JPS5811384A - Condenser - Google Patents

Condenser

Info

Publication number
JPS5811384A
JPS5811384A JP10795681A JP10795681A JPS5811384A JP S5811384 A JPS5811384 A JP S5811384A JP 10795681 A JP10795681 A JP 10795681A JP 10795681 A JP10795681 A JP 10795681A JP S5811384 A JPS5811384 A JP S5811384A
Authority
JP
Japan
Prior art keywords
main body
reinforcing
main frame
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10795681A
Other languages
Japanese (ja)
Other versions
JPS631514B2 (en
Inventor
Hideki Sekiguchi
秀樹 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10795681A priority Critical patent/JPS5811384A/en
Publication of JPS5811384A publication Critical patent/JPS5811384A/en
Publication of JPS631514B2 publication Critical patent/JPS631514B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0236Header boxes; End plates floating elements
    • F28F9/0239Header boxes; End plates floating elements floating header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce a tensile strength acting on cooling pipes by a method wherein the trunks of water chambers are secured to the end plates of the trunks of a main frame by reinforcing ribs and both end plates are connected by reinforcing pipes at the inside of the main frame to where the reinforcing ribs for the end plates of the trunks of the main frame are secured. CONSTITUTION:Distributed load W generated by a hydraulic pressure p in the water chamber is not transmitted to the cooling pipes 2 substantially and is transmitted to the reinforcing ribs 14a, 14b, 14c, 14d. The end plates 4a, 4b for the trunks of the main frame are connected by the reinforcing pipes or rods 15a, 15b between the end plates 4a, 4b at the positions inside the main frame to where the reinforcing ribs are secured, therefore, the distributed load W generated at the fore and aft sections of both of the water chambers 8a, 8b are received through the reinforcing pipes or rods 15a, 15b. Accordingly, the distributed load W is not transmitted to the trunk of the main frame substantially and, therefore, the deformation of the trunk 1 of the main frame will not be generated.

Description

【発明の詳細な説明】 本発明は、例えば火力発電プラント、i九は原子力発電
プラント等に使用される、冷却管にチタン管が用いられ
た復水器に係9、とくに圧力の高い冷却水が供給される
復水器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condenser in which a titanium pipe is used as a cooling pipe, which is used, for example, in a thermal power plant, a nuclear power plant, etc. Concerning a condenser supplied with

従来、発電プラントに使用される復水器は、第1図に示
すように、本体胴lに多数の冷却f2を保持する管板3
m、3bが組み込まれ、その管板3m、3bと本体胴端
板4m、4bの間には、少くとも一方には伸縮継手5が
配設されており、また本体!IKは、水室胴5 m 1
6 b %水蜜蓋7m。
Conventionally, as shown in FIG. 1, a condenser used in a power generation plant has a tube plate 3 that holds a large number of cooling f2 in a main body l.
m, 3b are incorporated, and an expansion joint 5 is disposed at least on one side between the tube sheets 3m, 3b and the main body end plates 4m, 4b, and the main body! IK is water chamber trunk 5 m 1
6b% water honey lid 7m.

7bからなる氷室8m、81sが、管板3m、3bを挾
むように、7ランジ9m、9b、lea、fobを介し
てそれぞれ連設されておシ、上記入口側氷室8a下端部
には、冷却水入口座11mが設けられ、出口側水室8b
下端部には、冷却水出口座11bが設けられている。
Ice chambers 8 m and 81 s consisting of tube plates 3 m and 3 b are connected to each other via 7 lunges 9 m, 9 b, lea, and fob, respectively, and cooling water is provided at the lower end of the ice chamber 8 a on the inlet side. There is an input port of 11m, and an exit side water chamber of 8b.
A cooling water outlet 11b is provided at the lower end.

しかして、前述のごとき構成からなる復水器において、
仕事を終えて蒸気タービンから排出され几蒸気は、本体
$l内に流入し、一方冷却水は、冷却水入口座11mか
ら水室8aに入シ、冷却管2内を通過して水室8bに至
り、冷却水出口座11bから水源等に戻される。この閣
、蒸気は冷却管2を介して、冷却水に潜熱を奪われて凝
縮し液相となる。これによって本体胴1内の真空が維持
されている。1+上記冷却水としては、大量に必要とす
ることから、従来は主に海水が使用され、S面より高い
レベルに設置され次復水器へ、ポンプを利用し次サイホ
ン効果により、冷却水が供給されている。そのため冷却
水ラインの最も高いレベルに設置されて込る復水器の氷
室8m、8bの設計圧力は比較的小さかった。しかるに
最近とくに原子力発電プラントにおいて、耐震設計の観
点から、基礎台に十分な強度が要求されてきてお9、地
下の怒固な岩盤部まで楊り下げて、海面より低いレベル
に復水器を設置するケースや、冷却水として海水が用い
られ九場合の、温排水公害を防止するため、冷却水系統
をクーリングタワーを使用し九閉ループとし、復水器を
クーリングタワーの水面よシ下のレベルに設置する等の
ケースが増えてき友。
However, in a condenser configured as described above,
After the work is completed, the steam discharged from the steam turbine flows into the main body $l, while the cooling water enters the water chamber 8a from the cooling water inlet 11m, passes through the cooling pipe 2, and enters the water chamber 8b. The cooling water is then returned to the water source from the cooling water outlet 11b. This steam passes through the cooling pipe 2, loses its latent heat to the cooling water, and condenses into a liquid phase. This maintains the vacuum inside the main body shell 1. 1+ Since a large amount of the above cooling water is required, conventionally seawater has been mainly used, and the cooling water is installed at a level higher than the S surface and sent to the condenser using a pump and using a siphon effect. Supplied. Therefore, the design pressure of the condenser ice chambers 8m and 8b, which are installed at the highest level of the cooling water line, was relatively small. However, in recent years, especially in nuclear power plants, foundations have been required to have sufficient strength from the perspective of seismic design. In order to prevent thermal wastewater pollution in cases where seawater is used as cooling water, the cooling water system is constructed into a closed loop using a cooling tower, and the condenser is installed at a level below the water surface of the cooling tower. The number of cases where this happens is increasing.

上述の2つのケースにおいては、サイホン効果が期待で
きない九め、冷却水ヘッドが高くなシ、必然的に水室8
の内圧も従来のものに比べて高くなる。?:、のような
復水器の水室8.管板3および冷却管2に作用する荷重
の状aは第2図に示すごとくで、本体胴1と冷却管2は
、熱膨張係数の違いのために、または気温の変化および
運転中に接触する流体の温度差により伸び差が発生する
が、伸縮継手5により、熱応力の発生が除去されている
。一方、氷室に作用する圧力Pは、氷室117の全面に
働き、その荷重Wは、p=<kgt/d/if、幅4m
s高さ5.5111として試算すると、880TONと
いう強大な値となる。このWはフランジ部9.lOのボ
ルト締結部に分布荷重Wとして作用する。この分布荷重
Wは伸縮継手5が存在するため、本体胴1には殆んど伝
わらずに、管板3を介して冷却管2に伝達される。しか
るに管板3は幅に比べて板厚が非常に薄いため、管板周
辺部に局部的な変形が生じ、この部分の冷却管2に大き
な引張力が生じる。この引張力が管板3と冷却管2端部
との固着力より過大な場合には、拡管部が外れたり、溶
接部に割れが生じる等の悪影響を及ぼす。
In the above two cases, the siphon effect cannot be expected, the cooling water head is not high, and the water chamber 8 is inevitably
The internal pressure is also higher than that of the conventional one. ? : Water chamber of condenser such as 8. The state of the load a acting on the tube plate 3 and the cooling pipes 2 is as shown in Fig. 2, and the main body shell 1 and the cooling pipes 2 may come into contact due to differences in thermal expansion coefficients or due to changes in temperature or during operation. Although a difference in elongation occurs due to a temperature difference between the fluids, the expansion joint 5 eliminates the occurrence of thermal stress. On the other hand, the pressure P acting on the ice chamber acts on the entire surface of the ice chamber 117, and the load W is p=<kgt/d/if, width 4 m
When calculated assuming that the height is 5.5111, it becomes a huge value of 880TON. This W is the flange part 9. A distributed load W acts on the bolted portion of lO. Because of the presence of the expansion joint 5, this distributed load W is hardly transmitted to the main body shell 1, but is transmitted to the cooling pipe 2 via the tube plate 3. However, since the thickness of the tube plate 3 is very thin compared to its width, local deformation occurs around the tube plate, and a large tensile force is generated in the cooling tube 2 in this area. If this tensile force is greater than the adhesion force between the tube plate 3 and the end of the cooling tube 2, there will be adverse effects such as the tube expansion section coming off or cracking occurring at the welded section.

このような問題を解決するためには、前記管板3周辺部
の局部的な変形が小さくなるように、管板3を厚くして
剛性を高めるか、または何等かの工夫をして、前記分布
荷重Wが冷却管2に伝達されないような構造にすればよ
い、しかし、前者の方法は省資源の観点から実施には限
度がある。従って従来から後者の方法が種々提案されて
きた。
In order to solve this problem, the tube sheet 3 should be thickened to increase its rigidity so that the local deformation around the tube sheet 3 would be reduced, or some other method would be used to improve the rigidity of the tube sheet 3. The structure may be such that the distributed load W is not transmitted to the cooling pipe 2, but the former method has a limit in implementation from the viewpoint of resource saving. Therefore, various methods of the latter have been proposed in the past.

第3図はその代表的な一例で、この方法は本体胴燗板4
に固着したガイド12と、水室側6に固着し友ストッパ
13により、伸縮継手5の伸びを拘束することにより、
分布荷重Wを本体胴1に伝える一方、伸縮継手5の収縮
は拘束せず、本体胴lと冷却管2の温度差による伸び差
は吸収しようとされるものである。しかるに、分布荷重
Wが非常に大きい場合、この方法のように分布荷重Wを
本体胴lに伝えることは、本体胴1が薄鋼板製であるこ
とから、強度的に危険で69好ましくない。
Figure 3 shows a typical example of this method.
By restraining the extension of the expansion joint 5 by the guide 12 fixed to the water chamber side 6 and the stopper 13 fixed to the water chamber side 6,
While the distributed load W is transmitted to the main body shell 1, the contraction of the expansion joint 5 is not restricted, and the expansion difference due to the temperature difference between the main body shell 1 and the cooling pipe 2 is absorbed. However, when the distributed load W is very large, transmitting the distributed load W to the main body shell 1 as in this method is dangerous and undesirable in terms of strength since the main body shell 1 is made of a thin steel plate.

次に、本体胴1と冷却管2との伸び差について考えてみ
る0本体胴1に炭素鋼、冷却管にチタンを使用し、冷却
管2の長さを15mとし九場合、考えられる温度条件で
の伸び差最大値11’fは4■であplこれによシ冷却
管2に生じる引張力は、約150に9となる。これは冷
却管20詐容引張力と比較して問題になる値ではない、
ここで水m8に内圧Pがかかり、分布荷重Wが作用する
と、本体胴端板4が第4図に示すように変形する。この
場合Pが4kII/jFli度以上になると、分布荷重
Wによるフランジ部移動量ノlPは、一般に温度差によ
る伸び差14〒よ、9大きくなり、前記従来構造により
Δlrt吸収しても、何畳効果がなくなる。
Next, consider the difference in elongation between the main body shell 1 and the cooling pipe 2. If carbon steel is used for the main body shell 1, titanium is used for the cooling pipe, and the length of the cooling pipe 2 is 15 m, then the possible temperature conditions The maximum elongation difference 11'f at is 4.pl, and the tensile force generated in the cooling pipe 2 is approximately 150.9. This value is not a problem compared to the cooling pipe 20 deceptive tensile force.
When an internal pressure P is applied to the water m8 and a distributed load W acts, the body end plate 4 deforms as shown in FIG. 4. In this case, when P becomes 4kII/jFli degrees or more, the flange movement amount no.P due to the distributed load W generally increases by 14 to 9 times the elongation difference due to the temperature difference, and even if the conventional structure absorbs Δlrt, It becomes ineffective.

本発明は、このような点に鑑みてなされたもので、簡単
な構造によシ、冷却管に作用する引張力を従来構造より
、確実に減少せしめることができる復水Sを提供するこ
、!:を目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a condensate S that can reliably reduce the tensile force acting on a cooling pipe compared to a conventional structure with a simple structure. ! :With the goal.

以下第5図を参照して本発明の一実施例について説明す
る。なお第1図と同一部分については、同一符号を付し
、その説明を省略する。
An embodiment of the present invention will be described below with reference to FIG. Components that are the same as those in FIG. 1 are designated by the same reference numerals and their explanations will be omitted.

第5図において、水室側6m、6bと本体胴端板4m、
4bは、複数個の5字状の補強リプ14a。
In Figure 5, the water chamber side 6m, 6b and the main body end plate 4m,
4b is a plurality of 5-shaped reinforcing lips 14a.

14b 、14a 、14dで1定され、本体胴端板4
m。
14b, 14a, and 14d, and the main body body end plate 4
m.

4bの補強リプ14m 、14に、14* 、14d固
着部は、本体胴1内部において、両端板間が補強パイプ
ま7’jtfiロンド15m、15bにより連結されて
いる。
The reinforcing ribs 14m, 14, 14*, 14d of 4b are connected inside the main body 1 between both end plates by reinforcing pipes 15m, 15b.

しかして、補強リプ14m 、 14b 、 14a 
、 14dにより、伸縮継手5は伸縮が殆んど拘束され
る。こうしても冷却管2にチタン管が使用された復水器
の場合、冷却管2にアル1ニウム黄銅等が使用された場
合に比べて、本体胴lとの熱膨張係数の差が少ないため
、熱膨張差による伸び差は問題とはならない。こうして
みると−見、伸縮継手5は不要のように思われるが、こ
の伸縮継手5は、建設中、冷却管挿入時の管板距離11
1!!用として、省くことはできない。
Therefore, reinforcement lips 14m, 14b, 14a
, 14d, expansion and contraction of the expansion joint 5 is almost restricted. Even in this case, in the case of a condenser in which titanium tubes are used for the cooling tubes 2, the difference in thermal expansion coefficient with the main body 1 is smaller than in cases where aluminum brass or the like is used for the cooling tubes 2. Differences in elongation due to differences in thermal expansion are not a problem. Looking at it this way, it seems that the expansion joint 5 is unnecessary, but during construction, the expansion joint 5 was installed at a distance of 11
1! ! For practical purposes, it cannot be omitted.

以上の構成からなる復水器において、水室内水圧Pによ
って発生する分布荷重Wは、殆んど冷却管2には伝わら
ずに、補強リプ14m 、14b 、14・。
In the condenser having the above configuration, the distributed load W generated by the water pressure P in the water chamber is hardly transmitted to the cooling pipes 2, and the reinforcing lips 14m, 14b, 14.

14dK伝わる0次いで本体胴端板4m、4bの補強リ
プ固着部は、本体内部において、両端板4m。
The reinforcing lip fixing parts of the main body body end plates 4m and 4b are 4m long on both end plates inside the main body.

4bの補強リプ固着部は、本体内部において、両端板4
m、4b間が補強パイプま念はロッド15 m 。
The reinforcing lip fixing portion 4b is attached to both end plates 4 inside the main body.
The reinforcing pipe between m and 4b is a 15 m rod.

15 b Kより連結されているため、前後部角氷室F
j*、8kに発生する分布荷重Wは、補強パイプteは
ロッド15m、15bt介して張り合うことになる。従
って、分布荷重Wは本体141Kfl殆んど云わらず、
第4図に示すごとき本体胴1の変形は発生しない。
15 b Since it is connected from K, the front and rear ice cube compartments F
The distributed load W generated at j* and 8k causes the reinforcing pipe te to be stretched through the rods 15m and 15b. Therefore, the distributed load W is almost 141Kfl on the main body,
The deformation of the main body shell 1 as shown in FIG. 4 does not occur.

さらに、原子力発電プラント等の復水器では、高度な耐
震性が要求されているが、第1図および第3図の構造に
おいては、水1iE8bは完全に固定されていないため
、氷室重心に冷却管直角方向地震力Wmが加わると、伸
縮継手部を支点にして氷室全体が、第6図のように変形
し、この結果冷却管2に過大な付加的荷重がかかる。従
って上記変形を防止するため、特別な耐震サポートが必
要となる。しかるに本実施例になる第5図の構造では、
補強リプ14m 、 14b 、 14@、 14dに
よシ、本体胴に完全に固定しているために、第6図のよ
うな変形は生ぜず、特別な耐震サポートは必要としない
Furthermore, condensers in nuclear power plants, etc. are required to have a high degree of earthquake resistance, but in the structures shown in Figures 1 and 3, the water 1iE8b is not completely fixed, so it is cooled to the center of gravity of the ice chamber. When the seismic force Wm in the direction perpendicular to the pipe is applied, the entire ice chamber is deformed using the expansion joint as a fulcrum as shown in FIG. 6, and as a result, an excessive additional load is applied to the cooling pipe 2. Therefore, special seismic support is required to prevent the above deformation. However, in the structure of FIG. 5, which is the present example,
Since the reinforcing lips 14m, 14b, 14@, and 14d are completely fixed to the main body shell, deformation as shown in FIG. 6 does not occur, and no special seismic support is required.

以上説明し念ように本発明によれば、水N@を補強リプ
で本体I@燗板に固定し、を九本体用端板の補強リプ固
着部分の本体内側において、両端板間を補強パイプte
はロッド等により連結したことにより、角氷室の内圧に
より発生した荷重は、補強リプ、補強パイプ17tはロ
ッドを介して張り合うことになり、冷却管および本体胴
端板の過大な変形を防止することができ、また冷却管軸
直角方向地震力に対しても、高度表耐震性を持たせるこ
とができる等の効果を奏する。
As explained above, according to the present invention, the water N is fixed to the main body I with the reinforcing lip, and the reinforcing pipe is connected between both end plates on the inside of the main body at the part where the reinforcing lip is fixed on the nine end plates for the main body. te
Since they are connected by rods, etc., the load generated by the internal pressure of the ice cube chamber is absorbed by the reinforcing lip and the reinforcing pipe 17t through the rod, which prevents excessive deformation of the cooling pipe and the end plate of the main body. It also has the effect of providing high-level seismic resistance against seismic force in the direction perpendicular to the axis of the cooling pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な復水器の縦断側面図、第2図は
従来の復水器各部に作用する荷重と、管板の変形状態お
よび、冷却管に働く荷重分布を示す説明図、第3図は従
来の冷却管保護方法の代表的な一例を示す図、第4図は
第3図の構造において復水器各部の変形状態を示す図、
85図は本発明の一実施例による復水器の縦断側面図、
第6図はllfS図の構造において、地震時の復水器各
部の変形状態を示す図である。 1・・・本体胴、2・・・冷却管、3m、3b・・・管
板、4m、4b・・・本体胴端板、5・・・伸縮継手、
6a。 6 b ・・・水IiI劇、7m、7b=・水室蓋、8
m、8b・・・氷室、14m 、14b、14@、14
d=補強リプ、15m、15b・・・補強パイプまたは
ロッド。 出願人代理人  猪  股    清
Figure 1 is a longitudinal side view of a conventional general condenser, and Figure 2 is an explanatory diagram showing the loads acting on each part of a conventional condenser, the deformation state of the tube sheet, and the load distribution acting on the cooling pipes. , FIG. 3 is a diagram showing a typical example of a conventional cooling pipe protection method, FIG. 4 is a diagram showing deformed states of each part of the condenser in the structure of FIG. 3,
FIG. 85 is a longitudinal sectional side view of a condenser according to an embodiment of the present invention;
FIG. 6 is a diagram showing the state of deformation of each part of the condenser during an earthquake in the structure of the llfS diagram. DESCRIPTION OF SYMBOLS 1... Main body trunk, 2... Cooling pipe, 3m, 3b... Tube plate, 4m, 4b... Main body trunk end plate, 5... Expansion joint,
6a. 6 b... Water IiI drama, 7m, 7b = Water chamber lid, 8
m, 8b... Himuro, 14m, 14b, 14@, 14
d=Reinforcement lip, 15m, 15b...Reinforcement pipe or rod. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】[Claims] 本体胴と、本体胴両側端部のうち少なくとも一方に伸縮
継手を備え、かつ、冷却管を保持する管板と、水室胴お
よび水蜜蓋からなる氷室を本体胴両側端部に連投し友復
水器において、各々の氷室と本体胴端板を、補強リプを
介して固定し、かつ、本体胴端板補強リプ固着部の本体
胴内部側において、両端板間を補強パイプまたはロンド
等で連結したことを特徴とする復水器。
The body shell is equipped with an expansion joint on at least one of both ends of the body shell, and an ice chamber consisting of a tube plate for holding a cooling pipe, a water chamber shell, and a water bottle cover is installed in succession on both ends of the main body shell. In a water container, each ice chamber and main body end plate are fixed via a reinforcing lip, and both end plates are connected with a reinforcing pipe or rond on the inside of the main body body at the main body body end plate reinforcing lip fixing part. A condenser characterized by:
JP10795681A 1981-07-10 1981-07-10 Condenser Granted JPS5811384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10795681A JPS5811384A (en) 1981-07-10 1981-07-10 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10795681A JPS5811384A (en) 1981-07-10 1981-07-10 Condenser

Publications (2)

Publication Number Publication Date
JPS5811384A true JPS5811384A (en) 1983-01-22
JPS631514B2 JPS631514B2 (en) 1988-01-13

Family

ID=14472316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10795681A Granted JPS5811384A (en) 1981-07-10 1981-07-10 Condenser

Country Status (1)

Country Link
JP (1) JPS5811384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874213B2 (en) * 2007-11-06 2011-01-25 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Ultrasonic test apparatus
US7878065B2 (en) * 2007-10-31 2011-02-01 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Ultrasonic inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878065B2 (en) * 2007-10-31 2011-02-01 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Ultrasonic inspection apparatus
US7874213B2 (en) * 2007-11-06 2011-01-25 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Ultrasonic test apparatus

Also Published As

Publication number Publication date
JPS631514B2 (en) 1988-01-13

Similar Documents

Publication Publication Date Title
EP0015510B1 (en) Device to reduce local heat flux through a heat exchanger tube
US3811498A (en) Industrial technique
US3973621A (en) Heat exchanger
US5491730A (en) Cooling system for primary containment vessel in nuclear power plant and component for use in said cooling system
WO2023226287A1 (en) Heat exchanger having double-ended tie rod assembly
JP3735405B2 (en) Condenser
JPS5811384A (en) Condenser
US3240266A (en) Heat exchangers
WO2023226288A1 (en) Heat exchanger with bidirectional pull rod assembly
US3861460A (en) Condenser construction
US3345819A (en) Foundation structure for turboelectric power plants
US3802498A (en) Shell and tube heat exchanger with central conduit
JPS61250406A (en) Feedwater heater for steam generator
Small et al. The RODbaffle heat exchanger
US3651789A (en) Steam generator
US3277958A (en) Heat exchangers
US2858114A (en) Heating means for liquid storage tanks
Tiwari et al. Thermal evaluation of high temperature distillation under an active mode of operation
EP0178545B1 (en) Steam generator
EP0704860B1 (en) A steam condenser with natural circulation for nuclear reactor protection systems
JPS6151236B2 (en)
US3393731A (en) Pressure vessel
US4603734A (en) Heat exchange element of the air-tube type
RU28049U1 (en) DEFLEGMATOR
Eisinger et al. Effect of tube-to-tube ties on fluidelastic instability of tube arrays exposed to crossflow