber 1
9.20, 21.22... Optical waveguide 25.26, 27
.. 28・Hikari 7 Aipa 18 Hikari Switch (7J17) Agent Patent Attorney Noriyuki Kon (
lt power a1 person figure 1! Figure 2 Figure 3 Figure 4 Go to Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)  複数の入力用光ファイバと、複数の出力用光
ファイバと、喧記入力用光ファイバと出力用光ファイバ
の間に先導波路母材の両面に複数の互に交叉せず所望の
曲率をもった光導波路を形成した移動可能な可動部と前
記光導波路と同一に製作した固定部とを具備したことを
特徴とした光スィッチ。
(1) A plurality of input optical fibers, a plurality of output optical fibers, and a plurality of non-intersecting, desired curvatures on both sides of the guiding waveguide base material between the input optical fibers and the output optical fibers. 1. An optical switch comprising: a movable part forming an optical waveguide with a movable part; and a fixed part manufactured identically to the optical waveguide.
(2)  光導波路を高分子光導波路とし九ことを特徴
とする特許請求の範囲第1項記載の光スィッチ。
(2) The optical switch according to claim 1, wherein the optical waveguide is a polymer optical waveguide.
(3)  先導波路をガラス光導波路としたことを特徴
とする特許請求の範囲!IIJI記載の光スィッチ。
(3) Claims characterized in that the leading waveguide is a glass optical waveguide! Optical switch described in IIJI.
(4)  光導波路を電気光学結晶光導波路としtこと
を特徴とする特許請求の範囲第1項記載の光スィッチ。
(4) The optical switch according to claim 1, wherein the optical waveguide is an electro-optic crystal optical waveguide.
JP7982A 1982-01-05 1982-01-05 Optical switch Pending JPS58117504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7982A JPS58117504A (en) 1982-01-05 1982-01-05 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7982A JPS58117504A (en) 1982-01-05 1982-01-05 Optical switch

Publications (1)

Publication Number Publication Date
JPS58117504A true JPS58117504A (en) 1983-07-13

Family

ID=11464149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7982A Pending JPS58117504A (en) 1982-01-05 1982-01-05 Optical switch

Country Status (1)

Country Link
JP (1) JPS58117504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859022A (en) * 1988-07-11 1989-08-22 Gte Products Corporation Moving "S" fiber optical switch
US4874218A (en) * 1988-07-19 1989-10-17 Amp Incorporated Reversible Optical Switch
JPH02199418A (en) * 1989-01-30 1990-08-07 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859022A (en) * 1988-07-11 1989-08-22 Gte Products Corporation Moving "S" fiber optical switch
US4874218A (en) * 1988-07-19 1989-10-17 Amp Incorporated Reversible Optical Switch
JPH02199418A (en) * 1989-01-30 1990-08-07 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Similar Documents

Publication Publication Date Title
US4307933A (en) Optical fiber launch coupler
US4021097A (en) Distributive tee coupler
US4234969A (en) Bidirectional optical coupler for a data processing system
EP0301194B1 (en) Star coupler
US4557550A (en) Optical fiber taps
US4457581A (en) Passive fiber optic data bus configurations
EP0190898A2 (en) Fibre optic data network
EP0077478B1 (en) Optical fiber connector
US3936141A (en) Multiple optical connector
US3967877A (en) Coupler for coupling optical energy transmitted by optical fiber to optical waveguide and method of manufacture
CA3117589A1 (en) Demountable edge couplers with micro-mirror optical bench for photonic integrated circuits
CA2255208A1 (en) Pigtailing method between optical waveguide device and optical fiber array
JPH02188706A (en) Optical fiber coupler
JPS58117504A (en) Optical switch
US5235657A (en) Optical fiber tapping coupler
US5343545A (en) Interconnectable multi-terminal star coupler
CN113219594B (en) Fast optical fiber coupler for optical fiber telephone
JPH04289803A (en) Multiple branch optical circuit
US20050265664A1 (en) Coupling structure between fiber and optical waveguide
JP2020126128A (en) Interposer circuit
JPS593410A (en) Optical branching device
JP2018189691A (en) Optical device, communication system and multiplexing/demultiplexing method
US20240118493A1 (en) Apparatus and method for low latency free-space optical communications
Hawk et al. Low loss splicing and connection of optical waveguide cables
KR101411279B1 (en) 1×n optical switch and manufacturing method thereof