JPS58117342A - Multicylinder internal-combustion engine - Google Patents

Multicylinder internal-combustion engine

Info

Publication number
JPS58117342A
JPS58117342A JP21151481A JP21151481A JPS58117342A JP S58117342 A JPS58117342 A JP S58117342A JP 21151481 A JP21151481 A JP 21151481A JP 21151481 A JP21151481 A JP 21151481A JP S58117342 A JPS58117342 A JP S58117342A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
gasoline
intake
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21151481A
Other languages
Japanese (ja)
Inventor
Hidekazu Takayasu
高安 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Marine Co Ltd
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Sanshin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd, Sanshin Kogyo KK filed Critical Yamaha Motor Co Ltd
Priority to JP21151481A priority Critical patent/JPS58117342A/en
Publication of JPS58117342A publication Critical patent/JPS58117342A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M13/00Arrangements of two or more separate carburettors; Carburettors using more than one fuel
    • F02M13/06Arrangements of two or more separate carburettors; Carburettors using more than one fuel the carburettors using different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To increase revolution smoothly when acceleration by setting up a various-fuel carburetor, which has a function, which makes the quantities of acceleration fuel discharged in each suction cylinder differ among several suction cylinder, etc. to an outboard engine changing over and using kerosine as main fuel and gasoline as sub-fuel. CONSTITUTION:The cylinders 12A, 12B of the two-cycle internal combustion engine 12 are arranged in the vertical direction. The carburetor 14 is provided with the suction cylinders 24A, 24B corresponding to cylinders 12A, 12B, a first float chamber 28 encasing kerosine as main fuel, a second float chamber 30 encasing gasoline as sub-fuel and an accelerator pump 30. When the accelerator pump 30 is operated, the suction path 25 of the suction cylinder 24A is supplied with a comparatively large amount of gasoline from the opening 39A with a large bore of an injection nozzle 38, and gasoline is mixed into the cylinder 12A in addition to kerosine. On the other hand, a comparatively small amount of gasoline are mixed into kerosine from an opening 39B with a small bore in the suction path 25 of the suction cylinder 24B, and the mixed oil is supplied to the cylinder 12B. Accordingly, when the bores of the openings 39A, 39B are selected in proper value, desired engine characteristics can be obtained.

Description

【発明の詳細な説明】 本発明は、多気筒内燃機関に関する。[Detailed description of the invention] The present invention relates to a multi-cylinder internal combustion engine.

従来、船外機等においては、燃料の経済性を考慮して、
灯油(ケロシン)、アルコール等の低気化性燃料を主燃
料とし、これより気化性、着火性に優れたガソリン等の
高気化性燃料を副燃料として切換え使用する多気筒内燃
機関が採用されている。上記多気筒内燃機関にあっては
、牝に、冷間加速時、または低速長時間運転後の加速時
に、低気化性燃料の霧化が充分でないことから、加速ポ
ンプによって高気化性燃料を加速燃料として気化器の吸
気通路に供給している。
Conventionally, in outboard motors, etc., considering fuel economy,
Multi-cylinder internal combustion engines are used that use low-volatile fuels such as kerosene and alcohol as the main fuel, and switch to high-volatile fuels such as gasoline, which have better vaporization and ignitability, as secondary fuel. . In the above-mentioned multi-cylinder internal combustion engine, the low-volatility fuel is not sufficiently atomized during cold acceleration or acceleration after long-term low-speed operation, so the high-volatility fuel is accelerated by the accelerator pump. It is supplied as fuel to the intake passage of the carburetor.

しかしながら、上記多気筒内燃機関において、加速操作
によって円滑なエンジンの回転上昇を得るべく、加速ポ
ンプの吐出時性を調整することは困難である。例えば、
加速燃料の吐出量が比較的少ない場合には、加速燃料が
直ちに燃焼してエンジンの回転を急上昇するものの、そ
の後、低気化性燃料の気化が悪いために失火してエンジ
ンが停止する可能性がある。また、加速燃料の吐出量が
比較的多い場合には、混合気の空燃比が過濃となって失
火したり、空燃比が適正状態となって正常な燃焼に至る
までの間、エンジン回転にもたつきを生ずる等の不都合
がある。
However, in the above-mentioned multi-cylinder internal combustion engine, it is difficult to adjust the discharge timing of the acceleration pump in order to obtain a smooth increase in engine rotation through acceleration operation. for example,
If the discharge amount of accelerating fuel is relatively small, the accelerating fuel will burn immediately and the engine speed will rise rapidly, but there is a possibility that the low vaporization fuel will misfire and the engine will stop due to poor vaporization. be. In addition, if the discharge amount of accelerating fuel is relatively large, the air-fuel ratio of the air-fuel mixture may become too rich and misfire may occur, or engine rotation may slow until the air-fuel ratio reaches the appropriate state and normal combustion occurs. There are disadvantages such as causing sluggishness.

本発明は、冷間加速時、低速長時間運転後の加速時にお
けるエンジンの回転上昇を円滑にする多気筒内燃機関を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-cylinder internal combustion engine that smoothly increases engine speed during cold acceleration and during acceleration after long-term low-speed operation.

上記目的を達成するために、本発明は、各気筒ζこそれ
ぞれ対応する複数の吸気胴を備え、高気化性燃料を収容
するフロート室および低気化性燃料を収容するフロ、−
ト室ならびに加速ポンプを備える多種燃料気化器が取付
けられてなる多気筒内燃機関において、各吸気胴lこお
ける加速燃料吐出量を各吸気胴間で異ならしめ、および
または、各吸気胴における加速燃料吐出時期を各吸気胴
間で異ならしめるようにしたものである。
In order to achieve the above object, the present invention includes a plurality of intake cylinders corresponding to each cylinder ζ, a float chamber for accommodating highly evaporative fuel, a float chamber for accommodating low evaporative fuel, and -
In a multi-cylinder internal combustion engine equipped with a multi-fuel carburetor equipped with an exhaust chamber and an acceleration pump, the amount of accelerated fuel discharged in each intake cylinder is made different between each intake cylinder, and/or the amount of accelerated fuel discharged in each intake cylinder is changed. The discharge timing is made different between each intake cylinder.

以下、本発明の実施例を図面を参照して説明するO 第1図は本発明を船外機に適用した一実施例の要部を破
断して示す側面図であり、第2図は同実施例の気化器を
示す正面図であり、第3図は同気化器の加速系統を示す
断面図であり、第4図は同実施しリにおけるエンジン回
転状態を示す線図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing a main part of an embodiment in which the present invention is applied to an outboard motor, and FIG. FIG. 3 is a front view showing the carburetor of the embodiment, FIG. 3 is a sectional view showing the acceleration system of the carburetor, and FIG. 4 is a diagram showing the engine rotation state in the embodiment.

この船外機に招いては、ドライブユニット10の上部に
、カウリング11に覆われる2気筒2サイクル内燃機関
12が搭載され、その内燃機関12には吸気マニホール
ド13、気化器14、および吸気箱15が取付けられて
いる。
This outboard motor has a two-cylinder two-stroke internal combustion engine 12 mounted on the top of the drive unit 10 and covered by a cowling 11. The internal combustion engine 12 includes an intake manifold 13, a carburetor 14, and an intake box 15. installed.

一ト記内燃機関12のクランク軸16は、クランフケ・
−ス17とシリンダーブロック18との間lこ軸支され
るたて置き形式とされ、クランク軸16の上部突出端に
は図示されない始動機構や発電装置が装着され、下部突
出端には図示されない動力伝達1構を介してプロペラが
連結されている。上下の各気筒12A、12Bは垂直方
向に直列配置され、各気筒12A、12B内のピストン
19は、連籐棒20によってクランク軸16に連結され
ている。また、シリンダーブロック18には、上下の各
クランク室21八、21Bと各気筒12八。
The crankshaft 16 of the internal combustion engine 12 is
- The crankshaft 16 is of a vertical type with a shaft supported between the crankshaft 17 and the cylinder block 18, and the upper protruding end of the crankshaft 16 is equipped with a starting mechanism and a power generating device (not shown), and the lower protruding end is equipped with a starting mechanism and a generator (not shown). A propeller is connected via a power transmission structure. The upper and lower cylinders 12A and 12B are vertically arranged in series, and the piston 19 in each cylinder 12A and 12B is connected to the crankshaft 16 by a rattan rod 20. Further, the cylinder block 18 includes upper and lower crank chambers 218, 21B and each cylinder 128.

12Bの燃焼室とを連通する掃気通路22が形成され、
シリンダー側壁には排気ポート23が形成さイ1.てい
る。
A scavenging passage 22 communicating with the combustion chamber 12B is formed,
An exhaust port 23 is formed on the cylinder side wall.1. ing.

気化器14は、内燃機関12の各気筒12八。The carburetor 14 is connected to each cylinder 128 of the internal combustion engine 12.

12Bにそれぞれ別個の吸気胴(ボア)24A。12B and separate intake cylinders (bore) 24A.

24Bによって混合気を供給可能とする2ボア形式とさ
れている。すなわち、気化器14の左右の吸気胴24.
A、24Bにはそれぞれ吸気通路25が形成され、各吸
気通路25は、単一のスロットルバルブ軸26にそれぞ
れ固定化されている各スロットルバルブ27によって開
閉可能とされている。また、気化器14は、灯油を主燃
料とし、ガソリンを副燃料として使いわける多種燃料使
用形式とされている。すなわち、気化器14の中央下部
には、主燃料としての灯油を収容する第1フロート室2
8が設けられている。また、気化器140) −111
11方下部には、副燃料としてのガソリンを収容する第
2フロート室29が設けられている。
It is a two-bore type that can supply air-fuel mixture through 24B. That is, the left and right intake cylinders 24 of the carburetor 14.
An intake passage 25 is formed in each of A and 24B, and each intake passage 25 can be opened and closed by each throttle valve 27 fixed to a single throttle valve shaft 26, respectively. Further, the carburetor 14 uses a variety of fuels, using kerosene as a main fuel and gasoline as an auxiliary fuel. That is, at the lower center of the carburetor 14, there is a first float chamber 2 that accommodates kerosene as the main fuel.
8 is provided. Also, vaporizer 140) -111
A second float chamber 29 is provided at the bottom on the 11th side to accommodate gasoline as an auxiliary fuel.

気化器14の上記第2フロート室29に隣接する部分に
は加速ポンプ30が設けられている。加速ポンプ30は
、気化器14の上部に配設されるリンク機構を介してス
ロットルバルブ27のGit[動作に連動可能とされて
いる。すなわち、スロットルバルブ軸26の回動により
、リンク機構を介してポンプレバー31が回動すると、
ピストンロッド32がポンプレバー31によって押込ま
れ、ポンプピストン33を押下げることにより、第2フ
ロート室29から逆止弁34を介してシリンダー35内
に吸込んだガソリンを、流出通路36および逆止弁37
を介して、噴出ノズル3Bに圧送可能としている。噴出
ノズル3Bは、各吸気胴24A、24Bの吸気通路25
においてベンチュリ一部よりも吸気上流側に配置され、
吸気胴24A側に比較的大口径の開口39Aを備え、吸
気胴24B側に比較的小口径の開口39Bを備えている
。なお、各開口39A、39Bは吸気下流側に向けて開
口されている。すなわち、加速ポンプ30の作動により
、吸気胴24 A (Flllには噴出ノズル38の開
口39Aを介して比較的多量のガソリンが吐出され、吸
気胴24B側には、噴出ノズル38の開口39Bを介し
て比較的少−撒のガソリンが吐出可能とされている。
An acceleration pump 30 is provided in a portion of the carburetor 14 adjacent to the second float chamber 29 . The acceleration pump 30 can be linked to the Git operation of the throttle valve 27 via a link mechanism disposed above the carburetor 14. That is, when the pump lever 31 is rotated via the link mechanism due to rotation of the throttle valve shaft 26,
When the piston rod 32 is pushed in by the pump lever 31 and pushes down the pump piston 33, the gasoline sucked into the cylinder 35 from the second float chamber 29 via the check valve 34 is transferred to the outflow passage 36 and the check valve 37.
It is possible to force feed the water to the jet nozzle 3B via the jet nozzle 3B. The jet nozzle 3B is connected to the intake passage 25 of each intake cylinder 24A, 24B.
It is located upstream of the intake part of the venturi,
An opening 39A with a relatively large diameter is provided on the side of the intake cylinder 24A, and an opening 39B with a relatively small diameter is provided on the side of the intake cylinder 24B. Note that each of the openings 39A and 39B is opened toward the downstream side of the intake air. That is, by the operation of the acceleration pump 30, a relatively large amount of gasoline is discharged to the intake cylinder 24A (Flll) through the opening 39A of the jet nozzle 38, and a relatively large amount of gasoline is discharged to the intake cylinder 24B side through the opening 39B of the jet nozzle 38. It is said that a relatively small amount of gasoline can be discharged.

次に、第4図を参照して、上記実施例の作用について説
明する。なお、第4図は、横軸に加速操作開始後の時間
Tをとり、縦軸にエンジン回転速度Nをとったものであ
る。
Next, the operation of the above embodiment will be explained with reference to FIG. In FIG. 4, the horizontal axis represents the time T after the start of the acceleration operation, and the vertical axis represents the engine rotational speed N.

加速ポンプ30が作動されると、吸気胴24Aの吸気通
路25には、噴出ノズル38の比較的大口径の開口39
Aから、比較的多量のガソリンが供給される。したがつ
°C1吸気胴24A側の吸気通路25と連通゛可能とさ
れている上気筒12Aの燃焼室には、灯油に加えて、比
較的多量のガソリンも混入されて供給される。そこで、
上気筒12A側のエンジン回転特性は、第4図にA%件
として示すように、燃焼室内の空燃比が適正状態に至る
までの間、もたつきを生じ、その後回転を上昇する。
When the acceleration pump 30 is activated, a relatively large-diameter opening 39 of the jet nozzle 38 is formed in the intake passage 25 of the intake cylinder 24A.
A relatively large amount of gasoline is supplied from A. Therefore, in addition to kerosene, a relatively large amount of gasoline is also mixed and supplied to the combustion chamber of the upper cylinder 12A, which can communicate with the intake passage 25 on the side of the C1 intake cylinder 24A. Therefore,
The engine rotational characteristics on the upper cylinder 12A side are sluggish until the air-fuel ratio in the combustion chamber reaches a proper state, as shown as A% in FIG. 4, and then the rotation increases.

他方、吸気胴24Bの吸気通路25には、(圓出ノスル
38の比較的小口径の開口39Bから、比較的少量のガ
ソリンが供給される。したがって、吸気胴24Bの吸気
通路25と連通可能とされている下気筒12Bの燃焼室
には、灯油に加えて、比較的少量のガソリンが混入され
て供給される。
On the other hand, a relatively small amount of gasoline is supplied to the intake passage 25 of the intake body 24B through the relatively small diameter opening 39B of the outlet nostle 38. Therefore, it is possible to communicate with the intake passage 25 of the intake body 24B. In addition to kerosene, a relatively small amount of gasoline is mixed and supplied to the combustion chamber of the lower cylinder 12B.

そこで、下気筒12 B iti++のエンジン回転特
性は第4図にB特性として示すように、ガソリンの供給
によって直ちに上昇し、その後、灯油の気化が悪い温度
条件下では下降する。
Therefore, the engine rotation characteristic of the lower cylinder 12B iti++, as shown as characteristic B in FIG. 4, immediately increases with the supply of gasoline, and then decreases under temperature conditions where kerosene vaporization is poor.

すなわち、上記実施例において、内燃機関12が、冷間
において加速され、または低速長時間運転後に加速され
る場合には、上気筒12.Aのエンジン回転特性は第4
図のへ時性となり、下気筒12Bのエンジン回転特性は
第4図のB%性となる。したがって、内燃機関12の全
体としてのエンジン回転特性は、上記A特性とB特性と
を総合化した、第4図のC’)’!j性となり、エンジ
ンの回転上昇を円滑化することが不可能となる。なお、
上記噴出ノズル38の開口39八、39Bの口径を種々
選定することにより、内燃機関12の全体的なエンジン
回転特性を所望の特性に設定することが可能となる。
That is, in the above embodiment, when the internal combustion engine 12 is accelerated in a cold state or after a long period of low-speed operation, the upper cylinder 12. The engine rotation characteristic of A is the fourth
The engine rotation characteristic of the lower cylinder 12B becomes the B% characteristic shown in FIG. 4. Therefore, the overall engine rotation characteristic of the internal combustion engine 12 is C')' in FIG. This makes it impossible to smoothly increase the engine speed. In addition,
By selecting various diameters of the openings 398 and 39B of the jet nozzle 38, it is possible to set the overall engine rotational characteristics of the internal combustion engine 12 to desired characteristics.

上記実施例は、各吸気胴における加速燃料吐出量を各吸
気胴間で異ならしめることにより、各吸気胴に連結され
ている各気筒に関するエンジン回転特性を各気筒間で異
ならしめ、それらの各気筒の異なるエンジン回転特性を
総合化して所望のエンジン回転特性を得るようにしたも
のである。しかしながら、本発明は、以下に説明するよ
うに、各吸気胴における加速燃料吐出時期を各吸気胴間
で異ならしめることにより、内燃機関の全体で所慴のエ
ンジン回転特性を得るようにしてもよい。
In the above embodiment, by making the accelerated fuel discharge amount in each intake cylinder different between each intake cylinder, the engine rotation characteristics regarding each cylinder connected to each intake cylinder are made different between each cylinder, and each cylinder is The different engine rotation characteristics are integrated to obtain the desired engine rotation characteristics. However, in the present invention, as will be explained below, desired engine rotation characteristics may be obtained throughout the internal combustion engine by making the accelerated fuel discharge timing in each intake cylinder different between each intake cylinder. .

すなわち、第5図(A)は本発明の一変形例に係る加速
ポンプ50を示す説明図である。シリンダー51の中間
部には、一方の吸気胴に配設される噴出ノズル52Aが
連結され、その底部には、他方の吸気胴にM己役される
噴出ノズル52Bが連結されている。したがって、加速
操作の開始により、ピストン50が下降すると、4g5
図(B)に示すように、噴出ノズル52A、52Bの両
者からガソリンが同時に両級気胴に吐出され、ピストン
53がシリンダー51の中間部を通過すると、噴出ノズ
ル52Aからのガソリンの吐出は停止し、噴出ノズル5
2Bからのガソリンの吐出のみが持続され、ピストン5
3が底部に達した時点で、噴出ノズル52Bからのガソ
リンの吐出も1亭I卜する。すなわち、上記変形例によ
れば各噴出ノズル52A。
That is, FIG. 5(A) is an explanatory diagram showing an acceleration pump 50 according to a modified example of the present invention. A jet nozzle 52A disposed on one of the intake cylinders is connected to the middle part of the cylinder 51, and a jet nozzle 52B, which is arranged on the other intake cylinder, is connected to the bottom thereof. Therefore, when the piston 50 descends due to the start of the acceleration operation, 4g5
As shown in Figure (B), gasoline is simultaneously discharged from both the jet nozzles 52A and 52B into both classes of gas cylinders, and when the piston 53 passes through the middle part of the cylinder 51, the discharge of gasoline from the jet nozzle 52A stops. and spout nozzle 5
Only the discharge of gasoline from 2B is continued, and the piston 5
At the time when the gasoline reaches the bottom, gasoline is also discharged from the jet nozzle 52B by 1 hour. That is, according to the above modification, each jet nozzle 52A.

52Bに対応する各気筒のエンジン回転特性を異ならし
め、それらを総合化することによって竹有のエンジン回
転特性を得ることが可能となる。
By making the engine rotation characteristics of each cylinder corresponding to 52B different and integrating them, it becomes possible to obtain the Takeari engine rotation characteristics.

第6図(A)は本発明の他の変形例に係る加速ポンプ6
0を示す説明図である。シリンダー61の中間部には、
一方の吸気胴に配設される噴出ノズル62Aが連結され
、その底部には、他方の吸気胴に配設される噴出ノズル
62Bが連結されているつまた、ピストン63の下部に
は弁体64が一体化され、弁体64には連通路64Aが
形成され、ピストン63の原位置から一定の下降期間中
において、弁体64の側面が噴出ノズル62八との接続
口を閉止可1止としている。したがって、加速操作によ
ってピストン63の下降が開始すると、m6図(B)に
示すように弁体64の(ll+面が噴出ノズル62八と
の接続口を閉止している一定期間中、噴出ノズルfi2
Bのみからガソリンが吐出し、上記一定期間の経過後、
弁体64がシリンダー61の底部に至るまでの間、両噴
出ノズル62八、62Bの両方からガソリンが吐出され
る。すす4つも、上記変形例によれば、両噴出ノズル6
2A、62Bに対応する各気筒のエンジン回転4’&性
を14すらしめ、それらを総合化することによって、全
体として特有なエンジン回転特性を得ることが可能とな
る。
FIG. 6(A) shows an acceleration pump 6 according to another modification of the present invention.
It is an explanatory diagram showing 0. In the middle part of the cylinder 61,
A jet nozzle 62A disposed on one intake cylinder is connected to the bottom thereof, and a jet nozzle 62B disposed on the other intake cylinder is connected to the bottom of the jet nozzle 62A. is integrated, and a communication passage 64A is formed in the valve body 64, and during a certain period of descent of the piston 63 from its original position, the side surface of the valve body 64 closes the connection port with the jet nozzle 628. There is. Therefore, when the piston 63 starts to descend due to the acceleration operation, as shown in Fig.
Gasoline is discharged only from B, and after the above certain period of time has elapsed,
Until the valve body 64 reaches the bottom of the cylinder 61, gasoline is discharged from both the jet nozzles 628 and 62B. According to the above modification, four soots are also ejected from both jet nozzles 6.
By setting the engine speeds 4' and 14 for each cylinder corresponding to 2A and 62B and integrating them, it is possible to obtain unique engine speed characteristics as a whole.

第7図(A)は本発明の他の変形例に係る加速ポンプ7
0を示す説明図である。シリンダー71の上方の中間部
には、一方の吸気胴に配設される噴出ノズル72Aが連
結され、下方の中間部には、他力の吸気胴に配設される
噴出ノズル72Bが連結されている。また、ピストン7
3の下部には弁体74が一体化され、弁体74には弁1
m路74Aが形成され、ピストン73が原位置から一定
の下降期間中、弁体74の側面が噴出ノズル72Aとの
接続口を閉止し、ピストン73が所定の中間位置から下
降端に至るまでの下降期間中、弁体74の側面が噴出ノ
ズル72Bとの伝続口を閉止可能としている。したがっ
て、上記変形例によれば、加速操作によ“つてピストン
73が下降を開始すると、第7図(B)に示すように、
弁体74の側面が噴出ノズル72Aとの接続口を閉止し
ている間、噴出ノス゛ルア2Bのみからガ゛ソリンが吐
出され、そのT麦の所定期間、両噴出ノズル72A、7
2Bからガソリンが吐出され、その後ピストン73が下
降端に至るまでの間、噴出ノズル72Aのみからガソリ
ンが噴出される。すなわち、上記変形例によれば、両噴
出ノズル72A、72Bに対応する各気筒のエンジン回
転特性を異ならしめ、それらを総合化することによって
特有なエンジン回転特性を得ることが可能となる。
FIG. 7(A) shows an acceleration pump 7 according to another modification of the present invention.
It is an explanatory diagram showing 0. A jet nozzle 72A disposed on one intake cylinder is connected to the upper middle part of the cylinder 71, and a jet nozzle 72B disposed on the other intake cylinder is connected to the lower middle part. There is. Also, piston 7
A valve body 74 is integrated into the lower part of the valve 1.
m path 74A is formed, and during a certain period of descent of the piston 73 from the original position, the side surface of the valve body 74 closes the connection port with the jet nozzle 72A, and the piston 73 moves from the predetermined intermediate position to the descending end. During the descending period, the side surface of the valve body 74 can close the communication port with the jet nozzle 72B. Therefore, according to the above modification, when the piston 73 starts descending due to the acceleration operation, as shown in FIG. 7(B),
While the side surface of the valve body 74 closes the connection port with the jet nozzle 72A, gasoline is discharged only from the jet nozzle 2B, and for a predetermined period of time, the gasoline is discharged from both the jet nozzles 72A, 7.
Gasoline is ejected from 2B, and thereafter, until the piston 73 reaches the lower end, gasoline is ejected only from the ejection nozzle 72A. That is, according to the above modification, it is possible to obtain a unique engine rotation characteristic by making the engine rotation characteristics of each cylinder corresponding to both the injection nozzles 72A, 72B different and integrating them.

なお、本発明は、各吸気胴における加速燃料吐出酸を各
吸気胴間で異ならしめるとともに、各吸気胴における加
速燃料吐出時期をも各吸気胴間で!11′−すらしめる
ようにし、各吸気胴に連結されている各気筒に関するエ
ンジン回転特性を各気筒間で異ならしめ、それら各気筒
の異なる回転速度を総合化して所望のエンジン回転特性
を得るようにしてもよい。
In addition, in the present invention, the accelerated fuel discharge acid in each intake cylinder is made different between each intake cylinder, and the accelerated fuel discharge timing in each intake cylinder is also made different between each intake cylinder! 11'-, the engine rotational characteristics of each cylinder connected to each intake cylinder are made different between each cylinder, and the different rotational speeds of each cylinder are integrated to obtain a desired engine rotational characteristic. It's okay.

また、本発明は、2気筒内燃機関に限らず3気筒以上の
内燃4幾関においても同様に適用可能である。
Further, the present invention is applicable not only to two-cylinder internal combustion engines but also to internal combustion engines having three or more cylinders.

以上のように、本発明は、各気筒にそれぞれ対応する複
数の吸気胴を備え、高気化性燃料を収容するフロート室
および低気化性燃料を収容するフロート室ならびに加速
ポンプを備える多種燃料気化器が取付けられてなる多気
筒内燃機関において、各吸気胴における加速燃料上吐出
量を各吸気胴間で異ならしめ、およびまたは、各吸気胴
における加速燃料吐出時期を各吸気胴間で異ならしめる
ようにしたので、各吸気胴に連結されている各気筒に関
するエンジン回転41性を各気筒間で異ならしめ、それ
ら各気筒の異なるエンジン回転特性を総合化することに
よって、機関全体として所望の円滑なエンジン回転特性
を得ることが可能となる。
As described above, the present invention provides a multi-fuel carburetor which includes a plurality of intake cylinders corresponding to each cylinder, a float chamber for accommodating high evaporation fuel, a float chamber for accommodating low evaporation fuel, and an acceleration pump. In a multi-cylinder internal combustion engine, in which the accelerated fuel discharge amount in each intake cylinder is made different between each intake cylinder, and/or the accelerated fuel discharge timing in each intake cylinder is made different between each intake cylinder. Therefore, by making the engine rotation characteristics of each cylinder connected to each intake cylinder different between each cylinder and integrating the different engine rotation characteristics of each cylinder, the desired smooth engine rotation can be achieved for the entire engine. It becomes possible to obtain the characteristics.

したがって、冷間加速時、または低速長時間運転後の加
速時におけるエンジンの回転上昇を円滑化することが可
能となる。
Therefore, it is possible to smoothly increase the rotation of the engine during cold acceleration or during acceleration after long-time low-speed operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を船外機に適用した一実施例の要部を破
断して示す側面図、第2図は同実施例の気化器を示す正
面図、第3図は同気化器の加速系統を示す断面図、第4
図は同実施例におけるエンジン回転状態を示す線図、第
5国内は本発明の一変形例を示す説明図、第5図(I1
3)は同変形例の加速 ゛燃料吐出特性を示す線図、第
6国内は本発明の他の変形例を示す説明図、第6図(F
3)は同変形例の加速燃料吐出特性を示す線図、第7図
(A)は本発明の変形例を示す説明図、第7図(I3)
は同変形例の加速燃料吐出特性を示す線図である。 12 内燃機関、12A  上気筒、 12B  下気筒、14 気化器、 24A、24B  吸気胴、28 第1フロート室、2
9 第2フロート室、 30.50.60.70  加速ポンプ、38.52A
、52B、62A、62B、72A。 72B  噴出ノズル、 39A、39B・開口。 代理人 弁理士 塩 川 修 治 第3図 第4図 第5図 (A)          (B) 第6図 (A)           (B) (A)        (B)
Fig. 1 is a side view with a cutaway showing the essential parts of an embodiment in which the present invention is applied to an outboard motor, Fig. 2 is a front view showing a carburetor of the same embodiment, and Fig. 3 is a view of the carburetor of the same embodiment. Cross-sectional diagram showing the acceleration system, No. 4
The figure is a diagram showing the engine rotational state in the same embodiment, the fifth country is an explanatory diagram showing a modified example of the present invention, and Fig. 5 (I1
3) is a diagram showing the acceleration and fuel discharge characteristics of the same modification, and the 6th domestic diagram is an explanatory diagram showing another modification of the present invention.
3) is a diagram showing the acceleration fuel discharge characteristics of the modified example, FIG. 7 (A) is an explanatory diagram showing the modified example of the present invention, and FIG. 7 (I3)
is a diagram showing accelerated fuel discharge characteristics of the same modification. 12 internal combustion engine, 12A upper cylinder, 12B lower cylinder, 14 carburetor, 24A, 24B intake cylinder, 28 first float chamber, 2
9 2nd float chamber, 30.50.60.70 Acceleration pump, 38.52A
, 52B, 62A, 62B, 72A. 72B Spout nozzle, 39A, 39B/opening. Agent Patent Attorney Osamu Shiokawa Figure 3 Figure 4 Figure 5 (A) (B) Figure 6 (A) (B) (A) (B)

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒にそれぞれ対応する複数の吸気胴を備え、
高気化性燃料を収容するフロート室および低気化性燃料
を収容するフロート室ならびに加速ポンプを備える多種
燃料気化器が取付けられてなる多気筒内燃機関において
、各吸気胴における加;朱・燃料吐出量を各吸気胴間で
異ならしめ、およびまたは、各吸気胴における加速燃料
吐出時期を各吸気胴間で異ならしめることを性徴とする
多気筒内燃機関。
(1) Equipped with multiple intake cylinders corresponding to each cylinder,
In a multi-cylinder internal combustion engine that is equipped with a float chamber for storing high-volatile fuel, a float chamber for storing low-volatility fuel, and a multi-fuel vaporizer equipped with an acceleration pump, the amount of fuel discharged in each intake cylinder is 1. A multi-cylinder internal combustion engine characterized by having different values between each intake cylinder, and/or having different accelerated fuel discharge timings between each intake cylinder.
JP21151481A 1981-12-29 1981-12-29 Multicylinder internal-combustion engine Pending JPS58117342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21151481A JPS58117342A (en) 1981-12-29 1981-12-29 Multicylinder internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21151481A JPS58117342A (en) 1981-12-29 1981-12-29 Multicylinder internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58117342A true JPS58117342A (en) 1983-07-12

Family

ID=16607173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21151481A Pending JPS58117342A (en) 1981-12-29 1981-12-29 Multicylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58117342A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420513U (en) * 1977-07-12 1979-02-09
JPS5440938A (en) * 1977-09-06 1979-03-31 Toyota Motor Corp Accelerating fuel supply system of carbupetor
JPS5688938A (en) * 1979-12-21 1981-07-18 Sanshin Ind Co Ltd Carburetter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420513U (en) * 1977-07-12 1979-02-09
JPS5440938A (en) * 1977-09-06 1979-03-31 Toyota Motor Corp Accelerating fuel supply system of carbupetor
JPS5688938A (en) * 1979-12-21 1981-07-18 Sanshin Ind Co Ltd Carburetter

Similar Documents

Publication Publication Date Title
US6427647B1 (en) Internal combustion engines
US3113561A (en) Stratified charge two-cycle engine
US3824965A (en) Fuel system
JPH0953458A (en) Fuel injection type multicylinder internal combustion engine
US3832985A (en) Non-pollution carburetion system for engines
JPS60259756A (en) Fuel feeder for internal-combustion engine
US3905343A (en) Stratified charge system
US5259344A (en) Intermittent fuel-injection method and device for two-stroke engine
JPH0357876A (en) Cylinder injection two-cycle engine
JPS58128449A (en) Acceleration fuel discharge device
US5042442A (en) Internal combustion engine
JPH01277678A (en) Fuel feed device of multiple cylinder internal combustion engine
JPS58152119A (en) Laminar air supply type internal combustion engine
WO1991014086A1 (en) Combustion engine of the piston engine type
JPS6062645A (en) Fuel supply device for internal-combustion engine
US4768494A (en) Idling system for multi-cylinder two-stroke engine
US4392460A (en) Parallel inherently balanced rotary valve internal combustion engine
JPH042774B2 (en)
JPS58117342A (en) Multicylinder internal-combustion engine
US4683846A (en) Fuel supply device of a two-stroke engine for an outboard motor
JPH08319835A (en) Fuel injecting device of internal combustion engine of fuel injection type
JPS58110845A (en) Multiple-cylindrer internal-combustion engine
US1695714A (en) Constant-volume and constant-compression engine and method of operating same
US4414939A (en) Method of and apparatus for preparing a fuel mixture for an internal combustion engine
JPH08312353A (en) Fuel injection type internal combustion engine