JPS5811711A - Method for reducing steam consumption in co conversion of converter waste gas - Google Patents

Method for reducing steam consumption in co conversion of converter waste gas

Info

Publication number
JPS5811711A
JPS5811711A JP56110096A JP11009681A JPS5811711A JP S5811711 A JPS5811711 A JP S5811711A JP 56110096 A JP56110096 A JP 56110096A JP 11009681 A JP11009681 A JP 11009681A JP S5811711 A JPS5811711 A JP S5811711A
Authority
JP
Japan
Prior art keywords
tank
water
amount
conversion
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56110096A
Other languages
Japanese (ja)
Inventor
Masaharu Anezaki
姉崎 正治
Masami Shino
志野 雅美
Takahiro Toyoda
豊田 隆弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO KK
Nippon Steel Corp
Original Assignee
KYODO SANSO KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO KK, Sumitomo Metal Industries Ltd filed Critical KYODO SANSO KK
Priority to JP56110096A priority Critical patent/JPS5811711A/en
Publication of JPS5811711A publication Critical patent/JPS5811711A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To reduce a charging quantity of steam, by performing the temp. controlling of the inside of a catalyst tank by an indirect water cooling device provided to the inside of the tank. CONSTITUTION:Raw gas i.e. a converter waste gas, after subjecting to a CO- conversion in a catalyst tank 1 by the action of steam, is sent i.e. to a CO2 separating device 2 of an adsorbing tower system, and here the CO2 is separated and recovered. For the temp. controlling of the tank 1, water is fed indirectly into an indirect water-cooling device provided to the tank 1. Hot water, coming out from the tank 1, is introduced into the device 2 to be utilized for an indirect heating of the device 2, and then is circulated to be utilized for the cooling of the tank 1 again. Gaseous H2 without containing CO2 is sent to a H2 separating device 3 from the device 2 to separate and recover the H2 by an adsorbent. Accordingly the need of the steam for the temp. controlling of the tank 1 is eliminated thereby reducing the steam consumption.

Description

【発明の詳細な説明】 本発明は、転炉排ガスから二酸化炭素および水嵩を製造
する方法に関する。よシ詳しくは、本発明は、上記方法
に用いられるCO変換懺装としての触媒槽への水蒸気投
入量を節減する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon dioxide and water bulk from converter exhaust gas. More particularly, the present invention relates to a method for reducing the amount of water vapor input into the catalyst tank as a CO conversion system used in the above method.

純酸素上吹き転炉などの製鋼用転炉から排出される転炉
排ガスは、一般に一酸化炭素(CO)を主成分とし、ほ
かに少量の二酸化炭素(CO□)。
Converter exhaust gas discharged from steelmaking converters such as pure oxygen top-blown converters generally contains carbon monoxide (CO) as a main component, with a small amount of carbon dioxide (CO□).

窒素(N、)及び水嵩(Hl)を含有している。このC
O変換(水性ガス反応、すなわちCO+)I!0→Co
t + Hs)を行なわせ、CotとHlt−製造する
ことが実施されてきえ。
Contains nitrogen (N, ) and water volume (Hl). This C
O conversion (water gas reaction, i.e. CO+) I! 0→Co
t + Hs) and Cot and Hlt- production can be carried out.

この方法を工業的に操業する場合、触媒槽には容積比、
すなわちモル比で原料ガス量の21〜aO省醸蒸気を投
入してお)、この水蒸気のコストが運転コストの8〜4
割を占めている。したがって、水蒸気投入量の節減はこ
の方法の経済性に大きく寄与する。
When this method is operated industrially, the catalyst tank has a volume ratio of
In other words, the amount of raw material gas in terms of molar ratio is 21~aO.
It accounts for a large percentage of the total. Therefore, the savings in steam input greatly contributes to the economics of this method.

前記反応式から明らかなようKCO変換は等モル反応で
あり、反応には原理的KFiCO量と等モルの水蒸気し
か必要とされない。この反応に原料ガス量の11−40
倍モル量もの水蒸気を投入する理由は、CO転化率を高
めるためと後続のCO。
As is clear from the above reaction formula, KCO conversion is an equimolar reaction, and the reaction requires only an equimolar amount of water vapor as the theoretical amount of KFiCO. For this reaction, the amount of raw material gas is 11-40
The reason for introducing twice the molar amount of steam is to increase the CO conversion rate and the subsequent CO.

分離工程での熱バランスを保つ九めに反応自体に約2倍
モルの水蒸気が必要であり、一方、CO変換反応によシ
生ずる反応熱のために酸化鉄などの触媒の温度が上昇し
すぎるのを水蒸気の顕熱で防ぐ九めKもα1−10倍モ
ルが必要となるからである。
To maintain the heat balance in the separation process, approximately twice the mole of water vapor is required for the reaction itself, and on the other hand, the temperature of catalysts such as iron oxide rises too much due to the reaction heat generated by the CO conversion reaction. This is because α1-10 times the molar amount of K, which prevents this by the sensible heat of water vapor, is required.

つまり、酸化鉄などの触媒はある限界温[(酸化鉄の場
合、約550℃)以上になると急に活性を失い、触媒と
しての働きがなくなる上に1触媒の劣化も起るので、触
媒槽の温度を仁の限界温度よシ低温に常に制御しておか
なければならないが、従来はこの温度制御を水蒸気投入
量を適宜増減することにより行なりてきた。
In other words, catalysts such as iron oxide suddenly lose their activity when the temperature exceeds a certain limit (approximately 550°C in the case of iron oxide), and not only do they cease to function as a catalyst, but one catalyst also deteriorates. It is necessary to constantly control the temperature of the kernels to a lower temperature than the limit temperature of the kernels, and conventionally this temperature control has been carried out by appropriately increasing or decreasing the amount of water vapor input.

本発明者らは、コストの高い水蒸気に頼らずく触媒槽の
温度制御を行ない、CO変換反応の運転コストの低減を
実現する方法について鋭を検討した結果、本発明に到達
した。
The present inventors have arrived at the present invention as a result of intensive study on a method for controlling the temperature of a catalyst tank without relying on expensive steam and reducing the operating cost of a CO conversion reaction.

ここに1本発明は、転炉排ガスに触媒槽内で水蒸気を作
用させてCO変換を行なうことKよシ二酸化炭素と水素
を製造する際に1触媒槽内の温度側−をこの槽内に&け
た間接水冷装置によシ行なって水蒸気投入量を節減する
ことを特徴とする、転炉排ガスのCO変換におけろ水蒸
気量節減方法である。
Here, 1. The present invention is to convert CO by making steam act on the converter exhaust gas in a catalyst tank, but when producing carbon dioxide and hydrogen, 1. This is a method for reducing the amount of water vapor in CO conversion of converter exhaust gas, which is characterized by reducing the amount of water vapor input by using an indirect water cooling device.

触媒槽の冷却手段として、水を直接投入し、その顕熱お
よび潜熱で冷却することがまず考えられるが、これは触
媒を粉化させ、結果として触媒の劣化を生ずる丸めに採
用できない。本発明者らは、関接水による水冷装置(た
とえばボイラータイプ)を触媒槽内に設置し、その水量
を増減することによシ触謀槽の温度制御を行なうと、触
媒の性能および反応に何ら悪影響を及ぼさずに所期の温
度制御が良好に達成されることを見出し友。しかも、温
水となった冷却用水は、後続のCOI 分離工程に利用
することができ、そうした場合には、触媒槽への水M気
投入量の節減のほかに、CO,分離装置への熱量供給量
4節減できる。などの二重の節減効果が得られる。すな
わち、温水となった冷却用水は、たとえばCot分離−
置のリボイラーの間接加熱に利用されて冷やされた後、
再び触媒槽の冷却に循環利用してもよいし、或い#′i
co、a収塔から成るCO3分離装置に吸収用水溶液と
共に直接投入してもよい。
As a means of cooling the catalyst tank, the first idea is to directly inject water and use its sensible and latent heat to cool the tank, but this method cannot be used because it causes the catalyst to become powder, resulting in deterioration of the catalyst. The present inventors have found that by installing a water cooling device (for example, a boiler type) using indirect water in the catalyst tank and controlling the temperature of the catalyst tank by increasing or decreasing the amount of water, the performance and reaction of the catalyst can be improved. It has been discovered that the desired temperature control can be successfully achieved without any adverse effects. Moreover, the heated cooling water can be used in the subsequent COI separation process, and in such a case, in addition to reducing the amount of water and M air input to the catalyst tank, it also reduces the amount of heat supplied to the CO and separation equipment. The amount can be reduced by 4. A double saving effect can be obtained. That is, the cooling water that has become hot water is separated by, for example, Cot.
After being cooled and used for indirect heating in a reboiler,
It may be used again for cooling the catalyst tank, or #'i
It may be directly introduced together with an aqueous absorption solution into a CO3 separation device consisting of a co, a collection tower.

なお、本発明にあってはCO変換によシHaおよびCO
lが効率よくかつ安価に得られるものであって、したが
りて1本発明は 鱗φ4→4CO,底吹舞を併用する転炉製鋼法と組合せ
ることKよって泗収されるCO!の微積再利用が可能と
なるなどS鋼プロセス全体の効率化、コスト低下にも大
きく寄与するすぐれた効果が発揮される。
In addition, in the present invention, Ha and CO are converted by CO conversion.
1 can be obtained efficiently and at low cost. Therefore, the present invention combines scale φ4→4CO with a converter steelmaking process that uses bottom blowing. It has excellent effects, such as making it possible to reuse small quantities of steel, which greatly contributes to improving the efficiency of the entire S steel process and reducing costs.

次に1添付図面を参照して本発明をさらに説明する。The invention will now be further described with reference to one of the accompanying drawings.

第1図は、温水となった冷却用水をCO!分離装置に利
用する本発明の方法の1態様を示すフローシートであり
、原料ガス(転炉排ガス)は触媒槽lで水蒸気との作用
によりCO変換を受は九後、たとえば吸収塔方式のCO
1分離装置2に送られ、ここでCO2が分離・回収され
る0本発明によると、触媒槽lの温度制御のために1触
媒槽内に間接水冷装置(図示せず)が設けられ、水が間
接的に触媒槽内に送りこまれる。触媒槽lから出る温水
となった水は、CO8分離装置に導入され、CO1分離
装置の間接加熱に利用され先後、再び触媒槽の冷却に微
積利用する。CO,分離装置から出るCO置を含まない
ガスは次いでH1分離装置11に送られ、こむで、たと
えば吸着剤(例、合成ゼオライト)を利用してH鵞が分
離・回収され、−万H1分離俵置からのオフガスは燃料
などに利用される。
Figure 1 shows how hot cooling water is converted into CO! This is a flow sheet showing one embodiment of the method of the present invention used in a separation device, in which the raw material gas (converter exhaust gas) undergoes CO conversion through the action of water vapor in a catalyst tank 1.
According to the present invention, an indirect water cooling device (not shown) is provided in catalyst tank 1 to control the temperature of catalyst tank l, and CO2 is separated and recovered there. is indirectly fed into the catalyst tank. The hot water coming out of the catalyst tank 1 is introduced into the CO8 separator, used for indirect heating of the CO1 separator, and then used again in small amounts to cool the catalyst tank. The CO-free gas coming out of the CO separator is then sent to the H1 separator 11, where H1 is separated and recovered using, for example, an adsorbent (e.g., synthetic zeolite). Off-gas from the straw racks is used for fuel, etc.

第8図に1本発明方法と従来法の場合にそれぞれ必要な
水蒸気量を原料ガス量との関係でグラフによ)表示する
。原料ガス中のCO濃度は66%であり九、触媒槽の温
度制御を水蒸気投入量の増減により行なう従来法では、
図示のように1原料ガス量の約8倍毫ル量のプラント必
要水蒸気量のほかに1温家制御のために図の斜線部で示
す量の水蒸気が必要であり九が、本発明方法によれば温
度制御の丸めの水蒸気は不要となるので、この斜線部の
水蒸気量が節減される。
FIG. 8 graphically shows the amount of water vapor required for the method of the present invention and the conventional method in relation to the amount of raw material gas. The CO concentration in the raw material gas is 66%9, and the conventional method of controlling the temperature of the catalyst tank by increasing or decreasing the amount of water vapor input,
As shown in the figure, in addition to the required amount of steam for the plant, which is about 8 times the amount of raw material gas, the amount of steam shown in the shaded area in the diagram is required for one heating house control. According to this, the rounded water vapor for temperature control becomes unnecessary, so the amount of water vapor in the shaded area is saved.

以下に1実施例によ)本発明を具体的に説明する。The present invention will be specifically explained below using one example.

実施例 約66%のCOを含有する転炉排ガス45ONj/h 
r f原料ガスとして、本発明方法によ〕酸化鉄触媒槽
でCO変換を行なった。触媒槽は1丁ataの圧力で操
作され、これに860℃の温度の水蒸気7!1111/
hr(約9001j&//hr)を供給してCO。
Example Converter exhaust gas containing about 66% CO 45ONj/h
As the rf raw material gas, CO conversion was performed in an iron oxide catalyst tank according to the method of the present invention. The catalyst tank is operated at a pressure of 1 ata, and is supplied with steam at a temperature of 860°C.
hr (approximately 9001j &//hr) and CO.

とH8を生成させ丸、触媒槽用の間接冷却装置にはやt
lD17ataの圧力で20℃の水を通して、触媒槽の
出口温度を460℃に保持した。触媒槽の冷却装置を通
過した冷却水の温度は170℃となった。このような条
件下で、触媒槽の温室保持には約86.8111/hr
の間接冷却用水が必要でありた。
And H8 is generated, and the indirect cooling device for the catalyst tank is heated.
The outlet temperature of the catalyst vessel was maintained at 460°C by passing water at 20°C at a pressure of 1D17ata. The temperature of the cooling water that passed through the catalyst tank cooling device was 170°C. Under these conditions, the greenhouse maintenance of the catalyst tank requires approximately 86.8111/hr.
indirect cooling water was required.

一方、間接冷却装置を利用せずに850℃の水蒸気によ
シ触媒槽の出口温度を450’CK保持しようとすると
、約818 KMhr (約1080 Nwl/h r
 )の水蒸気を触媒槽に投入しなければならなかった。
On the other hand, if an attempt is made to maintain the outlet temperature of the catalyst tank at 450°C using steam at 850°C without using an indirect cooling device, the output temperature will be approximately 818 KMhr (approximately 1080 Nwl/hr
) had to be input into the catalyst tank.

したがって、この場合、本発明方法では、従来法に比べ
て約1054/hr(約181 Nl//hr)の水蒸
気量が節減される。しかも、本発明方法では17G) ℃の温水が約868 Kr/hrO量で得られるので、
この温水の熱量を後続のCO1分離装置で回収できると
いう二重の利点がある。
Therefore, in this case, the method of the present invention saves about 1054/hr (about 181 Nl//hr) of water vapor compared to the conventional method. Moreover, in the method of the present invention, hot water of 17G) °C can be obtained at an amount of about 868 Kr/hrO.
There is a double advantage in that the heat value of this hot water can be recovered in the subsequent CO1 separator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法の概略を示すフローシート、お
よび 第2図は、本発明方法と従来法の水蒸気投入量と原料ガ
ス量との関係を示すグラフである。 第111において、l・・・触媒槽、2・・・CO3分
離装置、8・・・H1分離装置である。 特許出願人  住友金属工業株式会社 l   共同酸素株式会社 代理人 弁理士広瀬章−
FIG. 1 is a flow sheet showing an outline of the method of the present invention, and FIG. 2 is a graph showing the relationship between the amount of steam input and the amount of raw material gas in the method of the present invention and the conventional method. In No. 111, 1...catalyst tank, 2...CO3 separation device, 8...H1 separation device. Patent applicant: Sumitomo Metal Industries, Ltd. Kyodo Sanso Co., Ltd. Agent: Patent attorney Akira Hirose

Claims (1)

【特許請求の範囲】[Claims] 転炉排ガスに触媒槽内で水蒸気を作用させてCO変換を
行なうことKよシ二酸化炭素と水素を製造する際に、触
媒槽内の温度制御をこの槽内に設は九間接水冷装置によ
プ行なって水蒸気投入量を節減することを特徴とする、
転炉排ガスのCO変換におけろ水蒸気量節減方法。
When producing carbon dioxide and hydrogen, the temperature in the catalyst tank is controlled by a nine-way water cooling system installed in this tank. It is characterized by reducing the amount of water vapor input by
A method for reducing the amount of water vapor in CO conversion of converter exhaust gas.
JP56110096A 1981-07-16 1981-07-16 Method for reducing steam consumption in co conversion of converter waste gas Pending JPS5811711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110096A JPS5811711A (en) 1981-07-16 1981-07-16 Method for reducing steam consumption in co conversion of converter waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110096A JPS5811711A (en) 1981-07-16 1981-07-16 Method for reducing steam consumption in co conversion of converter waste gas

Publications (1)

Publication Number Publication Date
JPS5811711A true JPS5811711A (en) 1983-01-22

Family

ID=14526923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110096A Pending JPS5811711A (en) 1981-07-16 1981-07-16 Method for reducing steam consumption in co conversion of converter waste gas

Country Status (1)

Country Link
JP (1) JPS5811711A (en)

Similar Documents

Publication Publication Date Title
CA1210222A (en) Ammonia production process
US4298588A (en) Ammonia production process
TWI732818B (en) A process for producing an ammonia synthesis gas, a process for producing ammonia from such gas, and a plant arranged to carry out such process
CA1181571A (en) Ammonia production process
EP3592703B1 (en) Urea process with controlled excess of co2 and/or nh3
EA035718B1 (en) Integrated process for the production of formaldehyde-stabilised urea
US4568530A (en) Ammonia synthesis
EP3663258A1 (en) System and method for producing hydrogen using by product gas
US4087250A (en) Apparatus for removing nitric oxides from processing exhaust gases
US3927182A (en) Process for making nitric acid by the ammonia oxidation-nitric oxide oxidation-water absorption method
US4309402A (en) Process and apparatus for production of elemental sulfur
US4383837A (en) Efficient methane production with metal hydrides
US4238468A (en) Ammonia manufacturing process
US4568531A (en) Ammonia purge gas conversion
US4568532A (en) Supplemental ammonia synthesis
US3467492A (en) Elimination of nitrogen oxides from gas streams
US5110350A (en) Method of reducing iron ore
US4721611A (en) Hydrogen production
KR101632888B1 (en) Energy reduction high efficiency water gas shift reaction system
JPH01257109A (en) Production of hydrogen sulfide
CN201056492Y (en) Natural gas partial oxidation series-connected heat exchange type device for washing synthetic ammonia by liquid nitrogen
JPS5811711A (en) Method for reducing steam consumption in co conversion of converter waste gas
US4375983A (en) Method of making sponge metal
JPH06211502A (en) Production of carbon monoxide and hydrogen
CN1064928C (en) Transformation process without saturation tower