JPS5811470B2 - Method and device for preventing coking in the upper part of a heavy oil cracking reactor - Google Patents

Method and device for preventing coking in the upper part of a heavy oil cracking reactor

Info

Publication number
JPS5811470B2
JPS5811470B2 JP4653476A JP4653476A JPS5811470B2 JP S5811470 B2 JPS5811470 B2 JP S5811470B2 JP 4653476 A JP4653476 A JP 4653476A JP 4653476 A JP4653476 A JP 4653476A JP S5811470 B2 JPS5811470 B2 JP S5811470B2
Authority
JP
Japan
Prior art keywords
temperature
reactor
trumpet
heavy oil
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4653476A
Other languages
Japanese (ja)
Other versions
JPS52129706A (en
Inventor
内田誠一
八坂恭一
木内規博
里見義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Eneos Corp
Original Assignee
Hitachi Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Mining Co Ltd filed Critical Hitachi Ltd
Priority to JP4653476A priority Critical patent/JPS5811470B2/en
Publication of JPS52129706A publication Critical patent/JPS52129706A/en
Publication of JPS5811470B2 publication Critical patent/JPS5811470B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 この発明は炭化水素を分解する場合、特にコールタール
、シエール油(油母頁岩より採取する油)、ピッチ、ア
スファルト、重油等の重質油を分解する場合において、
反応器上部がコークス状物質により閉塞されることを防
止する方法及びその装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention is applicable to the decomposition of hydrocarbons, particularly to the decomposition of heavy oils such as coal tar, shale oil (oil extracted from oil base shale), pitch, asphalt, and heavy oil.
The present invention relates to a method for preventing the upper part of a reactor from being clogged with coke-like substances and the structure of an apparatus for the same.

重質油分解に流動分解方式を使用する場合には、一般に
第1図に示すような工程により行なわれる。
When a fluidized cracking system is used for heavy oil cracking, the process is generally carried out as shown in FIG.

すなわちフィードノズル1より流動層反応器2内に供給
された炭化水素油は、スチーム等により流動化された流
動層3を通過する間に分解されガス状分解生成物とコー
クスに転化する。
That is, hydrocarbon oil supplied into the fluidized bed reactor 2 from the feed nozzle 1 is decomposed and converted into gaseous decomposition products and coke while passing through the fluidized bed 3 fluidized by steam or the like.

ガス状分解生成物とスチームの混合物(以下「ガス」と
いう)は、流動粒子の一部を同伴しつつ分離帯域5を経
てサイクロンに入る。
The mixture of gaseous decomposition products and steam (hereinafter referred to as "gas") enters the cyclone via the separation zone 5, entraining a portion of the fluidized particles.

ガスに同伴される流動粒子は分離帯域5においてその一
部が分離され、残部はサイクロン6においてほぼ完全に
分離される。
Part of the fluidized particles entrained in the gas is separated in the separation zone 5, and the remainder is almost completely separated in the cyclone 6.

粒子分離後のガスはサイクロン出ロアから移送管8を経
て次工程の装置9に流れる。
The gas after particle separation flows from the cyclone exit lower through the transfer pipe 8 to the device 9 for the next step.

一方分解により生成したコークスは流動粒子に付着し、
ストリッピング部10を通る間に未分解油等を分離した
後、反応器2から抜出され移送管11を経て再生器12
に送られ、そこで燃焼される。
On the other hand, the coke produced by decomposition adheres to the fluid particles,
After separating undecomposed oil etc. while passing through the stripping section 10, it is extracted from the reactor 2 and passed through the transfer pipe 11 to the regenerator 12.
and is then burned there.

さらに付着コークスの燃焼除去により再生された粒子(
以下「再生粒子」という)は移送管13を経て再び反応
器2に送られる。
In addition, particles regenerated by burning and removing adhering coke (
The regenerated particles (hereinafter referred to as "regenerated particles") are sent to the reactor 2 again through the transfer pipe 13.

ところが前記のように重質油を原料として流動分解する
場合には流動層反応器上部特にサイクロン周辺部のガス
流路がコーク状物質によって閉塞されるため長期連続運
転が不可能になるという問題が生ずる。
However, as mentioned above, when fluidized cracking is performed using heavy oil as a raw material, there is a problem in that long-term continuous operation becomes impossible because the gas flow path in the upper part of the fluidized bed reactor, especially in the area around the cyclone, is blocked by coke-like substances. arise.

従来この閉塞を防止するために流動粒子の粒度あるいは
粒子を流動化するスチームの吹込み量を調節してガスに
同伴 される粒子の割合を制御する方法や流動層反
応器上部の内径を小さくしてガス流速を増大させる方法
が提案されている。
Conventionally, in order to prevent this blockage, methods have been used to control the proportion of particles entrained in the gas by adjusting the particle size of the fluidized particles or the amount of steam blown to fluidize the particles, and by reducing the inner diameter of the upper part of the fluidized bed reactor. A method has been proposed to increase the gas flow rate.

しかしながら前者の方法は反応上の最適流動化条件から
逸脱する問題があり、また後者においてもコーク生成の
元凶となる重質生成油ミスト(接縮物)を同伴しやすく
、かえって閉塞しやすくなるという問題があるためこれ
らのみでは解決し難い状況にある。
However, the former method has the problem of deviating from the optimal fluidization conditions for the reaction, and the latter method also tends to entrain heavy produced oil mist (condensation products), which is the cause of coke formation, making it more likely to become clogged. The problem is that it is difficult to solve the problem with these alone.

この発明は流動層反応器上部においてガスの流れを絞っ
て、そのガスをサイクロン入口に導入するようなラッパ
状管を設けるとともに、ガス流路壁の温度を540ない
し630℃に保つことを特徴とする流動層反応器上部の
コーキングの防止方法及びその装置に関するものである
This invention is characterized by providing a trumpet-shaped tube that throttles the gas flow in the upper part of the fluidized bed reactor and introduces the gas into the cyclone inlet, and also maintains the temperature of the gas flow channel wall at 540 to 630°C. The present invention relates to a method for preventing coking in the upper part of a fluidized bed reactor and an apparatus therefor.

これらは同時に重質油分解の蒸気抜き出し方法たとえば
そのまま反応ガスの排出部たる反応ガス出口に後続配管
が接続されているような一般的な手段にも適用できるも
のである。
At the same time, these methods can also be applied to a general method for extracting steam from heavy oil cracking, for example, in which a subsequent pipe is directly connected to a reaction gas outlet serving as a reaction gas discharge section.

第2図に示すようにこの発明にががるラッパ状管22は
、その下端周辺部23において反応器内壁に接続し、上
端21は重質油分解反応器の反応ガス排出部たるサイク
ロン6のサイクロン人口20に接続する。
As shown in FIG. 2, the trumpet-shaped tube 22 according to the present invention is connected to the inner wall of the reactor at its lower end periphery 23, and its upper end 21 is connected to the cyclone 6 which is the reaction gas discharge part of the heavy oil cracking reactor. Connect to Cyclone Population 20.

ここにラッパ状管は流動層反応器2の従来の流動層上部
の空間5(第1図)を流動層上面を含む空間30aと流
動層反応器の上部の空間30に仕切りするものである。
Here, the trumpet-shaped tube partitions the conventional fluidized bed upper space 5 (FIG. 1) of the fluidized bed reactor 2 into a space 30a containing the upper surface of the fluidized bed and a space 30 above the fluidized bed reactor.

またラッパ状管はその軸心を横断する断面積を流動層上
面からガス排出側に進むにつれ漸減しかつその排出側後
部のガス通路の軸心を通常約90°方向変換させサイク
ロン6に接続するものである。
In addition, the cross-sectional area of the trumpet-like tube that crosses its axis gradually decreases as it progresses from the upper surface of the fluidized bed toward the gas discharge side, and the axis of the gas passage at the rear of the discharge side is normally turned about 90 degrees and connected to the cyclone 6. It is something.

その外形は通常子廻し蓄音器のラッパ又は鵞鳥の首に類
似するものである。
Its external shape usually resembles the trumpet of a phonograph or the neck of a goose.

ラッパ状管の絞り角をθとし図面に示す角度符号で肢管
の下端23においてθ=α、肢管の上端21においてθ
=βとするものや、ガスの流れの絞り方を下端23から
上端21に向かうにつれて絞り角θを減少させα〉θ〉
βするものや中間部で絞り角が犬きくなるθ〉α〉β
θ〉β〉α、とするものなどがある。
The constriction angle of the trumpet-shaped canal is θ, and the angle sign shown in the drawing is θ=α at the lower end 23 of the limb canal, and θ at the upper end 21 of the limb canal.
=β, or the way the gas flow is throttled is such that the throttle angle θ decreases from the lower end 23 to the upper end 21 so that α〉θ〉
θ〉α〉β or the aperture angle becomes sharp in the middle part
There are some that have θ〉β〉α.

ここに絞り角θとは、ラッパ状管を軸心を含み縦断する
とき現われる管壁面の曲線を、軸心方向をX軸、これに
直交する半径方向をY軸としy=f(x)で表示すると
き、絞り角θを表示すすようにラッパ状管の中間部にお
いて絞り角θが最大となるようにして変曲点Aを設け、
下端23から、変曲点Aまでの区間において絞り角θを
増加させ、変曲点Aから流路小断面積端部たる上端21
までの区間において絞り角を減少させるようにすると、
下端23における絞り角αを反応器内壁の絞り角に、ま
た上端21における絞り角βをサイクロン入口の絞り角
にそれぞれ等しくなるようにすることができこれは接続
部表面を滑らかにするために好ましいものである。
Here, the aperture angle θ is defined as the curve of the tube wall surface that appears when a trumpet-shaped tube is longitudinally traversed including the axis, with the axis direction being the X axis and the radial direction orthogonal to this being the Y axis, and y = f (x). When displaying, an inflection point A is provided so that the aperture angle θ is maximized at the middle part of the trumpet-shaped tube so that the aperture angle θ is displayed.
The aperture angle θ is increased in the section from the lower end 23 to the inflection point A, and the upper end 21 is the end of the flow path with a small cross-sectional area from the inflection point A.
By decreasing the aperture angle in the section up to
The constriction angle α at the lower end 23 can be made equal to the constriction angle of the inner wall of the reactor, and the constriction angle β at the upper end 21 can be made equal to the constriction angle at the cyclone inlet, which is preferable in order to make the connection surface smooth. It is something.

またこの場合変曲点Aにおける絞り角θの最大値を0m
mとするとき、ラッパ状管内のガスの流れを円滑にする
ためにθmm≦90°とすることが好ましく、θim≦
60°とすることはさらに好ましい。
In this case, the maximum value of the aperture angle θ at the inflection point A is set to 0 m.
When m, it is preferable that θmm≦90° in order to smooth the flow of gas in the trumpet-shaped tube, and θim≦
More preferably, the angle is 60°.

ガスは流動層上面4より上方に向って流れ、一方サイク
ロン入口は水平方向に開口しているため、ガスの流れを
絞ってそのガスをサイクロン入口に導入するように上記
のラッパ状管を、わん曲させる必要がある。
The gas flows upward from the upper surface 4 of the fluidized bed, and the cyclone inlet is opened horizontally, so the above-mentioned trumpet-shaped tube is inserted into the cyclone in such a way that the gas flow is restricted and the gas is introduced into the cyclone inlet. It needs to be bent.

この場合例えば第2図に示すようにラッパ状管の曲率半
径Rに対するガス流路相当半径r/Rを0.9以下とす
ることはガスの流れを円滑にする点で好ましくr/Rを
0.5以下とすることはさらに好ましい。
In this case, for example, as shown in Fig. 2, it is preferable to set the gas flow path equivalent radius r/R to 0.9 or less with respect to the radius of curvature R of the trumpet-shaped tube to ensure smooth gas flow. It is more preferable to set it to .5 or less.

なおラッパ状管壁は断熱セメント(キャスタブル)また
は鋼板により表面を滑らかにする。
The surface of the wall of the trumpet-shaped pipe is made smooth using heat insulating cement (castable) or steel plate.

上記のような方法により流動層反応器上部においてデッ
ド・スペースをなくシ、ガス渦流の発生を防止して、ガ
スが長時間停滞しないようにすることによりガス中の反
応活性成分ないし高沸点物質の変成に伴なうコーク状物
質の生成とその付着堆積を予防する。
The method described above eliminates dead space in the upper part of the fluidized bed reactor, prevents the generation of gas vortices, and prevents the gas from stagnating for a long time, thereby eliminating reactive components or high boiling point substances in the gas. Prevents the formation and deposition of coke-like substances associated with metamorphosis.

またガス流路壁を540℃ないし630℃に保つことに
よりガス中の高沸点物質がガス流路壁に凝縮・付着する
のを防止する。
Furthermore, by maintaining the gas flow path wall at a temperature of 540° C. to 630° C., high boiling point substances in the gas are prevented from condensing and adhering to the gas flow path wall.

さらにガス中の反応活性成分ないし高沸点物質が変成し
てコーク状物質を形成するのを防止するためガス流路壁
は630℃好ましくは580℃〜540℃に保つとよい
ことが確認された。
Furthermore, it has been confirmed that the gas flow channel wall is preferably kept at 630°C, preferably 580°C to 540°C, in order to prevent reaction-active components or high-boiling substances in the gas from being denatured and forming a coke-like substance.

ガス流路壁の温度を上記のように保つために、ラッパ状
の管壁温度保持手段としてたとえば第2図に示すように
反応器頂部と反応器上部側壁とラッパ状管とが包囲する
空間30に高温スチーム等の熱媒体を通すのも一方法で
ある。
In order to maintain the temperature of the gas flow path wall as described above, a space 30 surrounded by the top of the reactor, the upper side wall of the reactor, and the trumpet-shaped tube is used as a trumpet-shaped tube wall temperature maintaining means, for example, as shown in FIG. One method is to pass a heat medium such as high-temperature steam through.

あるいはさらに流動層上面より上方の位置から高温粒子
を吹上げることにより、ガス流路壁面温度ならびにガス
自体の温度を高めることができる 第3図および第4図には吹上げ管により高温粒子を吹上
げる方法の一例を示す。
Alternatively, by blowing high-temperature particles up from a position above the top surface of the fluidized bed, the temperature of the gas flow path wall surface and the temperature of the gas itself can be increased. An example of how to increase the

第3図の場合、反応器流動層内に粒子吸引孔42を有す
る吹上げ管40を設置し、粒子吸引孔42の近辺に再生
粒子移送管13の出口がある点に特徴があり、吹上げ管
下端部のスチームノズル41よりスチームを供給すると
前記吸引孔42から高温の粒子は吸引され、吸引された
粒子は吹上げ管40を上昇し前記ラッパ状管22aの下
端部付近に開口した出口45より上方に向けて吹上げら
れる。
In the case of FIG. 3, a blow-up tube 40 having a particle suction hole 42 is installed in the reactor fluidized bed, and the outlet of the regenerated particle transfer tube 13 is located near the particle suction hole 42. When steam is supplied from the steam nozzle 41 at the lower end of the tube, high-temperature particles are suctioned from the suction hole 42, and the suctioned particles ascend the blow-up tube 40 to an outlet 45 opened near the lower end of the trumpet-shaped tube 22a. It is blown upwards.

また第4図の場合は粒子供給口43′が反応器外に設け
であるため、再生器より抜出した全量あるいは一部の高
温再生粒子を反応器流動層外から供給できる点に特徴が
あり、供給された高温再生粒子はスチームノズル41′
から吹込まれるスチームにより吹上げ管40′を上昇し
、前記ラッパ状管22bの下端部付近に開口した出口4
5′から斜上方に向けて吹上げられる。
In addition, in the case of FIG. 4, since the particle supply port 43' is provided outside the reactor, the feature is that all or part of the high-temperature regenerated particles extracted from the regenerator can be supplied from outside the reactor fluidized bed. The supplied high temperature regenerated particles are passed through the steam nozzle 41'.
The steam blown from the pipe causes the blow-up pipe 40' to rise, and the outlet 4 opens near the lower end of the trumpet-shaped pipe 22b.
It is blown upward from 5'.

吹上げ管の本数あるいはその出口45.45’の位置な
いし方向を反応器上部のガス流路の形状に応じて適当に
調節し、高温粒子をガス流路内にムラなく吹上げること
が好ましい。
It is preferable to appropriately adjust the number of blow-up tubes or the position or direction of their exits 45, 45' according to the shape of the gas flow path in the upper part of the reactor to evenly blow up the high-temperature particles into the gas flow path.

また流動層上面より上方のガス流路壁に沿うように高温
粒子を吹上げるとガス流路壁を粒子の顕熱で効率よく直
接加熱することができる。
Furthermore, by blowing up high-temperature particles along the gas flow channel wall above the upper surface of the fluidized bed, the gas flow channel wall can be efficiently and directly heated by the sensible heat of the particles.

その場合前記のような粒子吹上げ管を用いてもよいが第
5図に示すように流動層上面より上方に位置する反応器
内周壁に分配槽16を設けそこへ高温再生粒子を導入し
、分配槽の下部からスチームを吹込むことにより高温再
生粒子を吹上げるようにすることができる。
In that case, a particle blow-up pipe as described above may be used, but as shown in FIG. 5, a distribution tank 16 is provided on the inner peripheral wall of the reactor located above the top surface of the fluidized bed, and high-temperature regenerated particles are introduced therein. The high-temperature regenerated particles can be blown up by blowing steam from the bottom of the distribution tank.

なおこの場合高温再生粒子は再生塔12(第1図に示す
)から一部抜出してスチームにより移送管17“を通し
て外部サイクロン15“に導きそこで高温スチームを分
離した後分配槽16に導入し、一方外部サイクロン15
“で分離された高温スチームは前記の空間30“の加熱
媒体として利用した後再生塔へもどすことができる。
In this case, some of the high-temperature regenerated particles are extracted from the regeneration tower 12 (shown in FIG. 1) and guided by steam to the external cyclone 15'' through the transfer pipe 17'', where the high-temperature steam is separated and then introduced into the distribution tank 16. external cyclone 15
The high temperature steam separated in the space 30 can be used as a heating medium in the space 30 and then returned to the regeneration tower.

いずれの場合においても高温再生粒子の吹込み状態は0
.5ないし、10kg/m3(濃度)の範囲内としてす
ることが好ましい。
In either case, the blowing state of high-temperature regenerated particles is 0.
.. It is preferable to set the concentration within a range of 5 to 10 kg/m3 (concentration).

また高温再生粒子の温度は600ないし900℃とする
のが適当である。
Further, it is appropriate that the temperature of the high-temperature recycled particles is 600 to 900°C.

上記のように高温再生粒子を吹上げると、ガス流路壁の
温度を540ないし630℃に保つことができるばかり
でなく、ガス流路壁を研磨洗浄して、コーク状物質の付
着を防止すると同時にガス流路にミスト状で飛散してい
る高沸点物質を吹上げた高温再生粒子に合一させてガス
の流れから除去することができる。
By blowing up high-temperature regenerated particles as described above, it is possible to not only maintain the temperature of the gas flow channel wall at 540 to 630 degrees Celsius, but also to polish and clean the gas flow channel wall to prevent the adhesion of coke-like substances. At the same time, high-boiling substances scattered in the form of mist in the gas flow path can be combined with the blown up high-temperature regenerated particles and removed from the gas flow.

以下実施例および比較例によって示すようにこの発明に
かかる方法とその装置の使用により重質油の流動分解に
おいて流動層反応上部におけるコーキングを防止するこ
とができ、従って長時間連続運転が可能となる。
As shown in the following Examples and Comparative Examples, by using the method and its apparatus according to the present invention, it is possible to prevent coking in the upper part of the fluidized bed reaction during fluidized cracking of heavy oil, and therefore, continuous operation for a long time is possible. .

実施例 1 クラエート原油減圧残油を粒度70〜400μの酸化ニ
ッケル鉱触媒を使用して次のような流動接触分解処理を
行った。
Example 1 Craate crude oil vacuum residue was subjected to the following fluid catalytic cracking treatment using a nickel oxide ore catalyst with a particle size of 70 to 400 μm.

処理量……41kg/時 反応温度…市500℃ 反応圧力……1.5に9/cm3 接触時間…ッ3.0秒 反応器は第2図に示すように流動層反応器上部に次のよ
うな形状のラッパ状管を有するものを用いた。
Processing amount: 41 kg/hour Reaction temperature: 500°C Reaction pressure: 1.5 to 9/cm3 Contact time: 3.0 seconds As shown in Figure 2, the reactor is equipped with the following A tube with a trumpet-like tube shaped like this was used.

下端23断面積(反応器断面積)……697cm3上端
21断面積(内部サイクロン入口断面積)…8cm3 上端21から下端23までの垂直方向の長さ品8cm わん曲部におけるr/R比………………0.3下端23
における絞り角α……………… 上端21における絞り角β………………0゜変曲点22
における絞り角θ冨宵…………50゜またガス流路壁の
加熱温度は540℃とした。
Lower end 23 cross-sectional area (reactor cross-sectional area)...697 cm3 Upper end 21 cross-sectional area (internal cyclone inlet cross-sectional area)...8 cm3 Vertical length from upper end 21 to lower end 23 8 cm R/R ratio at curved part... …………0.3 lower end 23
Aperture angle α at the upper end 21 Aperture angle β at the upper end 21 0° inflection point 22
The constriction angle θ was 50°, and the heating temperature of the gas flow path wall was 540°C.

このとき連続運転可能日数は25日であった。At this time, the number of continuous operation days was 25 days.

実施例 2 実施例1と同様の処理を行なうに際し反応器は第3図に
示すように上部に実施例1と同じラッパ状管を有し、さ
らに次のような高温触媒粒子の吹上げ管を有するものを
用いた。
Example 2 When carrying out the same treatment as in Example 1, the reactor had the same trumpet-shaped tube as in Example 1 at the top as shown in Figure 3, and was further equipped with the following blow-up tube for high-temperature catalyst particles. I used what I had.

管径………21.4冨宵φ 長さ………1750mm 開口端45の位置曽出サイクロン入口より垂直下方97
0mm この管により吹上げる高温触媒粒子については次のとお
りとした。
Pipe diameter: 21.4mm φ Length: 1750mm Position of opening end 45: 97 vertically below the inlet of the cyclone
0 mm The high-temperature catalyst particles blown up by this pipe were as follows.

温度………800℃ またガス流路壁の温度は560℃とした。Temperature……800℃ Further, the temperature of the gas flow path wall was 560°C.

このとき連続運転可能日数は30日以上であった。At this time, the number of continuous operation days was 30 days or more.

比較例 第10図に示すような従来の流動層反応器を用いガス流
路壁を485℃に保温して実施例1と同様の処理を行な
ったところ、反応器上部の内部サイクロン6周辺部がコ
ーク状物質により閉塞され、反応器内圧が増大して危険
状態に達したため3日で運転を打切った。
Comparative Example When the same treatment as in Example 1 was carried out using a conventional fluidized bed reactor as shown in Fig. 10 and keeping the gas passage wall at 485°C, The reactor was blocked by a coke-like substance and the internal pressure of the reactor increased to a dangerous state, so the operation was discontinued after three days.

実施例 3 実施例2において高温触媒粒子の吹上げ量を変えて一定
時間内におけるコーク状物質付着量を調べたところ第6
図のようになった。
Example 3 In Example 2, the amount of coke-like substance deposited within a certain period of time was investigated by changing the blow-up amount of high-temperature catalyst particles.
It became like the figure.

高温触媒粒子の吹上げを1kg/m3以上とすればコー
ク状物質の付着量が著しく少なくなることが明らかであ
る。
It is clear that if the blow-up of the high-temperature catalyst particles is set to 1 kg/m3 or more, the amount of coke-like substances deposited will be significantly reduced.

実施例 4 実施例1においてラッパ状管の変曲点Aにおける絞り角
θmmを変えて一定時間内おけるコーク状物質付着量を
調べたところ第7図のようになった絞り角θmmは90
°以下できれば60°以下が望ましいことが明らかであ
る。
Example 4 In Example 1, when the constriction angle θmm at the inflection point A of the trumpet-shaped tube was varied and the amount of coke-like substance deposited within a certain period of time was investigated, the constriction angle θmm as shown in Fig. 7 was 90.
It is clear that the angle is preferably 60° or less.

実施例 5 実施例2においてガス流路壁の温度を変えて一定時間内
におけるコーク状物質付着量を調べたところ第8図のよ
うになった。
Example 5 In Example 2, the temperature of the gas flow path wall was changed and the amount of coke-like substance deposited within a certain period of time was investigated, and the results were as shown in FIG.

ガス流路壁の温度は540ないし630℃に保つ必要が
あることが明らかである。
It is clear that the temperature of the gas channel walls needs to be maintained between 540 and 630°C.

なお以上は主として反応器内にサイクロンが一個存在す
る場合を例示して説明したが、たとえば第9図第11図
に示すようにサイクロンが複数個存在する場合でも実施
できる。
Although the above explanation has mainly been given by exemplifying the case where one cyclone exists in the reactor, the present invention can also be carried out even when a plurality of cyclones exist, as shown in FIG. 9 and FIG. 11, for example.

第9図にサイクロンが4個ある場合の装置の縦断面図、
第11図に第9図のA−A断面を示す。
Fig. 9 is a vertical cross-sectional view of the device when there are four cyclones,
FIG. 11 shows a cross section taken along the line AA in FIG. 9.

流動層反応器2内に位置する4個のサイクロン6at6
bt6ct6dは第9図、第11図に示す如く、流動層
反応器2(以下反応器2と称す)の上部ドーム部りa内
に位置し図示しない反応器の壁より展出する腕で保持さ
れる。
Four cyclones 6at6 located in the fluidized bed reactor 2
As shown in FIGS. 9 and 11, bt6ct6d is located in the upper dome area a of the fluidized bed reactor 2 (hereinafter referred to as reactor 2) and is held by an arm extending from the wall of the reactor (not shown). Ru.

これらサイクロンは夫々ラッパ状管122a、122b
、122c、122dが接続する。
These cyclones are trumpet-shaped tubes 122a and 122b, respectively.
, 122c, and 122d are connected.

またこれらラッパ状管は共通のスカート部122eをも
ちこれら4個のラッパ状管と共に反応器2の流動層上方
空間を空間30と30aとに仕切りする。
These trumpet-shaped tubes have a common skirt portion 122e, and together with these four trumpet-shaped tubes, partition the space above the fluidized bed of the reactor 2 into spaces 30 and 30a.

流動層上面空間30aに排出されたガスは夫々のサイク
ロンを経由し、含有する流動媒体粒子等の微細固形粒子
を分離し、流動層4に戻し排ガスは夫々のダクト107
a、107b。
The gas discharged into the fluidized bed upper surface space 30a passes through each cyclone to separate fine solid particles such as fluidized medium particles contained therein, and returns to the fluidized bed 4. The exhaust gas is discharged into each duct 107.
a, 107b.

107c、107dを通り共通するダクト7に排出され
る。
It passes through 107c and 107d and is discharged into the common duct 7.

空間30にはノズル150より540℃〜630℃のガ
ス体を別の装置より供給しコーク状物質の発生を防止す
ることができる。
A gas having a temperature of 540° C. to 630° C. is supplied from a separate device to the space 30 through a nozzle 150 to prevent the generation of coke-like substances.

空間30に供給されたガスは出口ノズル151より排出
される。
The gas supplied to the space 30 is discharged from the outlet nozzle 151.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動接触分解工程を示す図面、第2図は流動層
反応器上部に設けたラッパ状管の形状を示す部分縦断面
図、第3図および第4図は高温粒子吹上げ管の形状を示
す装置の縦断面図、第5図は分配槽からガス流路内壁に
沿って高温再生粒子を吹上げる方法を実施する装置の縦
断面図、第6図は高温再生粒子吹上げ濃度とコーク状物
質付着量との関係を示す図面、第7図はラッパ状管の絞
り角の最大値(0mm)とコーク状物質付着量との関係
を示す図面、第8図はガス流路壁の温度に対するコーク
状物質付着量の関係を示す図面、第9図は反応器内にサ
イクロンが複数個存在する場合にこの発明を適用したも
のの例を示す装置上部の部分縦断面図、第10図は従来
の流動層反応器上部の部分縦断面図、第11図は第9図
のA−A断面図である。 1……フイードノズル、2……流動層反応器、6……サ
イクロン、12……再生器、21……ラツパ状管の上端
、A甲…変曲点、22,22a。 22b、22c…ツラツパ状管、23……ラツパ状管の
下端、40,40’……吹上げ管、41゜41′……ス
チームノズル、43,43’……粒子供給口、45,4
5’……出口。
Figure 1 is a diagram showing the fluidized catalytic cracking process, Figure 2 is a partial vertical cross-sectional view showing the shape of the trumpet-shaped tube installed at the top of the fluidized bed reactor, and Figures 3 and 4 are the high-temperature particle blow-up tube. Figure 5 is a vertical cross-sectional view of the device showing the shape of the device, Figure 5 is a vertical cross-sectional view of the device that implements the method of blowing high-temperature regenerated particles from the distribution tank along the inner wall of the gas flow path, and Figure 6 shows the concentration of high-temperature regenerated particles blown up. Figure 7 is a diagram showing the relationship between the amount of coke-like substance deposited, and Figure 7 is a diagram showing the relationship between the maximum constriction angle (0 mm) of the trumpet-shaped tube and the amount of coke-like substance deposited. A diagram showing the relationship between the amount of coke-like substance deposited and the temperature; FIG. 9 is a partial vertical cross-sectional view of the upper part of the device showing an example of applying the present invention when there are multiple cyclones in the reactor; FIG. FIG. 11 is a partial longitudinal cross-sectional view of the upper part of a conventional fluidized bed reactor, and is a cross-sectional view taken along the line AA in FIG. 9. DESCRIPTION OF SYMBOLS 1...Feed nozzle, 2...Fluidized bed reactor, 6...Cyclone, 12...Regenerator, 21...Upper end of truss-like tube, AA...Inflection point, 22, 22a. 22b, 22c...Tsuratsupa-shaped tube, 23...Lower end of tsuppa-shaped tube, 40, 40'...Blow-up tube, 41° 41'...Steam nozzle, 43, 43'...Particle supply port, 45,4
5'...Exit.

Claims (1)

【特許請求の範囲】 1 重質油分解反応器内の上部に固体粒子を含む高温ガ
スを導入する流路断面積を漸減させるラッパ状管を設け
、その小断面積端部を前記反応器の反応ガス排出部に接
続し、かつ前記ラッパ状管のガス流路壁の温度を540
℃ないし630℃に保つことを特徴とする重質油分解反
応器上部のコーキング防止方法。 2、特許請求の範囲第1項の方法を実施するものにおい
て、重質油分解反応器上部に一塁上のサイクロンを設け
、それぞれのサイクロン入口に流動層より送出される反
応ガスの流れるラッパ状管を接続し、該ラッパ状管の管
壁温度保持手段を設けたことを特徴とする重質油分解反
応器上部のコーキング防止装置。
[Scope of Claims] 1. A trumpet-shaped tube that gradually reduces the cross-sectional area of the flow path through which high-temperature gas containing solid particles is introduced is provided in the upper part of the heavy oil cracking reactor, and the end of the small cross-sectional area is connected to the reactor. It is connected to the reaction gas discharge part, and the temperature of the gas flow path wall of the trumpet-shaped tube is set to 540℃.
A method for preventing coking in the upper part of a heavy oil decomposition reactor, characterized by maintaining the temperature between ℃ and 630℃. 2. In the method according to claim 1, a cyclone on the first base is provided in the upper part of the heavy oil cracking reactor, and a trumpet-shaped tube through which the reaction gas sent from the fluidized bed flows at the inlet of each cyclone. 1. A coking prevention device for an upper part of a heavy oil decomposition reactor, characterized in that the tube wall temperature maintaining means of the trumpet-shaped tube is provided.
JP4653476A 1976-04-26 1976-04-26 Method and device for preventing coking in the upper part of a heavy oil cracking reactor Expired JPS5811470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4653476A JPS5811470B2 (en) 1976-04-26 1976-04-26 Method and device for preventing coking in the upper part of a heavy oil cracking reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4653476A JPS5811470B2 (en) 1976-04-26 1976-04-26 Method and device for preventing coking in the upper part of a heavy oil cracking reactor

Publications (2)

Publication Number Publication Date
JPS52129706A JPS52129706A (en) 1977-10-31
JPS5811470B2 true JPS5811470B2 (en) 1983-03-03

Family

ID=12749944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4653476A Expired JPS5811470B2 (en) 1976-04-26 1976-04-26 Method and device for preventing coking in the upper part of a heavy oil cracking reactor

Country Status (1)

Country Link
JP (1) JPS5811470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136781U (en) * 1983-03-04 1984-09-12 堀江 寿江 Guide for sewing pleated fabrics
JPS59136780U (en) * 1983-03-04 1984-09-12 堀江 寿江 Guide for sewing pleated fabrics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203778A (en) * 1978-05-17 1980-05-20 Union Carbide Corporation Method for decoking fired heater tubes
JP2006316815A (en) * 2005-05-10 2006-11-24 Ishikawajima Harima Heavy Ind Co Ltd Oil flow system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136781U (en) * 1983-03-04 1984-09-12 堀江 寿江 Guide for sewing pleated fabrics
JPS59136780U (en) * 1983-03-04 1984-09-12 堀江 寿江 Guide for sewing pleated fabrics

Also Published As

Publication number Publication date
JPS52129706A (en) 1977-10-31

Similar Documents

Publication Publication Date Title
EP0848051B1 (en) Fluid catalytic cracking of hydrocarbons with integrated apparatus for separating and stripping catalyst
US4219407A (en) Fluid cracking process and the method for separating a suspension discharged from a riser cracking zone
JP3739318B2 (en) Atomizer system
US3261776A (en) Conversion of hydrocarbons
US4372937A (en) Waste heat recovery
US5294331A (en) FCC process utilizing a vented riser
JPS63305193A (en) Method for mixing fluidized catalytic cracking hydrocarbon charge raw material and catalyst
JPH0623301A (en) Riser cyclone separator
US2612433A (en) Modification of annular stripper
US2786742A (en) Reactor adapted for containing fluidized particles
US3806324A (en) Air distribution system for catalyst regenerator
JP2002514133A (en) Cyclone separator
JPS5811470B2 (en) Method and device for preventing coking in the upper part of a heavy oil cracking reactor
US5552119A (en) Method and apparatus for contacting solid particles and fluid
JP2002537117A (en) Gas-solid separation method
US2490798A (en) Apparatus and process for catalytic reactions
US7718140B1 (en) FCC separator without a reactor
US4800014A (en) Catalytic cracking process
US2873247A (en) Single vessel coking process
US3083082A (en) Fluidized solids recovery system
US5143875A (en) Bubbling dense bed catalyst regenerator with higher efficiency base region
US5449497A (en) Plug flow vented riser
US3142543A (en) Apparatus for catalytically cracking hydrocarbons
US4753907A (en) Fluid particle material regeneration method and apparatus
US2309540A (en) Art of treating hydrocarbons