JPS58113803A - Device for measuring displacement of body to be measured - Google Patents

Device for measuring displacement of body to be measured

Info

Publication number
JPS58113803A
JPS58113803A JP21120881A JP21120881A JPS58113803A JP S58113803 A JPS58113803 A JP S58113803A JP 21120881 A JP21120881 A JP 21120881A JP 21120881 A JP21120881 A JP 21120881A JP S58113803 A JPS58113803 A JP S58113803A
Authority
JP
Japan
Prior art keywords
light
measured
displacement
fiber
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21120881A
Other languages
Japanese (ja)
Inventor
Yoshimasa Miura
三浦 義正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21120881A priority Critical patent/JPS58113803A/en
Publication of JPS58113803A publication Critical patent/JPS58113803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the displarement of the body to be measured without contact regardless of the effect of circumferential electromagnetic fields, by irradiating a radiating beam to the reflecting surface of the body to be measured, and receiving the reflected radiating beams by a plurality of radiating beam receiving means. CONSTITUTION:A light emitting element is connected to the other end of a light transmitting fiber 1. Light irradiates on the reflecting surface 3 of the body to be measured 2 from a light emitting surface 4 of the fiber 1. The reflected light is received by a plurality of light receiving fibers 5. The amount of light received by the light receiving fiber 5 varies with the displacement of the reflecting surface 3. The displacement of the reflecting surface 3, i.e. the displacement of the body to be measured 2, is obtained from the correlation of the ouput values of the light receiving elements which are connected to the other ends of the light receiving fibers. A plurality of light receiving fibers 7, 8, 9, and 10 are arranged around the light transmitting fiber 1. Thus the displacements of the body to be measured in the directions x, y; and Z can be measured.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明は被測定体の変位をそこからの反射輻射ビーム量
から得ることのできる被測定体の変位測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a displacement measuring device for a measured object that can obtain the displacement of the measured object from the amount of reflected radiation beam therefrom.

(2)技術の背景 加速度センサー等においてその信号成分を伝播させて来
る手段は電気信号であるため、加速度センサーが強い電
磁界の存在する環境の中に置かれて被測定体の加速度を
測定する場合にはその電磁界の作用が強く現われてしま
い、満足な測定をなし得ないという不都合があり、その
解決方法が要望されている。
(2) Background of the technology Since the means of propagating signal components in acceleration sensors and the like is electrical signals, the acceleration sensor is placed in an environment with a strong electromagnetic field to measure the acceleration of the object being measured. In some cases, the effect of the electromagnetic field becomes so strong that satisfactory measurements cannot be made, which is a disadvantage, and a solution to this problem is desired.

(3)  従来技術と問題点 従来の加速度センサーは圧電素子や半導体ゲージを用い
たものであり、その加速度成分を伝える信号は電1気的
なものであるため、強電磁界内にセンサーを置いた状態
の測定においては加速度成分信号が強電磁界の影響を受
けて歪がその中に生ずる。従って、その測定結果には誤
差が不回避的に含ましめられ、精確な測定は困難乃至不
可能であった。
(3) Conventional technology and problems Conventional acceleration sensors use piezoelectric elements or semiconductor gauges, and the signal that conveys the acceleration component is electrical, so it is difficult to place the sensor in a strong electromagnetic field. In state measurement, the acceleration component signal is affected by a strong electromagnetic field, causing distortion in it. Therefore, the measurement results inevitably include errors, making accurate measurement difficult or impossible.

このようなことは被測定体の変位、速度の測定にも当然
中じて来る事項である。
These matters naturally also apply to the measurement of displacement and velocity of an object to be measured.

(4)  発明の目的 本発明は上述のような従来技術の包蔵している事柄に着
目して創案されたもので、その目的は変位成分伝達手段
に輻射ビームを用いた従来形式とは全く異なる斬新な被
測定体の変位測定装置を提供することにある。
(4) Purpose of the Invention The present invention was devised by paying attention to the problems contained in the prior art as described above, and its purpose is completely different from that of the conventional method which uses a radiation beam as a displacement component transmission means. An object of the present invention is to provide a novel displacement measuring device for a measured object.

(5)発明の構成 この目的はビーム送出手段から輻射された輻射ビームを
被測定体に設けられた球面等の曲面を有する反射面に向
けて照射し、その曲面からの反射輻射ビームを複数のビ
ーム受は手段で受け、それら変位成分に応答して変位を
表示させることによって達成される。
(5) Structure of the Invention The purpose of this invention is to irradiate the radiation beam radiated from the beam sending means toward a reflecting surface having a curved surface such as a spherical surface provided on the object to be measured, and to generate a plurality of reflected radiation beams from the curved surface. Beam reception is accomplished by receiving means and displaying displacement in response to these displacement components.

(6)  発明の実施例 以下に添付図面を参照しながら本発明の詳細な説明する
(6) Embodiments of the Invention The present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の実施例を示す。1は輻射ビーム送出手
段であり、これは例えば送光用ファイバー(以下、これ
について説明する)。ファイバー1の受光端は発光素子
(図示せず)と結合されている。2は被測定体で、例え
ば、ばね等により支持された球体であり、そのファイバ
ー1からの光を照射される面3はファイバー1の送光面
4に向けて単調に凸状の曲面をなしており、上記光を蝮
数の輻射ビーム受は手段5へ反射する反射面の働きをす
る。この反射面は例えば球面である。輻射ビーム受は手
段5は例えば受光用ファイバー(以下、これについて説
明する。)である。これらの受光用ファイバーが受ける
光量は反射面3の変位に応じて変わり、ファイバー5の
送光面に結合される受光素子(図示せず)の出力に発生
する電圧値もそれに応じて変化する。これら各受光素子
の出力電圧値間の相互関係から反射面3の変位即ち被測
定体の変位を表示するように各受光素子からの出力系が
構成されている。
FIG. 1 shows an embodiment of the invention. Reference numeral 1 denotes a radiation beam sending means, which is, for example, a light sending fiber (this will be explained below). The light receiving end of the fiber 1 is coupled to a light emitting element (not shown). Reference numeral 2 denotes an object to be measured, for example, a spherical body supported by a spring or the like, and the surface 3 to which the light from the fiber 1 is irradiated forms a monotonically convex curved surface toward the light transmitting surface 4 of the fiber 1. The radiation beam receiving means 5 acts as a reflecting surface to reflect the light to the means 5. This reflective surface is, for example, a spherical surface. The radiation beam receiving means 5 is, for example, a light receiving fiber (this will be explained below). The amount of light received by these light-receiving fibers changes according to the displacement of the reflecting surface 3, and the voltage value generated at the output of a light-receiving element (not shown) coupled to the light-transmitting surface of the fiber 5 also changes accordingly. The output system from each light receiving element is configured to display the displacement of the reflecting surface 3, that is, the displacement of the object to be measured, from the correlation between the output voltage values of each of these light receiving elements.

次に、上述のように構成される本発明装置の動作を説明
する。
Next, the operation of the apparatus of the present invention configured as described above will be explained.

第1図に示すように被測定体2が球体であシ、その反射
面が球面であって点線で示す位置から実線で示す位置へ
変位したとすると、点線の位置にあったときのファイバ
ー1の送光面4及びファイバー5の受光面6に垂直な方
向、即ちZ軸方向におけるそれらの面からの変位が第2
図に示すようにzPであシ、受光素子出力電圧がVpで
あったのが、実線の位置へ変位したときの送光面4及び
受光面6からの変位がzQとなシそのときの受光素子出
力電圧がVQとなる。
As shown in FIG. 1, if the object to be measured 2 is a sphere and its reflective surface is a spherical surface, and it is displaced from the position shown by the dotted line to the position shown by the solid line, then the fiber 1 at the position shown by the dotted line The displacement from the light transmitting surface 4 of the fiber 5 and the light receiving surface 6 of the fiber 5 in the direction perpendicular to those surfaces, that is, the Z-axis direction is the second
As shown in the figure, when the output voltage of the light-receiving element is zP and the output voltage of the light-receiving element is Vp, the displacement from the light-transmitting surface 4 and the light-receiving surface 6 is zQ when it is displaced to the position indicated by the solid line. The element output voltage becomes VQ.

変位の差(ZQZP)、即ち球体の変位は出力電圧vP
、vQと第2図に示すような関係から求めることが出来
る。
The difference in displacement (ZQZP), that is, the displacement of the sphere, is the output voltage vP
, vQ and the relationship shown in FIG.

このような測定において、光が変位成分を伝達して来る
から、その経路内にたとえ強電磁界が介在していたとし
ても、これに左右されることはなく、高87′N比の測
定系が構成されているし、また、これらは軽量、小型に
製造しつるものである。
In such measurements, the light transmits the displacement component, so even if there is a strong electromagnetic field in its path, it will not be affected by it, and a measurement system with a high 87'N ratio can be used. In addition, they are lightweight and small in size.

第3図は送光用ファイバー1の送光面4及び受光用ファ
イバー5の受光面6と平行な方向即ちX軸方向に球体2
が変位した場合の状態図を示し、このような変位が生じ
た場合に受光用ファイバー5に結合された受光素子から
発生する出力電圧は第4図の曲線11.12に示す如く
なる。
Figure 3 shows a sphere 2 in a direction parallel to the light transmitting surface 4 of the light transmitting fiber 1 and the light receiving surface 6 of the light receiving fiber 5, that is, in the X-axis direction.
Fig. 4 shows a state diagram in the case of displacement, and when such a displacement occurs, the output voltage generated from the light receiving element coupled to the light receiving fiber 5 becomes as shown by curves 11 and 12 in Fig. 4.

これらの出力型、圧の差を求めることがら、球体2にど
の位の変位が生じているか否がということ及びその方向
が測定し得る。
By determining the difference between these output types and pressures, it is possible to determine how much displacement is occurring in the sphere 2 and its direction.

この場合にも、第1図と同等の効果が得られる。In this case as well, the same effect as in FIG. 1 can be obtained.

第5図及び第6図は球体がばね等により3次元的に支持
されその球体に対して送光用ファイバー1及び受光用フ
ァイバー7.8,9.10が配置される構成にし、3次
元変位を検出しようとするもので、その具体的構成を第
7図に示しである。第7図において、X軸が図示の如く
であるとすると、Y軸は紙面に垂直であり、z軸は号だ
、図示の如くである。これらの軸方向において上述の如
く球体2はばねで支えられておシ、これらのばねのうち
X軸方向のばね11のみを示しである。12は上述のば
ね、球体を納めたセンサーヘッドで、このヘッドと発光
素子13並びに受光素子14.15との間に送光用ファ
イバー1並びに受光用ファイバー7.9が配設されてい
る。図面を簡単にするため、受光用ファイバー8.10
及びそのための受光素子は省略しである。
Figures 5 and 6 show a configuration in which a sphere is three-dimensionally supported by a spring or the like, and the light transmitting fiber 1 and the light receiving fibers 7.8, 9.10 are arranged with respect to the sphere, and the three-dimensional displacement is The specific configuration is shown in FIG. 7. In FIG. 7, if the X axis is as shown, the Y axis is perpendicular to the plane of the paper, and the z axis is as shown. In these axial directions, the sphere 2 is supported by springs as described above, and of these springs, only the spring 11 in the X-axis direction is shown. Reference numeral 12 denotes a sensor head containing the above-mentioned spring and sphere, and a light transmitting fiber 1 and a light receiving fiber 7.9 are disposed between this head and the light emitting element 13 and light receiving element 14.15. To simplify the drawing, the receiving fiber 8.10
And the light receiving element therefor is omitted.

この構成において、球体2の質量をMとし、各ばねのば
ね定数をそれぞれへ、Ky、に2とするとき各加速度成
分i、y、’iに対して力る変位をし、第5図に示す如
きファイバー構成の場合の各ファイバー7.8.9.1
0で受光されこれに対応する受光素子の各々からの出力
電圧がそれぞれv7.v8.v3.v工。下あると、父
=v7  v、 、y=■、−v、。、 ’i、 = 
V7+Vg +V、十V工。の如く各加速度成分が得ら
れる。また、第6図に示す如きファイバー構成の場合に
おける各加速度成分は次の如くなる。x= V7 + 
Vlo  CVB +Vg )、チーV、+V8− (
V、+V1o)、°1=v7+v8+v、十■1oとな
る。
In this configuration, when the mass of the sphere 2 is M, and the spring constant of each spring is 2, Ky, respectively, the force displacement is applied to each acceleration component i, y, 'i, and as shown in Fig. 5. 7.8.9.1 Each fiber in the fiber configuration as shown
0, and the output voltage from each of the light receiving elements corresponding to this is v7. v8. v3. v engineering. Below, father = v7 v, , y = ■, -v,. , 'i, =
V7+Vg +V, 10V engineering. Each acceleration component is obtained as follows. Further, each acceleration component in the case of the fiber configuration shown in FIG. 6 is as follows. x=V7+
Vlo CVB +Vg), Qi V, +V8- (
V, +V1o), °1=v7+v8+v, 1o.

これらの値から球体2の加速度を測定し得る。The acceleration of the sphere 2 can be measured from these values.

この測定においても、第1図の場合と同様型。In this measurement, the same type as in Fig. 1 was used.

礎界の影響が現われず、従って、/N比も高く、装置を
軽量、小型に構成し得る。
There is no effect of the fundamental field, therefore the /N ratio is high, and the device can be made lightweight and compact.

また、それぞれの方向についての重力加速度成分も同様
に測定し得るから、これについての加速度校正を容易に
施行し得る。
Furthermore, since the gravitational acceleration components in each direction can be measured in the same way, acceleration calibration can be easily carried out.

第7図の上記説明において、y方向及び2方向のばねを
除くと共に第5図のファイバー8及び10又はファイバ
ー7及び9を除けば、第1図の装置構成と々る。
In the above description of FIG. 7, if the springs in the y direction and two directions are removed, and the fibers 8 and 10 or the fibers 7 and 9 in FIG. 5 are removed, the device configuration is the same as that in FIG. 1.

上記実施例においては、反射面を球面とする例について
説明したが、楕円面等に形成されてもよい。甘だ、変位
成分を伝達して来る手段は光の外、赤外線等であっても
よい。
In the above embodiment, an example in which the reflecting surface is a spherical surface has been described, but it may be formed into an ellipsoidal surface or the like. Sorry, the means for transmitting the displacement component may be other than light, such as infrared rays.

(7)発明の効果 以上の説明から明らかなように本発明によれば、測定系
に対し相対的に変位する被測定体の球面等の反射面で反
射される輻射ビームの差違から被測定体の変位をそれか
ら離隔して測定し得る。従って、従来のような圧電素子
のように被測定体に直接検出部を当接する等の必要性は
ない。また、輻射ビームに光等を用いる場合には強い電
磁界の存在する環境内であってもその電磁界に左右され
ることはなく、高いSZN比で測定し得るから、測定精
度、その信頼性が向上する。また、装置の小型化、軽量
化に役立ちもするから、使用環境の拡大を促す。
(7) Effects of the Invention As is clear from the above explanation, according to the present invention, the difference between the radiation beams reflected by the reflecting surface, such as a spherical surface, of the measured object that is displaced relative to the measurement system The displacement of can be measured separately therefrom. Therefore, unlike conventional piezoelectric elements, there is no need to directly contact the detection section with the object to be measured. In addition, when using light as a radiation beam, it is not affected by strong electromagnetic fields even in environments where there is a strong electromagnetic field, and it is possible to measure with a high SZN ratio, which improves measurement accuracy and reliability. will improve. It also helps to reduce the size and weight of the device, so it can be used in a wider range of environments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図は反射面が光
軸方向に変位した場合の反射面変位−出力電圧特性曲線
図、第3図は第1図装置において反射面が光軸に対し直
角に変位した場合を示す図、第4図は第3図での反射面
変位−出力電圧特性曲線図、第5図及び第6図は3次元
変位を測定する場合の送光用ファイバー及び受光用ファ
イバーの配置を示す図、第7図は第1図或いは第5図若
しくは第6図のより具体的な装置構成を示す図である。 図中、1は輻射ビーム送出手段、2は被測定体、3は反
射面、5.7,8,9.10は輻射ビーム受は手段であ
る。 特許出願人 富士通株式会社 第1図 7 第2図 第3図 第4図 20
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a reflection surface displacement-output voltage characteristic curve diagram when the reflection surface is displaced in the optical axis direction, and FIG. 3 is a diagram showing the reflection surface in the apparatus shown in FIG. A diagram showing the case of displacement perpendicular to the optical axis, Figure 4 is a reflection surface displacement vs. output voltage characteristic curve diagram in Figure 3, and Figures 5 and 6 are light transmission when measuring three-dimensional displacement. FIG. 7 is a diagram showing a more specific configuration of the apparatus shown in FIG. 1, FIG. 5, or FIG. 6. In the figure, 1 is a radiation beam sending means, 2 is an object to be measured, 3 is a reflecting surface, and 5.7, 8, 9.10 are radiation beam receiving means. Patent applicant Fujitsu Ltd. Figure 1 Figure 7 Figure 2 Figure 3 Figure 4 Figure 20

Claims (1)

【特許請求の範囲】[Claims] 1)輻射ビームを照射する輻射ビーム送出手段と、該輻
射ビーム送出手段に向けて単調に凸状又は凹状の曲面を
なす被測定体反射面と、該反射面で反射した輻射ビーム
を受ける複数の輻射ビーム受は手段とを備え、これら輻
射ビーム受は手段の出力信号に応答して上記被測定体の
変位を表示するように構成したことを特徴とする被測と
する特許請求の範囲第1項記載の被測定体の特徴とする
特許請求の範囲第1項記載の被測定体の変位測定装置。
1) A radiation beam sending means for irradiating a radiation beam, a measuring object reflecting surface forming a monotonically convex or concave curved surface toward the radiation beam sending means, and a plurality of radiation beams that receive the radiation beam reflected by the reflecting surface. The radiation beam receiver comprises means, and the radiation beam receiver is configured to display the displacement of the object to be measured in response to an output signal of the means. A displacement measuring device for a measured object according to claim 1, characterized in that the measured object described in claim 1 is characterized by:
JP21120881A 1981-12-28 1981-12-28 Device for measuring displacement of body to be measured Pending JPS58113803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21120881A JPS58113803A (en) 1981-12-28 1981-12-28 Device for measuring displacement of body to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21120881A JPS58113803A (en) 1981-12-28 1981-12-28 Device for measuring displacement of body to be measured

Publications (1)

Publication Number Publication Date
JPS58113803A true JPS58113803A (en) 1983-07-06

Family

ID=16602119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21120881A Pending JPS58113803A (en) 1981-12-28 1981-12-28 Device for measuring displacement of body to be measured

Country Status (1)

Country Link
JP (1) JPS58113803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110103A (en) * 1985-04-30 1987-05-21 メタテツク コ−ポレイシヨン Optical fiber converter
WO1992014991A1 (en) * 1991-02-20 1992-09-03 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Optical displacement or deformation measurement process and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110103A (en) * 1985-04-30 1987-05-21 メタテツク コ−ポレイシヨン Optical fiber converter
WO1992014991A1 (en) * 1991-02-20 1992-09-03 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Optical displacement or deformation measurement process and device

Similar Documents

Publication Publication Date Title
US5949740A (en) Unbalanced fiber optic Michelson interferometer as an optical pick-off
US5118956A (en) Touch probe including a waveguide
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
CN100460811C (en) Method and device for improving straight line degree measurement sensitivity
EP0124533A1 (en) Fiber optic displacement sensor with built-in reference
US4670649A (en) Optical transducer and measuring device
US5812251A (en) Electro-optic strain gages and transducer
JPS62110103A (en) Optical fiber converter
JPH0277626A (en) Fiber optical vibration sensor
US5705810A (en) Laser optical torquemeter
US4836031A (en) Method and apparatus for measuring deformations of test samples in testing machines
CN110133324B (en) Differential type fiber bragg grating acceleration sensing device
US5837998A (en) Two-dimensional fiber optic acceleration and vibration sensor
JPS58113803A (en) Device for measuring displacement of body to be measured
JP2865337B2 (en) Optical measuring device
CN220304798U (en) Right angle error detection auxiliary device for pentaprism
CN100480624C (en) Optical scanning outside diameter measuring system without scanning objective lens and measuring method thereof
JP2523334B2 (en) Optical displacement meter
KR20090122239A (en) Optical metrology system
SU1688165A1 (en) Device for determining shaft rotation parameters
JPH0626946A (en) Method and device for measuring mechanical size
CN106052548B (en) A kind of big working distance autocollimation of portable high-accuracy and method
US20200041536A1 (en) Fibre Optic Vibration and Acceleration Sensor
JPS5852503A (en) Mechanical displacement detecting device
SU1101672A1 (en) Device for touch=free measuring of deformations