JPS58115756A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPS58115756A
JPS58115756A JP56215718A JP21571881A JPS58115756A JP S58115756 A JPS58115756 A JP S58115756A JP 56215718 A JP56215718 A JP 56215718A JP 21571881 A JP21571881 A JP 21571881A JP S58115756 A JPS58115756 A JP S58115756A
Authority
JP
Japan
Prior art keywords
film
silver oxide
separator
graft
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56215718A
Other languages
Japanese (ja)
Inventor
Shuichi Ido
秀一 井土
Shiro Tanshu
丹宗 紫朗
Takeisa Yokoyama
横山 武功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP56215718A priority Critical patent/JPS58115756A/en
Publication of JPS58115756A publication Critical patent/JPS58115756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the preservation performance of a silver oxide battery by installing a separator which has on its positive electrode side a macromolecular film prepared by graft-copolymerizing monomers which contain sulfides and have hydrophilic groups, and has on its negative electrode side a porous macromolecular film which contains calcium hydroxide and has specific hole diameters. CONSTITUTION:A silver oxide battery is constituted by installing a positive active material 2 principally consisting of silver oxide, a separator 3 and a negative active material 4 principally consisting of zinc into a positive can 1 also working as a positive terminal, and sealed with both a negative can 5 also working as a negative terminal and a gasket 6. A separator 3 is composed of a macromolecular film (A), a regenerated cellulose film (B) and a porous macromolecular film (C). The film (A) is prepared by graft-copolymerizing monomers which contain sulfides and have hydrophilic groups. The film (C) is a porous film which contains calcium hydroxide and has a mean hole diameter of 0.01-100mum. By the means mentioned above, the long-period preservation performance of the battery can be increased by preventing any internal short-circuit which might be caused by argenate ions or zincate ions.

Description

【発明の詳細な説明】 本発明は長期間の放置による保存性能の劣化を防止した
酸化銀電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a silver oxide battery that prevents deterioration of storage performance due to long-term storage.

従来、酸化銀電池に用いられるセパレータは、耐酸化性
の強い親水性の高分子膜を陽極側に配置し、保液性のす
ぐれた不織布又は高分子微孔膜の保液材を陰極側に配置
し、中間に再生セルロース膜を設けた6層構造からなる
ものであった。上記の構成からなるセパレータは、陽極
活物質より溶出した銀酸イオンが再生セルロース膜によ
り還元され、金属銀として再生セルロース膜に捕捉され
、銀の成長による短絡を防止している。しかし、電池寸
法が制限されていることから、セルロース膜自体の大き
さも限定され、銀の捕捉性能にもおのずから限界を生じ
、実際に、長期間保存された電池の中にも銀の成長によ
って短絡してしまうものがあった。又、陰極側において
も、陰極活物質から亜鉛酸イオンが溶出し、これが還元
析出して保液材中を成長し陽極側に達することにより短
絡現象を起してしまう不良原因となるものもあった。
Conventionally, separators used in silver oxide batteries have a hydrophilic polymer membrane with strong oxidation resistance placed on the anode side, and a liquid retention material such as nonwoven fabric or microporous polymer membrane with excellent liquid retention properties placed on the cathode side. It had a six-layer structure with a regenerated cellulose membrane in the middle. In the separator having the above configuration, silver acid ions eluted from the anode active material are reduced by the regenerated cellulose membrane and captured as metallic silver in the regenerated cellulose membrane, thereby preventing short circuits due to silver growth. However, because the battery dimensions are limited, the size of the cellulose membrane itself is also limited, which naturally limits the silver capture performance, and in fact, some batteries that have been stored for a long time are short-circuited due to silver growth. There was something I had to do. In addition, on the cathode side, zincate ions are eluted from the cathode active material, which is reduced and precipitated, grows in the liquid retaining material, and reaches the anode side, causing defects that cause short circuits. Ta.

上記の理由により酸化銀電池の長期保存性能には問題が
あった。
Due to the above reasons, the long-term storage performance of silver oxide batteries has been problematic.

本発明は上記の問題点を解消したものであり、以下実施
例により詳細に説明する。
The present invention solves the above-mentioned problems, and will be explained in detail with reference to Examples below.

本発明に用いられるセパレータは、陽極側及び陰極側に
配置される膜において、陽極側には硫化物を含有し、親
水基を有するモノマーをグラフト共重合した高分子膜を
配置し、陰極側には水酸化カルシウムを含有した0、0
1μmから100μmの高分子多孔質膜を配置したもの
である。
In the separator used in the present invention, in the membranes arranged on the anode side and the cathode side, a polymer membrane containing sulfide and graft copolymerized with a monomer having a hydrophilic group is arranged on the anode side, and a polymer membrane is arranged on the cathode side. contains calcium hydroxide.
A porous polymer membrane of 1 μm to 100 μm is arranged.

上記した硫化物は硫化銀として銀酸イオンを捕捉し、−
力水酸化カルシウムは亜鉛酸イオンを捕捉する作用をお
こなうものであるう従って硫化物としては、有機物もし
くは無機物のいずれでもよいが、硫化亜鉛、硫化カルシ
ウム、硫化マグネシウム等が好ましい。又、グラフト共
重合される高分子膜としては、グラフト共重合をしやす
いポリエチレン、ポリプロピレンなどのオレフィン系樹
脂が好ましい。これらの樹脂はフィルム成形前に硫化物
を混練し、均一なコンパウンドにした後、フィルムに成
形し、フィルム成形の前又は後に親水性を付与するため
に親水基を有するモノマー、例えばアクリル酸、メタク
リル酸などをグラフト共重合する。本発明におけるグラ
フト共重合は、融媒を使用する方法、又は電離性放射線
を使用する方法のいずれでもよいが、固相の高分子中に
均一にグラフト共重合する場合には後者が良い。又、一
方の高分子多孔質膜は保液材の機能を有するもので、水
酸化カルシウムと高分子素材の壁によって形成された孔
、高分子のみにより形成された孔、そして水酸化カルシ
ウムのみで形成された孔を持っている。高分子膜素材と
しては、ポリスチレン、ポリスルホン、ポリ塩化ビニル
等が好ましく、平均孔径は膜中に移動してきた亜鉛酸イ
オンが衝突しやすいように適当に小さく、電気抵抗が高
くならない程度に適当に大きいものにする必要がある。
The above-mentioned sulfides capture silver acid ions as silver sulfide, and -
Calcium hydroxide has the function of capturing zincate ions, and therefore, the sulfide may be either organic or inorganic, but zinc sulfide, calcium sulfide, magnesium sulfide, etc. are preferred. Further, as the polymer membrane to be graft copolymerized, olefin resins such as polyethylene and polypropylene, which are easily graft copolymerized, are preferable. These resins are made by kneading sulfide into a homogeneous compound before forming the film, and then forming it into a film. Before or after forming the film, a monomer having a hydrophilic group, such as acrylic acid or methacrylic acid, is used to impart hydrophilicity. Graft copolymerize with acids, etc. The graft copolymerization in the present invention may be carried out by a method using a melting medium or by a method using ionizing radiation, but the latter is preferable when the graft copolymerization is carried out uniformly in a solid-phase polymer. On the other hand, the porous polymer membrane has the function of a liquid retaining material, with pores formed by calcium hydroxide and a wall of polymer material, pores formed only by polymer, and pores formed by calcium hydroxide alone. It has formed pores. The polymer membrane material is preferably polystyrene, polysulfone, polyvinyl chloride, etc., and the average pore size is appropriately small so that zincate ions moving into the membrane can easily collide, and appropriately large so that the electrical resistance does not become high. It needs to be made into something.

種々の実験の結果、平均孔径を0.01μmから100
μmの範囲が適しており、特に0.1μmから10μm
が効果大であった。
As a result of various experiments, the average pore diameter was varied from 0.01 μm to 100 μm.
μm range is suitable, especially 0.1μm to 10μm
was highly effective.

次に上記したセパレータを用いた酸化銀電池について図
面により説明すれば、1は陽極端子を兼ねる陽極缶、2
は酸化銀を主体とする陽極活物質、ろはセパレータ、4
は亜鉛を主体とする陰極活物質、5は陰極端子を兼ねる
陰極缶、6はガスケットである。本発明によるセパレー
タ乙の構成は、Aが本発明による硫化物を含有し、且つ
親水基を有するモノマーをグラフト共重合した高分子膜
であり゛、Bは再生セルロース膜、Cは本発明による水
酸化カルシウムを含有する高分子多孔質膜からなる。具
体例について説明すれば、高分子膜Aは硫化亜鉛50部
と低密度ポリエチレン樹脂50部からなるコンパウンド
をインフレーション法にて60μmの厚さのシートに加
工し、加速電圧50Kev。
Next, a silver oxide battery using the above-described separator will be explained with reference to the drawings. 1 is an anode can that also serves as an anode terminal, 2
is an anode active material mainly composed of silver oxide, Ro is a separator, 4
5 is a cathode can which also serves as a cathode terminal, and 6 is a gasket. The structure of the separator B according to the present invention is that A is a polymer membrane graft-copolymerized with a monomer containing a sulfide and having a hydrophilic group according to the present invention, B is a regenerated cellulose membrane, and C is a water-based membrane according to the present invention. Consists of a porous polymer membrane containing calcium oxide. To explain a specific example, the polymer membrane A is made by processing a compound consisting of 50 parts of zinc sulfide and 50 parts of low-density polyethylene resin into a sheet with a thickness of 60 μm using an inflation method, and applying an acceleration voltage of 50 Kev.

加速電流5mAで電子線を50 Mrad照射した。こ
のシートをアクリル酸50部、水50部、モール塩n、
259(からなる25℃の水溶液中に5時間浸漬した。
An electron beam of 50 Mrad was irradiated with an accelerating current of 5 mA. This sheet was mixed with 50 parts of acrylic acid, 50 parts of water, Mohr's salt,
259 (25° C.) for 5 hours.

更に水洗して得られたシートの厚さは55、l1mで、
電気抵抗は120mΩ−d/枚(25%KOH溶液中に
て25℃で測定)であり、この膜を硫化亜鉛入りグラフ
ト膜と称す。高分子多孔膜Cは水酸化カルシウム60重
量部とポリスチレン15重量部をテトラヒドロフラン6
重量部中に溶解又は分散し、次に、イソプロピルアルコ
ール24重量部加えて均一な混合液とし、この混合液を
ビニロン不織布(商品名パピロンBFHNo)に含浸塗
布し、乾燥した。このシートの厚さは60μmで、電気
抵抗は90I?IΩ・−7枚、平均孔径は2μmであっ
た。この膜をカルシウム人すスチレン膜と称す。
The thickness of the sheet obtained after further washing with water was 55.1 m,
The electrical resistance was 120 mΩ-d/sheet (measured in a 25% KOH solution at 25° C.), and this film was referred to as a zinc sulfide-containing graft film. Polymer porous membrane C consists of 60 parts by weight of calcium hydroxide, 15 parts by weight of polystyrene, and 6 parts by weight of tetrahydrofuran.
Next, 24 parts by weight of isopropyl alcohol was added to obtain a homogeneous mixed solution, and this mixed solution was impregnated and coated on a vinylon nonwoven fabric (trade name: Papillon BFHNo) and dried. The thickness of this sheet is 60μm and the electrical resistance is 90I? IΩ·−7 sheets, and the average pore diameter was 2 μm. This film is called a calcium styrene film.

上記2枚の膜の間にセロハン膜(商品名デュポン社製P
UDOす154)を挾んだものが、セパレータ5である
Between the above two membranes is a cellophane membrane (product name: DuPont P).
The separator 5 is what holds the UDO 154) in between.

又、比較例としては陽極側に配置する膜が、硫化物を含
有しない、厚さ65μmで電気抵抗100mΩ・−7枚
のグラフト膜からなり、陰極側には水酸化カルシウムを
含有しない厚さ60μm1電気抵抗80密Ω・−7枚の
平均孔径5pmからなるスチレン膜、あるいはビニロン
不織布からなる膜を用いて電池a、bを製造した。
In addition, as a comparative example, the membrane disposed on the anode side was composed of 7 graft membranes with a thickness of 65 μm and an electrical resistance of 100 mΩ, which did not contain sulfide, and the membrane disposed on the cathode side was 60 μm thick and did not contain calcium hydroxide. Batteries a and b were manufactured using a styrene membrane having an electrical resistance of 80 Ω·−7 and an average pore diameter of 5 pm, or a membrane consisting of a vinylon nonwoven fabric.

上記の電池について、製造直後と高温保存後に詔いて、
24℃で負荷抵抗30にΩで放電し、終止電圧1.4v
までの容量を比較したものが下表であり、電池すの製造
直後の放電容量を100とした時の容量劣化比率を示し
た。尚、温度60℃、湿度90%雰囲気中での保存にお
ける値である。
Regarding the above batteries, immediately after manufacture and after high temperature storage,
Discharge to a load resistance of 30Ω at 24℃, final voltage 1.4V
The table below shows the capacity deterioration ratio when the discharge capacity of the battery immediately after manufacture is taken as 100. Note that the values are values when stored in an atmosphere at a temperature of 60° C. and a humidity of 90%.

表 (註)本発明電池の竜パレータ: IEEI/il化亜
鉛入りグツ7ト膜+セロノ・ン十カルシウム入りスチレ
ンM/e 41池a Oセパレータ:■/グツット膜十七ロ/%ン
+スチレン1x/θtabのセパレータ:の/グラフト
膜十七口ノ・ン+ビニロン不繊布/e上記の結果に示す
如く、本発明による電池は電池a、bに比較し、保存後
の容量減少が抑制され、著しく向上したものである。
Table (Note) Parameter of the battery of the present invention: IEEI/Il zinc-containing 7 membrane + styrene M/e 41 pond a O separator: ■/Gut membrane 17/% + styrene 1x/θtab separator: /graft membrane 17-hole + vinylon nonwoven fabric/e As shown in the above results, the battery according to the present invention suppresses the capacity decrease after storage compared to batteries a and b. , which is a significant improvement.

尚、上記実施例においては陽極活物質に直接、硫化物を
含有した高分子膜を当接したが、それらの間に他の材質
からセパレータを配置する構成を用いても、同様の効果
が得られるものである。
In the above example, the sulfide-containing polymer film was brought into direct contact with the anode active material, but the same effect can be obtained even if a separator made of other material is placed between them. It is something that can be done.

本発明は上記した如く、陽極側に硫化物を含有した高分
子膜、陰極側に水酸化カルシウムを含有した高分子多孔
質膜とし、セロハンを中央部分に配したセパレータを用
いる酸化銀電池により、銀酸イオンあるいは亜鉛酸イオ
ンによる内部短絡を防止し、長期間の保存性能を向丘さ
せたものであり、その工業的価値は大であるう
As described above, the present invention uses a silver oxide battery using a polymer membrane containing sulfide on the anode side, a porous polymer membrane containing calcium hydroxide on the cathode side, and a separator with cellophane arranged in the center. It prevents internal short circuits caused by silverate ions or zincate ions and improves long-term storage performance, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による一実施例の酸化銀電池断面図である
。 2・・陽極活物質   5・・セパレータ4・・・陰極
活物質 出願人 湯浅電池株式会社
The drawing is a sectional view of a silver oxide battery according to an embodiment of the present invention. 2. Anode active material 5. Separator 4. Cathode active material Applicant Yuasa Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 酸化銀陽極活物質側に硫化物を含有し、がっ親水基を有
する七ツマ−をグラフト共重合した高分子膜を、亜鉛陰
極活物質側に水酸化カルシウムを含有した平均孔径が0
.01μmから100μmの高分子多孔質膜を配置した
複数層からなるセパレータを用いる酸化銀電池。
A polymer membrane containing sulfide on the silver oxide anode active material side and graft-copolymerized with heptamer having a hydrophilic group is used, and a calcium hydroxide-containing polymer membrane with an average pore size of 0 on the zinc cathode active material side.
.. A silver oxide battery using a separator consisting of multiple layers in which porous polymer membranes of 0.01 to 100 μm are arranged.
JP56215718A 1981-12-28 1981-12-28 Silver oxide battery Pending JPS58115756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56215718A JPS58115756A (en) 1981-12-28 1981-12-28 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56215718A JPS58115756A (en) 1981-12-28 1981-12-28 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPS58115756A true JPS58115756A (en) 1983-07-09

Family

ID=16677020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56215718A Pending JPS58115756A (en) 1981-12-28 1981-12-28 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPS58115756A (en)

Similar Documents

Publication Publication Date Title
US4339473A (en) Gamma radiation grafting process for preparing separator membranes for electrochemical cells
US3427206A (en) Separator for alkaline cells
US6743548B2 (en) Silver-zinc alkaline rechargeable battery (stacking order)
US4273840A (en) Battery separator and method of producing the same
JP2004356102A (en) Separator for lithium polymer battery
US2816154A (en) Separator for electric batteries
JP4230592B2 (en) Partially hydrophilic polyolefin microporous membrane
JPS61246394A (en) Diaphragm for electrolysis
US5547779A (en) Separator for alkali-zinc battery
US2884387A (en) Porous membrane materials and process for producing the same
JPH06260183A (en) Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same
JPS58115756A (en) Silver oxide battery
JPH07161343A (en) Separator for battery
US3022367A (en) Separator for electric batteries
JP2002033093A (en) Nickel hydrogen storage battery and manufacturing method for it
JPS6230285Y2 (en)
JPH0676807A (en) Compound film for separator of alkaline battery
JPH05205719A (en) Porous membrane for separator of alkaline battery
JP2734617B2 (en) Manufacturing method of separator
JPH1021936A (en) Button type silver oxide battery and manufacture thereof
JP2022048597A (en) Secondary battery
JP3101058B2 (en) Battery separator
JPS6020867B2 (en) Separator for alkaline batteries
JP2000082452A (en) Alkaline manganese secondary battery
JPH10189049A (en) Thin-film electrolyte for lithium ion battery