JPS58114793A - Method and device for purification of sewage - Google Patents

Method and device for purification of sewage

Info

Publication number
JPS58114793A
JPS58114793A JP56210986A JP21098681A JPS58114793A JP S58114793 A JPS58114793 A JP S58114793A JP 56210986 A JP56210986 A JP 56210986A JP 21098681 A JP21098681 A JP 21098681A JP S58114793 A JPS58114793 A JP S58114793A
Authority
JP
Japan
Prior art keywords
water
catalytic
oxidation
contact
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56210986A
Other languages
Japanese (ja)
Inventor
Mitsuo Saito
光男 斎藤
Munetoshi Morio
森尾 宗俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP56210986A priority Critical patent/JPS58114793A/en
Publication of JPS58114793A publication Critical patent/JPS58114793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To shorten a treating time considerably by adsorbing and oxidizing soluble org. materials among org. materials contained in raw water by means of contact oxidizing material layers or contact oxidizing basins for a specific time and filtering solid org. materials and solid inorg. materials by means of filter medium layers. CONSTITUTION:Supernatant water in a settling basin 1 is introduced through an inflow regulating valve V1 into a contact oxidizing part 2a, where the water is brought into contact with contact oxidizing material layers 3. When air is supplied thereto from an air diffuser 5 in the lower part and the water is allowed to stagnate for 0.3-3 hours, the soluble org. materials in the supernatant water is quickly oxidized by contact. On the other hand, solid org. materials and inorg. solids are filtered by filter medium layers 4 in a filter part 2b after passing through the layers 3. The filtrate thereof and the treated water of said supernatant water are fed from a water collecting tank 2d through a connecting valve V4 and a control tank 9 to a sterilizing tank 12, where the water is treated and is then released.

Description

【発明の詳細な説明】 本発明は、溶解性有機物及び固形性有機物をでむ都市下
水その他産業廃水などの汚水を生物化1的に且つ物理的
に好能率で処理する汚水浄化方法及び同装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a sewage purification method and apparatus for biologically treating sewage such as urban sewage and industrial wastewater containing soluble organic substances and solid organic substances with high physical efficiency. It is related to.

一般に都市下水、産業廃水などの汚水を処理するには、
その汚水を構成する溶解性有機物、固形性有機物を、活
性汚泥法を主とする生物的処理方法により全体的に酸化
処理する方法が行なわれている。都市下水における最初
沈澱池の上澄水に含まれる有機物は固形性と溶解性とに
分けると、固形性が約÷、溶解性が約十でめる。その酸
化反応速度は、固形性有機物が日単位で計られるのに溶
解性有機物は時間AToって大差がある。然るに従来の
活性汚泥法、接触酸化法等の生物的処理法では、反応速
度の極端に違う固形性有機物と溶解「   性有機物を
一諸にして全体的に日単位の固形性有ヒ  種物処理を
主体とし要処理方法が行なわれているので効率が低く不
利である。
In general, to treat wastewater such as urban sewage and industrial wastewater,
A method is being used in which the soluble organic matter and solid organic matter constituting the wastewater are completely oxidized by a biological treatment method mainly using an activated sludge method. The organic matter contained in the supernatant water of the primary settling tank in urban sewage can be divided into solid and soluble organic matter, and the solidity is approximately divided by the solubility, which is approximately 10. The oxidation reaction rate for solid organic matter is measured in days, while for soluble organic matter there is a large difference in time ATo. However, in conventional biological treatment methods such as activated sludge method and contact oxidation method, solid organic matter and dissolved organic matter have extremely different reaction rates. This method is disadvantageous because it is low in efficiency and requires processing.

本発明は、如上の実情に鑑み従来の問題点を解決すべく
なしたもので次の如き二発明が含まれる。
The present invention has been made to solve the conventional problems in view of the above circumstances, and includes the following two inventions.

lslの発明は、汚水浄化の生物的酸化処理において、
原水に含まれる有機物のうち酸化反応速度の速い溶解性
有機物を、単一1*は多段の接触酸化材層或は接触酸化
池により0.3〜3時間吸着、酸化させ丸後、酸化反応
速度の遅い固形性有機物中wI形形無無機物PjI材層
でP別することを特徴とする汚水浄化方法に係ル、この
発明には次の如き利点がある。
LSL's invention is a biological oxidation treatment for wastewater purification.
Among the organic substances contained in raw water, soluble organic substances with a high oxidation reaction rate are adsorbed and oxidized for 0.3 to 3 hours in a multi-stage contact oxidizer layer or contact oxidation pond. The present invention has the following advantages regarding a wastewater purification method characterized in that P is separated from wI type inorganic matter in solid organic matter with a slow PjI material layer.

この発明によれば、反応速度の速い溶解性有機物(有機
物全含量の約十)のみに従来の如き接触酸化を行ない、
反応速度の遅い固形性有機物(有機物全含量の約+)は
その11の状態もしくは若干の吸着状態で物理的に分離
するので都市下水の如く固形性有機物を多量含有する汚
水に有利である。即ち、溶解性有機物は接触酸化による
生物化学的手段で処理し、また固形性有機物は硬、軽量
骨材、アンスラサイト等の一過材を充填し九−過材層に
よる物塩的手段をもって分離するので、時間単位(0,
3〜3時間)の酸化処理で処理時間が着しく短縮される
According to this invention, conventional catalytic oxidation is performed only on soluble organic substances with a high reaction rate (approximately 10% of the total organic substance content),
Solid organic matter having a slow reaction rate (approximately + of the total organic matter content) can be physically separated in its 11 state or in a slightly adsorbed state, so it is advantageous for wastewater containing a large amount of solid organic matter, such as municipal sewage. In other words, soluble organic matter is treated by biochemical means such as catalytic oxidation, and solid organic matter is separated by salt-based means by filling a temporary material such as hard, lightweight aggregate, anthracite, etc. Therefore, the time unit (0,
The treatment time is significantly shortened by the oxidation treatment (3 to 3 hours).

例えば、接触酸化材を充填した接触酸化槽においては、
接触酸化槽の容量が従来の+li[になり、使用する空
気量は従来の+ttで充分に接触酸化が行なわれる。そ
して接触酸化材から剥離した黴細な生物膜等は固形性有
機物、無機物と共にい過材層によシ物理的に分離される
For example, in a contact oxidation tank filled with contact oxidation material,
The capacity of the catalytic oxidation tank is now +li[ compared to the conventional one, and catalytic oxidation can be carried out sufficiently with the amount of air used being +tt compared to the conventional one. Then, the microbial film and the like peeled off from the contact oxidizing material are physically separated by the waste material layer along with solid organic matter and inorganic matter.

一過材層で分離された汚泥は一過材の目#iりの原因に
なるので逆洗排水と共に処理槽外へ排出する。しかし、
この排出された汚泥の性状は従来の余剰汚泥とれ異なり
、最初沈澱池から排出され死生汚泥と似た性状を有し、
余剰汚泥のように社機縮や脱水が困難で表<、澁縮脱水
を容量に行なうことが出来る。従って、従来の悩みで6
つ九余剰汚泥の処理処分が不要となって運転普通を簡易
にし、ま九汚泥の処理処分を行なう場合にも固形性有機
物を多量に含んでいるから消化におけるメタンガス発生
量が増加し、或は焼却設備を設ける場合にあっても脱水
ケーキの発熱量が高くなるので、消化タンクの加温及び
焼却設備の燃料を節約できる。
The sludge separated in the sieve material layer causes the pores in the sieve material, so it is discharged to the outside of the treatment tank along with the backwash wastewater. but,
The properties of this discharged sludge are different from conventional surplus sludge, and have properties similar to dead sludge that was initially discharged from the settling tank.
Even if it is difficult to shrink or dewater like excess sludge, it is possible to perform shrinkage and dewatering to a large capacity. Therefore, with the conventional worries, 6
There is no need to process and dispose of surplus sludge, which simplifies normal operation, and even when sludge is processed, the amount of methane gas generated during digestion increases because it contains a large amount of solid organic matter. Even if an incineration facility is provided, the calorific value of the dehydrated cake is high, so heating of the digestion tank and fuel for the incineration facility can be saved.

以上を要約すると、この汚水浄化方法は原水中の溶解性
及び固形性の有機物を全体的に生物酸化処理するのでは
なく、酸化反応速度の速い溶解性有機物のみを生物酸化
処理することによりその接触酸化処理時間を約十に短縮
し、そして固形性有機物等は一過材層で捕捉分離するこ
とにょシ従来の生物処理法と同等以上の処塩効来が得ら
れ且つ省エネルギー、処理場敷地面積の縮少、維持管理
の容易など幾多の利点がある。
To summarize the above, this wastewater purification method does not biooxidize all of the soluble and solid organic matter in raw water, but only the soluble organic matter that has a high oxidation reaction rate. By shortening the oxidation treatment time to approximately 10 minutes, and capturing and separating solid organic matter in the temporary material layer, it is possible to obtain a salt treatment effect equal to or higher than that of the conventional biological treatment method, save energy, and reduce the area of the treatment plant. It has many advantages, such as reduced size and ease of maintenance.

第2の発明は第1の発明を実施するに適した汚水浄化装
置を提供すべくなし九もので、接触酸化部と一過部とを
上下一体構造としこれら両部の間隔をθ〜2001M+
に設定したことを特徴とする汚水浄化装置に係る。
The second invention is to provide a sewage purification device suitable for carrying out the first invention, in which the catalytic oxidation part and the transient part are formed into an upper and lower integral structure, and the interval between these parts is θ~2001M+
The present invention relates to a sewage purification device characterized in that it is set to:

以下、この発明を図示の実施例によって説明する。The present invention will be explained below with reference to illustrated embodiments.

第1図に示す如く最初沈澱池1から上澄水(以下原水と
いう)を原水流入調整弁■、全全見見供給管によシ処理
槽2の上部に供給し処理する4ので、処理槽2は上部を
接触酸化部21.下部をF退部2bとなし、接触酸化部
2&には接触酸化材層3、−退部2bKは一過材層4を
それぞれ設ける。そして接触酸化部2aと一過s2bと
の間隔20内には接触酸化材層3に対して散気装置5を
、ま九−退部2bには一過材層4の中に散気装置6を、
それぞれ設けてこれらKよル空気供給装置7がら各空気
供給弁V、、V、を経て空気を供給するようKなし、上
記間隔2o内には散気装f5の下方に#    □出ト
278を設け、−退部2bの下に形成し九集水升2dは
連結弁V、を介して調整槽9内の調整部ioに連結し、
調整slO内の液は堰11の上を越す1晴v111−−
Lされる。
As shown in Fig. 1, supernatant water (hereinafter referred to as raw water) is supplied from the settling tank 1 to the upper part of the treatment tank 2 through the raw water inflow regulating valve 2 and the full-view supply pipe 4, so that it can be treated in the treatment tank 2. The upper part is the contact oxidation part 21. The lower part is the F-recessed part 2b, and the contact oxidation part 2& is provided with a contact oxidizing material layer 3, and the -recessed part 2bK is provided with a transient material layer 4, respectively. An aeration device 5 is provided for the contact oxidizing material layer 3 within the interval 20 between the contact oxidizing section 2a and the transient s2b, and an aeration device 6 is provided within the transient material layer 4 in the retracting section 2b. of,
A # □ outlet 278 is provided below the air diffuser f5 within the above-mentioned interval 2o so that air is supplied from the air supply device 7 through the air supply valves V, , V, respectively. - The ninth water tank 2d formed under the retracted part 2b is connected to the adjustment part io in the adjustment tank 9 via the connection valve V,
The liquid in the adjustment slO crosses the top of the weir 11 v111--
Led.

前記処理槽2の上部には水位検出器13を設け、最初沈
澱池lの底部は弁v1を介して汚泥濃縮s14へ導通せ
しめ、排出トラフ8は弁V−から先を一方は排水弁7丁
を介して汚泥1lIiiIa部14へ、他方は排水弁v
sを介して沈砂池16へそれぞれ導通せしめる。
A water level detector 13 is installed in the upper part of the treatment tank 2, and the bottom of the sedimentation tank 1 is initially connected to the sludge thickening s14 through the valve v1, and the discharge trough 8 is connected to the valve V- and the drain valve 7 on one side. to the sludge 1lIiiiIa section 14 through the drain valve v
s to the sand settling basin 16, respectively.

前記処理槽2の上部に原水流入調整弁v1を経て供給さ
れた原水社接触酸化部21Lにおいて接触酸化材層3に
接触し下方の散気装置5から連続的に空気の供給を受け
、原水中の溶層性有機物が迅速に接触酸化される。一方
面形性有機物は接触酸化材層3を通過して一過s2bに
おいて一過材層4によpF別される。そしてこの濾過材
層40表面に堆積した汚泥による一過の不要を防止する
ため下方の散気装置6から空気を供給して堆積汚泥を除
去し、−過を続行させる。−過材層4を通過した浄化水
は集水升2dから調整槽9の調整部10へ連結弁V、を
経て流入し、堰11を越えて滅菌部12で滅菌後放流さ
れる。
In the Gensuisha contact oxidation section 21L, which is supplied to the upper part of the treatment tank 2 via the raw water inflow regulating valve v1, it comes into contact with the contact oxidizer layer 3 and receives air continuously from the aeration device 5 below. of soluble organic matter is rapidly catalytically oxidized. The one-sided organic matter passes through the contact oxidizing material layer 3 and is separated by pF by the transient material layer 4 in the transient s2b. In order to prevent unnecessary filtration due to the sludge accumulated on the surface of the filter material layer 40, air is supplied from the aeration device 6 below to remove the accumulated sludge and continue the filtration. - The purified water that has passed through the filter material layer 4 flows from the water collection tank 2d into the adjustment section 10 of the adjustment tank 9 via the connecting valve V, crosses the weir 11, and is sterilized in the sterilization section 12 before being discharged.

このような浄化作業中に堆積汚泥により一過損失水Ii
Iが大きくなって水位が上限に達した場合は之を水位検
出器13により検知して原水流入弁v1゜空気供給弁v
3.連結弁v4が閉じ、排水弁V、が開き、排出トラフ
8から上の接触酸化sza内の原水は排水トラ78から
沈砂池15へ戻る。そして水位が排出トラ781で下降
すると之を水位検出器13により検知して排水弁V、が
閉じ、排水弁v7.連結弁V、が開き、処理槽2と調整
部lOとの水位差により調整部10から浄化水が逆流し
て一過材層4を逆洗すると同時に空気供給弁v1が開い
て散気装置6がら空気が噴出して一過材層4の洗浄を効
果的に行ない、洗浄汚水は排出ト278から排水弁v丁
を経て汚泥濃縮部14へ流れ込む。
During such purification work, accumulated sludge causes temporary loss of water Ii.
When I increases and the water level reaches the upper limit, this is detected by the water level detector 13 and the raw water inflow valve v1゜air supply valve v
3. The connecting valve v4 is closed, the drain valve V is opened, and the raw water in the catalytic oxidation sza above the discharge trough 8 returns from the drain trough 78 to the settling basin 15. Then, when the water level falls at the discharge tray 781, this is detected by the water level detector 13, and the drain valve V is closed, and the drain valve V7. The connection valve V opens, and purified water flows back from the adjustment section 10 due to the water level difference between the treatment tank 2 and the adjustment section 10, backwashing the temporary material layer 4, and at the same time, the air supply valve V1 opens and the air diffuser 6 Air is ejected to effectively wash the temporary material layer 4, and the washed wastewater flows from the discharge port 278 to the sludge thickening section 14 via the drain valve V.

−過材層4の逆洗完了後は排水弁Vマが閉じ空気供給弁
v1は定期的開閉に切換えられ、原水流入調整弁V、が
開いて原水が流入し、その水位が通常水位に達すると水
位検出器13によって検出され、空気供給弁V、が開い
て通常運転に戻る。
- After the backwashing of the overfill layer 4 is completed, the drain valve Vma is closed, the air supply valve V1 is switched to periodic opening and closing, and the raw water inflow regulating valve V is opened, raw water flows in, and the water level reaches the normal water level. This is detected by the water level detector 13, and the air supply valve V is opened to return to normal operation.

次に、第2図について述べると、この図は空気の代りに
純酸素を使用するようにした実施例の略図であって、処
理槽2、調整槽9は第1図のものと略同様に構成され、
酸素は純酸素槽16から弁17を介して一過部2b内の
散気装置18に供給され、それから上昇した酸素は一過
部2bと接触酸化部2aとの間隔20の上部に設は九酸
素溜部19の中心開口20と中心位置にある排出トラフ
8との間を抜けて上昇すると共に酸素溜s19に溜つ九
酸素は弁21を経てプロワ22によシ純酸素槽16に戻
される。純酸素槽16には供給管23から純酸素が補給
される。このようにして純酸素使用によ多接触酸化の効
率を高めると共に余剰酸素を回収して費用の軽減を図る
Next, referring to FIG. 2, this figure is a schematic diagram of an embodiment in which pure oxygen is used instead of air, and the treatment tank 2 and adjustment tank 9 are almost the same as those in FIG. configured,
Oxygen is supplied from the pure oxygen tank 16 via the valve 17 to the diffuser 18 in the transit section 2b, and then the oxygen that has risen is supplied to the air diffuser 18 located in the upper part of the gap 20 between the transit section 2b and the catalytic oxidation section 2a. The oxygen that passes through between the center opening 20 of the oxygen reservoir 19 and the discharge trough 8 located at the center and rises and accumulates in the oxygen reservoir s19 passes through the valve 21 and is returned to the pure oxygen tank 16 by the blower 22. . The pure oxygen tank 16 is supplied with pure oxygen from the supply pipe 23. In this way, the efficiency of multi-catalytic oxidation is increased by using pure oxygen, and excess oxygen is recovered to reduce costs.

なお、−過材層4内に設は九散気装置18の所には一過
材の境界部分を洗浄するように空気供給管24を設け、
該−過材層4の上には表層洗浄装置25を設ける。  
                1上述の汚水浄化装
置は両実施例とも次の如き構成とすることが出来る。
Furthermore, an air supply pipe 24 is provided at the diffuser 18 installed in the filtration material layer 4 so as to clean the boundary portion of the filtration material;
A surface layer cleaning device 25 is provided on the overfill layer 4.
1 The above-mentioned sewage purification apparatus can be configured as follows in both embodiments.

■ 接触酸化部の接触酸化材層を原水の水位変動に伴い
、手動又は自動的に上下に移動できるようにする。
■ The catalytic oxidizing material layer in the catalytic oxidation section can be moved up and down manually or automatically as the water level of raw water changes.

■ 接触酸化に必要な酸素の供給位置を接触酸化部と′
V過退部の間にするか、−退部内□濾過材層中にするか
、濾過部の下部にするか、或はこれらのうち倒れか1個
所iたは複数個所にするか適当に選定し、供給酸素は空
気又は純酸素が用いられる。
■ The supply position of oxygen necessary for catalytic oxidation is determined from the catalytic oxidation part.
Appropriately select whether to place it between the V-recessed part, inside the retracted part □ in the filter material layer, at the bottom of the filtration part, or at one or more of these places. However, air or pure oxygen is used as the supplied oxygen.

■ 接触酸化部の接触酸化材層に代え回転円板装置を用
い、また散気装置に代え機械式曝気装置を設けることも
出来る。
(2) A rotating disk device can be used in place of the catalytic oxidizing material layer in the catalytic oxidation section, and a mechanical aeration device can be provided in place of the aeration device.

尚、前記処理槽2及び調整槽9は複数基を並設使用する
のが好ましい。
Incidentally, it is preferable to use a plurality of processing tanks 2 and adjustment tanks 9 in parallel.

上述の汚水浄化置によれば原水中の溶解性有機物を接触
酸化部において生物化学的酸化処理を短時間に完了し、
そして固形性有機物は下方の一3過部において一過材層
によシ捕捉し之を逆洗により濾過材から分離して処分す
るので、固形性有機物と溶解性有機物とを一緒にして全
体的に酸化するのに比し時間、経費等が低減して有利で
あり、更に利点を摘記すると次の如くである。
According to the above-mentioned sewage purification system, biochemical oxidation treatment of soluble organic matter in raw water is completed in a short time in the catalytic oxidation section.
The solid organic matter is then captured by the filtration material layer in the lower 13 filtration section, and is separated from the filter material by backwashing and disposed of. It is advantageous in that it requires less time and cost than oxidation.The advantages are as follows.

■ 接触酸化部と一過部が上下に配置されたので処理場
の敷地面積が著しく減少する。即ち接触酸化部と一過部
を並置すると広い敷地面積を必要とするが、上下に設け
るとこれらは既設のエアレージ曹ンタンクの水深内に納
まり敷地面積は従来のエアレージ冒ンタンクと最終沈澱
池の約十程度になる。
■ Since the catalytic oxidation section and the transient section are placed one above the other, the site area of the treatment plant is significantly reduced. In other words, if the catalytic oxidation section and the transient oxidation section are placed side by side, a large site area will be required, but if they are placed one above the other, they will fit within the water depth of the existing aerage tank, and the site area will be approximately the same as that of the conventional aerage oxidation tank and final sedimentation tank. It will be about ten.

■ 返送汚泥、余剰汚泥の移送工種は不要となり、従来
のエアレージ1ンタンクの如き煩られしい生物学的な運
転管理の必要がない。
■ There is no need to transport return sludge or surplus sludge, and there is no need for troublesome biological operation management like in conventional airage tanks.

■ 従来の如き大量の空気を要せず約十鵬度でよいので
設備容量も小さくて済み、送気圧も0.5Kf/c11
以下でよいから大幅な省エネルギーになる。
■ It does not require a large amount of air as in the past, and only requires about 10 degrees of air, so the equipment capacity is small, and the supply pressure is 0.5Kf/c11.
The amount below is sufficient, resulting in significant energy savings.

■ 汚泥処理工程にあっても余剰汚泥の処理処分に悩ま
されることなく、運転管理が容易である。
■ Even in the sludge treatment process, there is no need to worry about processing and disposing of excess sludge, and operation management is easy.

■ 消化タンクの加温及び焼却設備に要する燃料が節約
される。
■ Fuel required for heating the digestion tank and incineration equipment is saved.

以上を要約すると、この装置は敷地面積の縮小。To summarize the above, this device reduces the site area.

汚・水処理、汚泥処理における維持管理が容易になる等
、甚だ有利な−ものである。
This is extremely advantageous, such as facilitating maintenance and management in sewage/water treatment and sludge treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明汚水浄化装置の一実施例を示し九a明図
、第2図は純酸素を用いる本発明汚水浄化装置の要部を
示した説明図である。 1は最初沈澱池、2は処理槽、2&は接触酸化部、2b
は一過部、2Cは間隔、2dは集水針、3は接触酸化材
層、4は一過材層、5.6は散気装置、7は空気供給装
置、8は排出トラフ、9は調整槽、10は調整部、11
は堰、12は滅菌部、13は水位検出器、14は汚泥a
m郁、15は沈砂池、16は純酸累供給管、18は散気
装置、19は酸素溜部、20は開口、21は酸素回収用
の弁である :E
FIG. 1 is a diagram showing one embodiment of the sewage purification apparatus of the present invention, and FIG. 2 is an explanatory diagram showing the main parts of the sewage purification apparatus of the present invention using pure oxygen. 1 is the initial settling tank, 2 is the treatment tank, 2 & is the catalytic oxidation section, 2b
is the transit part, 2C is the interval, 2d is the water collection needle, 3 is the contact oxidizing material layer, 4 is the transit material layer, 5.6 is the air diffuser, 7 is the air supply device, 8 is the discharge trough, 9 is the Adjustment tank, 10 is adjustment section, 11
is a weir, 12 is a sterilization section, 13 is a water level detector, and 14 is a sludge a.
15 is a settling basin, 16 is a pure acid accumulation pipe, 18 is a diffuser, 19 is an oxygen reservoir, 20 is an opening, and 21 is a valve for oxygen recovery: E

Claims (1)

【特許請求の範囲】 L 汚水浄化の生物的酸化処理において、原水に含まれ
る有機物のうち酸化反応速度の速い溶解性有機物を、単
一1えは多段の接触酸化材層或は接触酸化部により0.
3〜3時間吸着、酸化させた後、酸化反応速度の遍い固
形性有機物や固形性無機物を濾過材層でP別することを
特徴とする汚水浄化方法。 2 接触酸化部と一過部とを上下一体構造としこれら両
部の間隔を0〜200cmに設定したことを特徴とする
汚水浄化装置。 λ 前記装置に空気の代りに純酸素を供給し余剰酸素を
回収微積せしめるようになし九特許請求の範囲第2項記
載の汚水浄化装置。 表 前記装置において接触酸化に必要な酸素を、接触酸
化部とFffl@との間隙、−退部内の一過材′層中、
濾過部の下部、またはこれらの単一もしくは複数組合わ
せて空気又は純酸素で供給するようになした特許請求の
範囲第2項又は第3項記載の汚水浄化装置。 & 前記接触酸化部の接触酸化材層の位置を原水の水位
変動に伴い手動又は自動的に上下に移動できるようにし
た特許請求の範囲第2項又は第3項記載の汚水浄化装置
。 & 前記接触酸化部の接触酸化材層に代え回転円板装置
、散気装置に代え機械式曝気装置を設けた特許請求の範
囲第2項記載の汚水浄化装置。
[Claims] L In biological oxidation treatment for wastewater purification, soluble organic matter with a high oxidation reaction rate among the organic matter contained in raw water is removed by a single or multi-stage catalytic oxidizing material layer or catalytic oxidizing section. 0.
A method for purifying wastewater, which comprises adsorbing and oxidizing for 3 to 3 hours, and then separating solid organic matter and solid inorganic matter, which have uniform oxidation reaction rates, using a filter layer. 2. A sewage purification device characterized in that the catalytic oxidation part and the transient part have an upper and lower integral structure, and the interval between these parts is set to 0 to 200 cm. λ The sewage purification device according to claim 2, wherein pure oxygen is supplied to the device instead of air, and surplus oxygen is recovered and accumulated. Table: Oxygen necessary for catalytic oxidation in the above device is added to the gap between the catalytic oxidation part and Fffl@, in the temporary material' layer in the retreat part,
The sewage purification device according to claim 2 or 3, wherein air or pure oxygen is supplied to the lower part of the filtration part, or to a single part or a combination of these parts. & The sewage purification device according to claim 2 or 3, wherein the position of the catalytic oxidizing material layer of the catalytic oxidizing section can be moved up and down manually or automatically as the water level of the raw water changes. & The sewage purification device according to claim 2, wherein a rotating disk device is provided in place of the catalytic oxidizing material layer of the catalytic oxidation section, and a mechanical aeration device is provided in place of the aeration device.
JP56210986A 1981-12-28 1981-12-28 Method and device for purification of sewage Pending JPS58114793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210986A JPS58114793A (en) 1981-12-28 1981-12-28 Method and device for purification of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210986A JPS58114793A (en) 1981-12-28 1981-12-28 Method and device for purification of sewage

Publications (1)

Publication Number Publication Date
JPS58114793A true JPS58114793A (en) 1983-07-08

Family

ID=16598415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210986A Pending JPS58114793A (en) 1981-12-28 1981-12-28 Method and device for purification of sewage

Country Status (1)

Country Link
JP (1) JPS58114793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745999A (en) * 2016-12-27 2017-05-31 津水环保设备工程(天津)有限公司 A kind of sewage-treatment plant with feedback function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748388A (en) * 1980-09-08 1982-03-19 Takenaka Komuten Co Ltd Apparatus for waste water treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748388A (en) * 1980-09-08 1982-03-19 Takenaka Komuten Co Ltd Apparatus for waste water treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745999A (en) * 2016-12-27 2017-05-31 津水环保设备工程(天津)有限公司 A kind of sewage-treatment plant with feedback function

Similar Documents

Publication Publication Date Title
US4193869A (en) Wastewater and wastewater solid processing system
Parkhurst et al. Pomona activated carbon pilot plant
CN201002003Y (en) Membrane filter
KR100698522B1 (en) Purifying system of excretions using microorganism
JPS6034886B2 (en) Wastewater treatment method
JPS58114793A (en) Method and device for purification of sewage
CN201400615Y (en) Treatment system of wastewater from circulating water
KR100434745B1 (en) Dirty and waste water purifying system
Moss et al. Full-scale use of physical/chemical treatment of domestic wastewater at Rocky River, Ohio
KR200304931Y1 (en) Small Drinking Water Treatment Equipment
NO813255L (en) PROCEDURE AND APPARATUS FOR WATER TREATMENT
CN216191633U (en) Wet deacidification effluent disposal system
JPH0639391A (en) Method for treating waste water
CN219194631U (en) Integrated magnetic coagulation sedimentation water treatment equipment
CN214829794U (en) Purifier and water treatment system
CN210419521U (en) Culture wastewater reclaimed water recycling system
JP3270155B2 (en) Sewage treatment method and treatment device
JPS5638177A (en) Purifying apparatus of sanitary sewage
CN207986868U (en) Dyeing and printing sewage processing system
KR100458908B1 (en) Dirty and waste water purifying system
CN105347467B (en) A kind of fixed bed partly fluidizes aerating biological filter sewage processing system
JP2003170157A (en) Cleaning equipment for suspended solid-containing seawater
JP3716461B2 (en) Concentration method in the receiving tank for biological filtration backwash wastewater
CA1181698A (en) Waste treatment process and apparatus
JP2005193165A (en) Method and apparatus for treating organic sewage by using aerobic filter bed